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Previously on Transportation Logistics

The term cT − cTBB
−1A ≥ 0T is also called the reduced cost vector. Let

us denote it using c̄T. What are the reduced costs of the basic variables?

Reduced cost of variable xj = cj − cTBB
−1A·j

We care only about the reduced cost of the non-basic variables c̄TN =
cTN − cTBB

−1N

Theorem (Optimality Condition)

Suppose x∗ is a basic feasible solution and c̄N ≥ 0, then x∗ is optimal

This is an important result in linear programming. We’ll soon see that it
not only tells us when to stop but also shows us the direction in which we
should move if we haven’t reached optimality.
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Previously on Transportation Logistics

1 Start with an initial basic feasible solution x =

[
xB
xN

]
=

[
B−1b
0

]
2 Compute the reduced cost vector c̄TN = cTN − cTBB

−1N

3 If c̄N ≥ 0, then x is optimal and terminate, else go to Step 4

4 Pick j∗ : c̄j∗ < 0 and compute descent direction d =

[
−B−1A·j∗

ej∗

]
5 If dB ≥ 0, then the LP is unbounded, else go to Step 6

6 Set k∗ ∈ arg min
{
− (xB )k

(dB )k
: (dB)k < 0

}
7 Modify the basis by swapping B·k∗ and A·j∗ , set xB = B−1b, and

go to Step 2.
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Previously on Transportation Logistics

Make sure that the reduced costs of the basic variables are zeros. If not,
perform row operations.

Identify an entering variable using the reduced costs. Note that we will
no longer calculate reduced costs using cumbersome matrix operations.
Everything that we need will be in the table.

x1 ↓ x2 x3 x4 x5 RHS

RC -6 −4 0 0 0 0

x3 1 1 1 0 0 6

x4 2 1 0 1 0 9

x5 2 3 0 0 1 16

Lecture 17 Column Generation



5/28

Previously on Transportation Logistics

What happens when a new variable is added? Say a new decision
variable x7 is introduced in the example problem with cost coefficient −20
and AT

.7 =
[
3 4

]
This variable can be assumed to be non-basic and the current solution is
basic feasible to the new problem. We hence need to check if the new
variable can enter the basis.
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Lecture Outline

1 Column Generation

2 Examples
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Column Generation
Introduction

Recall that the dual variables/marginal costs satisfy the following equation

yT = cTBB
−1

Let us take the primal problem in standard form.

Primal LP

min cTx

s.t. Ax = b

x ≥ 0

Dual LP

max bTy

s.t. ATy ≤ c

What does the reduced cost optimality condition look like in terms of
the dual variables? Having non-negative reduced costs is equivalent to
achieving dual feasibility!
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Column Generation
Introduction

In many real-world problems, the number of constraints or variables can
be very large.

When a problem has several variables but a limited number of constraints,
the size of the basis matrix is small and many of the variables are non-basic
and are zero in the optimal solution. Yet, two major challenges remain.

I Identifying which columns belong to the optimal basis is non-trivial.

I Checking for optimality, that is the reduced costs of all the non-basic
variables must be greater than or equal to zero is cumbersome.
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Column Generation
Introduction

These issues can be effectively addressed using the idea of column gener-
ation where

I The constraint matrix includes only a limited number of columns or
variables to begin with.

I New variables are the corresponding column in the constraints are
added recursively only if they have promising reduced cost.

Note that problems with a large number of constraints with few variables
can be handled by converting it to its dual and using column generation.

Equivalently, one could use a similar row generation or constraint genera-
tion in which we begin with a limited number of constraints and add new
ones recursively.
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Column Generation
Master Problem

Consider an LP in the standard form

min cTx

s.t. Ax = b

x ≥ 0

Suppose that the columns of A are prohibitively large in number such that
it is impossible to store A in a computer’s memory.

Instead of this LP, we first solve a restricted master problem (RMP) which
is an LP with fewer columns. Note that this solution is basic feasible to
the original problem (Why?).

min
∑
j∈J

cjxj

s.t.
∑
j∈J

A.jxj = b

xj ≥ 0 ∀ j ∈ J
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Column Generation
Sub-problem

Since the restricted master has few variables and constraints, it can be
efficiently solved using the simplex method.

The next step involves finding a column(s) to include in the set J and
resolve the restricted master. To this end, a sub-problem of the following
kind is optimized

min
j∈Jc

c̄j

where Jc is the complement of J, the columns excluded from the restricted
master. In many cases, this optimization problem does not require enu-
merating the reduced costs of all the variables in Jc .

If the optimal solution to the sub-problem is negative then a new variable
can enter the basis and is included in the restricted master. Else, the
solution the restricted master is optimal to the original problem.
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Column Generation
Algorithm

The reduced costs are evaluated using the duals of the master problem.
We begin with an initial set of columns J that guarantees feasibility of the
restricted master.

1 Solve the restricted master problem

min
∑
j∈J

cjxj

s.t.
∑
j∈J

A.jxj = b

xj ≥ 0 ∀ j ∈ J

Suppose y represents the optimal dual solution.

2 Solve the sub-problem zsub = minj∈Jc (cj − yTA.j). Let j∗ be the
optimal solution.

3 If zsub < 0, J ← J ∪ {j∗} and go to Step 1, else terminate.
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Column Generation
Row Generation

The ideas used in column generation can also be applied to problems with
a few variables but a large number of constraints.

Consider the dual of the standard form as shown below.

max bTy

s.t. ATy ≤ c

Instead of solving the complete problem, we solve a relaxed version of it
with fewer constraints.

max bTy

s.t. AT
.jy ≤ cj ∀ j ∈ J

If the optimal solution to this problem solves all the left out constraints
then then it is optimal to the original problem.

However, if some constraint is violated, we add it to the relaxed problem
and resolve. How can we identify constraints that are violated easily?
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Column Generation
Row Generation

To identify the violating constraint, we solve a separation problem in which
y∗ is separated from the original feasible region using a constraint which
it violates just as done in cutting plane methods.

𝑦opt

𝑦∗

This constraint can be identified by solving min cj −AT
.jy
∗ ∀ j ∈ Jc . What

are the decision variables in this problem? If the optimal solution to this
problem is ≥ 0, y∗ is optimal to the original problem.

As before, row generation works when we can formulate this problem as
another efficient optimization formulation.
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Column Generation
Implementation Specifics

The column generation procedure can be implemented in many variants,
each of which can be guaranteed to produce optimal solutions.

I Removing the leaving variable after each new column is found or
including all the columns discovered so far and solving the restricted
master.

I Deleting unused columns after a specific number of iterations.

I Adding multiple columns in each iterations which can be identified
using an exact of heuristic method. Why does this work?
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Examples
Cutting Stock Problem

Consider the cutting stock problem with one source of raw paper. Suppose
we begin with large rolls of width W . Assume that customer i demands
bi rolls of width wi ≤W where i = 1, . . . ,m.

For example, suppose the raw paper is 20” wide and there is demand for
three types of paper rolls: (1) 10,000 5” wide rolls (2) 30,000 7” wide
rolls, and (3) 20,000 9” wide rolls.

How can this demand be met while minimizing the number of raw rolls
used?
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Examples
Cutting Stock Problem

Suppose the large roll can be cut into smaller rolls in n feasible patterns
and that aij is the number of rolls for i that can be produced from one roll
of pattern j .

Let xj be the number of rolls cut according to pattern j .

min
n∑

j=1

xj

s.t.
n∑

j=1

aijxj = bi ∀ i = 1, . . . ,m

xj ≥ 0∀ j = 1, . . . , n

It doesn’t hurt to solve this as an LP and round it to get an integer solution.
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Examples
Cutting Stock Problem

Note that a column of the jth feasible pattern contains m elements which
must satisfy the following conditions

m∑
i=1

aijwi ≤W

An initial basic feasible solution to start the RMP is easy (Why?). Pick
m patterns j = 1, . . . ,m each of which cuts one roll of size wi or bW /wic
rolls from a larger roll.

Also observe that the elements of A.j indicate the aij values, i.e., the
number of rolls of widths i that can be cut.
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Examples
Cutting Stock Problem

Thus, minimizing the reduced cost c̄j = 1− yTA.j is equivalent to

max
j∈Jc

yTA.j

What are the decision variables and constraints for the above problem?

max
m∑
i=1

yiai

s.t.
m∑
i=1

wiai ≤W

ai ∈ Zn
+ ∀ i = 1, . . . ,m

Does this resemble any problem that we saw earlier? The above knapsack
problem can be solved using branch and bound or dynamic programming.
Since m is usually small, solving this is not very complicated.
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Examples
Cutting Stock Problem

Solve the following cutting stock problem instance using column genera-
tion. Assume that W = 100.

wi bi
45 97
36 610
31 395
14 211
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Examples
Resource Constrained Shortest Paths

Consider a shortest path problem variant in which the goal is to find the
cheapest path subject to a constraint that the total time is less than 27.

1

4

5

2

3

6

(2,15)

(4,5) (3,12)

(7,5)

(1,4)

(2,5)

(1,10)(2,5)

(6,15)

i
(cij, tij)

j

Formulate this as an optimization problem. Can we solve it as a linear
program and get integer optimal solutions?
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Examples
Resource Constrained Shortest Paths

Suppose the time budget is B.

min
∑

(i,j)∈A

cijxij

s.t.
∑

j :(i,j)∈A

xij −
∑

h:(h,i)∈A

xhi =


1 if i = s

−1 if i = t

0 otherwise∑
(i,j)∈A

tijxij ≤ B

xij ∈ {0, 1} ∀ (i , j) ∈ A

The extra constraint disrupts the total unimodularity property and hence
we can no longer solve this as a linear program.
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Examples
Resource Constrained Shortest Paths

Can you reformulate this problem using path variables yp? Suppose P is
the set of all paths between the OD pair.

min
∑
p∈P

cpyp

s.t.
∑
p∈P

tpyp ≤ B

∑
p∈P

yp = 1

yp ∈ {0, 1} ∀ p ∈ P

Just as the cutting stock problem, the size of the P can be exponentially
large. Hence, we work with an LP version of the RMP where P is restricted
to a subset P ′. How do we generate new columns using a pricing sub-
problem?

Lecture 17 Column Generation



26/28

Examples
Resource Constrained Shortest Paths

Define dual variables w1 and w2 for the first and second constraint of the
LP relaxation of the restricted version of this master problem.

The first constraint can be written in standard form using a slack but that
does not affect the pricing problem.

The reduced cost is therefore

c̄p = cp −
[
w1 w2

] [tp
1

]
= cp − w1tp − w2

To find a path which minimizes this expression, what are the decision
variables? Can we write this as an optimization problem involving link
flow variables?

Note that w1 and w2 are constants in the following pricing sub-problem.
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Examples
Resource Constrained Shortest Paths

Note that the pricing problem does not have the complicating constraint.
Hence, standard labeling methods can be used. The arc weights can be
negative and hence we should ensure that the path is elementary.

zsub = min
∑

(i,j)∈A

cijxij − w1tijxij − w2

s.t.
∑

j :(i,j)∈A

xij −
∑

h:(h,i)∈A

xhi =


1 if i = s

−1 if i = t

0 otherwise

xij ∈ {0, 1} ∀ (i , j) ∈ A

If zsub < 0, then we add the new path formed by the links belonging to
the path to the RMP and resolve it to get new dual variables.

Apply this method to find the optimal resource constrained path in the
earlier instance.
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Your Moment of Zen

Source: joshwoodjokes.com
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