
CE 205A
Transportation Logistics

Lecture 12

Branch and Cut

Lecture 12 Branch and Cut

2/23

Previously on Transportation Logistics

Suppose you run logistics company. You can open your offices at any of n
potential locations in the city and there is a fixed cost of opening a branch
at node j , which is denoted by fj .

You can serve customer demand at m locations from any of the branches.
The cost of serving customer at i from branch j is cij . Where should you
open branches and how do you pair customers to branches?

min
n∑

j=1

fjyj +
m∑
i=1

n∑
j=1

cijxij

s.t.
n∑

j=1

xij = 1 ∀ i = 1, . . . ,m

xij ≤ yj ∀ i = 1, . . . ,m, j = 1, . . . , n

xij ∈ {0, 1} ∀ i = 1, . . . ,m, j = 1, . . . , n

yj ∈ {0, 1} ∀ j = 1, . . . , n

Lecture 12 Branch and Cut

3/23

Previously on Transportation Logistics

In the facility location problem (say P1), we set xij ≤ yj to indicate that a
customer at i can be paired to a branch at j only if it is open, i.e., yj = 1.

Alternately, we can add all such constraints for i = 1, . . . ,m and write a
model P2 for which

m∑
i=1

xij ≤ myj ∀j = 1, . . . , n

Which of the two formulations is better? P2 has fewer constraints than
P1, but P1 ⊂ P2. Imagine x1 ≤ 1 and x2 ≤ 1 vs. x1 + x2 ≤ 2. (Although
the integer solutions in these two examples is not the same.)

Hence, if you solve the LP relaxations of the two problems, you may notice
that zLPP1

≥ zLPP2
.

Lecture 12 Branch and Cut

4/23

Previously on Transportation Logistics

Show that xi ≤ y is a valid inequality and a facet of the polytope

X =

{
(x, y) ∈ Rm

+ × {0, 1} :
m∑
i=1

xi ≤ my , xi ≤ 1, i = 1, . . . ,m

}

The required result can be shown by proving the following statements.

I dim(Conv(X)) = m + 1

I Fi =
{

(x, y) ∈ Conv(X) : xi = y
}

is a facet, i.e., dim(Fi) = m.

Lecture 12 Branch and Cut

5/23

Previously on Transportation Logistics

The ideas used in column generation can also be applied to problems with
a few variables but a large number of constraints.

Consider the dual of the standard form as shown below.

max bTy

s.t. ATy ≤ c

Instead of solving the complete problem, we solve a relaxed version of it
with fewer constraints.

max bTy

s.t. AT
.jy ≤ cj ∀ j ∈ J

If the optimal solution to this problem solves all the left out constraints
then then it is optimal to the original problem.

However, if some constraint is violated, we add it to the relaxed problem
and resolve. How can we identify constraints that are violated easily?

Lecture 12 Branch and Cut

6/23

Previously on Transportation Logistics

To identify the violating constraint, we solve a separation problem in which
y∗ is separated from the original feasible region using a constraint which
it violates just as done in cutting plane methods.

𝑦opt

𝑦∗

This constraint can be identified by solving min cj −AT
.jy
∗ ∀ j ∈ Jc . What

are the decision variables in this problem? If the optimal solution to this
problem is ≥ 0, y∗ is optimal to the original problem.

Lecture 12 Branch and Cut

7/23

Previously on Transportation Logistics

Consider an IP formulation X = {x ∈ Zn
+ : Ax ≤ b}. Let Conv(X) be the

convex hull of the feasible space and P = {x ∈ Rn
+ : Ax ≤ b} be the LP

relaxation space.

We can try to cut off the current solution to the LP relaxation using a
specific valid inequality so that we move closer to Conv(X).

Algorithm 1 Generic Cutting Plane Algorithm

x∗ ← arg minx∈P cTx

while x∗ /∈ Zn
+ do

Separation Problem:
Determine a valid inequality (w,w0) that satisfies wTx > w0

P ← P ∩ {wTx∗ > w0}
x∗ ← arg minx∈P cTx

end while

Does cTx always increase?

Lecture 12 Branch and Cut

8/23

Lecture Outline

1 Branch and Cut

2 CPLEX Example

Lecture 12 Branch and Cut

9/23

Lecture Outline

Branch and Cut

Lecture 12 Branch and Cut

10/23

Branch and Cut
Introduction

The cutting plane method described in the previous lectures may perform
well if they are facets. Else, they tend to exhibit marginal improvement in
successive iterations.

Furthermore, ever cut increases the time required to solve the LPs. Hence,
it is prudent to branch if there is no reasonable improvement in the objective
function.

One can generate new cuts at nodes other than the root in the branch and
bound tree, which gives rise to the branch and cut method.

Lecture 12 Branch and Cut

11/23

Branch and Cut
Introduction

Several decisions affect the computational performance of such methods.

I When should you branch in the branch and bound tree?

I What kind of cuts should be added?

I How much time should we spend in solving separation problems?

I Can we implement separation heuristics to generate cuts?

I Do we retain the cuts added at ancestor nodes? If not, which ones
should be dropped and when? (slacks are positive or duals are
non-zero)

Lecture 12 Branch and Cut

12/23

Branch and Cut
Introduction

Most libraries tend to have a cut generator module which automatically
determines “good” cuts from typical families of cuts such as covers, cliques,
MIR, Gomory, etc.

They then use these in local and global cut pools. Some or all of the cuts
in these pools may be added depending on the solver. The ones that are
promising in the local pool are used longer (at other nodes) by moving
them to the global cut pool.

The exact implementation details are usually proprietary except for open
source solvers. See the following reference for more details.

Ladányi, L., Ralphs, T. K., & Trotter, L. E. (2001). Branch, cut, and price: Sequential

and parallel. In Computational combinatorial optimization (pp. 223-260). Springer,

Berlin, Heidelberg.

Lecture 12 Branch and Cut

13/23

Branch and Cut
Example

Solve the following optimization problem using branch and bound and
branch and cut while adding at most one cover inequality at each node.

min − 8x1 − 22x2 − 10x3 − 15x4

s.t. x1 + 4x2 + 7x3 + 5x4 ≤ 11

0 ≤ x1 ≤ 4

0 ≤ x2 ≤ 1

0 ≤ x3 ≤ 1

0 ≤ x4 ≤ 1

How many nodes are explored in both cases?

Lecture 12 Branch and Cut

14/23

Lecture Outline

CPLEX Example

Lecture 12 Branch and Cut

15/23

CPLEX Example
Outline

Consider the facility location model as shown below where J and C are
the sets of facilities and clients, respectively.

The constraints are aggregated with a minor difference that a facility can
serve at most |C | − 1 clients. That is, more than one facility must be
opened.

min
∑
j∈J

fixedCost[j] ∗ used[j] +
∑
j∈J

∑
c∈C

cost[c][j] ∗ supply[c][j]

s.t.
∑
j∈J

supply[c][j] = 1 ∀c ∈ C

∑
c∈C

supply[c][j] ≤ (|C | − 1) ∗ used[j] ∀j ∈ J

supply[c][j] ∈ {0, 1} ∀c ∈ C , j ∈ J

used[j] ∈ {0, 1} ∀j ∈ J

Lecture 12 Branch and Cut

16/23

CPLEX Example
Outline

It is easy to integrate customized cuts for MIP problems with standard
solvers.

Most solvers provide features called callbacks which direct them to alter-
nate user-specified strategies during the branch and bound procedure.

The following discussion is specific to CPLEX 22.1.0.0.

Functions:

I main(): Reads arguments and data and calls admipex8()

I usage(): Specifies the arguments of the code (multiple arguments
are allowed)

I admipex8(): Contains the main formulation and initialization of
the cuts

Lecture 12 Branch and Cut

17/23

CPLEX Example
Outline

Callbacks are specified using classes. FacilityCallback is the class that
generates the cuts and facilitycb is an instance/object of the class.

I clients: List of client indices

I locations: List of location indices

I used: CPLEX variable iterator

I supply: CPLEX variable iterator

I cutlhs: List of |J| × |C | disaggregate constraint expressions

I cutrhs: List of |J| × |C | zeros

Unlike simple CPLEX programs, the variable iterators must be defined and
used in the constructor for the callback class.

Lecture 12 Branch and Cut

18/23

CPLEX Example
Outline

Class functions:

I disaggregate()

I cuts from table()

I lazy capacity()

I invoke()

Each of the first three implements a specific type of cuts. The fourth
function tells CPLEX which one of these three to use.

These functions use the current solution which is stored in the class ob-
jects. However, since the problem is not fully solved one cannot access
cpx.solution.get values()

Instead, depending on the type of cuts added, context.get candidate point()

and context.get relaxation point() can be used.

Lecture 12 Branch and Cut

19/23

CPLEX Example
Lazy Cuts

Lazy cuts refer to constraints in the original formulation that may be
skipped so that the optimization model can run faster LPs with fewer
constraints. These constraints are not specified in the original model.

For example, if -lazy is passed as an argument, the constraint∑
c∈C

supply[c][j] ≤ (|C | − 1) ∗ used[j]

is not added upfront, but is only included if it is violated.

If the intermediate LP solution is integral when lazy cuts are included,
CPLEX will not terminate until the solution satisfies all the left out con-
straints.

Lecture 12 Branch and Cut

20/23

CPLEX Example
User Cuts

Lazy cuts are similar to row generation methods and work well when there
are an exponential number of cuts to choose from.

For regular cutting plane methods, we can provide cuts that are known to
be valid inequalities either by directly providing an entire family of inequal-
ities or by solving a separation problem.

These are also called user cuts. In the example, disaggregate() adds
the facet-defining inequality of the type supply[c][j] ≤ used[j]

Note that there are subtle differences in declaring the user and lazy cuts
context.add user cut() and context.reject candidate(). The key-
word arguments are also slightly different.

Lecture 12 Branch and Cut

21/23

CPLEX Example
User Cuts

cuts from table() is a variant of the disaggregate user cuts in which
the cut expressions are stored upfront in a table and are added if the LHS
is greater than the RHS.

CPLEX allows you to configure a few additional options for user cuts.

I You can add cuts only along a subtree rooted at the current node.
This can be set by turning the local variable to True.

I Cuts can also be removed at later stages and CPLEX can be asked
to decide it internally using the cutmanagement option. Use purge

to dynamically delete cuts and force to retain them once added.

Lecture 12 Branch and Cut

22/23

CPLEX Example
Invoking Cuts

The contextmask variable in admipex8() tells the cpx.set callback()

function the exact situations in which callbacks must be invoked.

These are declared using the bitwise OR operators | (e.g., 00111 | 10010
= 10111) on the context ID.

The class variable candidate is used for lazy cuts and relaxation is used
for user cuts.

Lecture 12 Branch and Cut

https://www.ibm.com/docs/en/icos/12.8.0.0?topic=SSSA5P_12.8.0/ilog.odms.cplex.help/refpythoncplex/html/cplex.callbacks.Context.id-class.htm

23/23

Your Moment of Zen

Source: xkcd.com

Lecture 12 Branch and Cut

