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Previously on Transportation Logistics

The idea behind cutting plane algorithms is to solve the LP relaxations and
identify a hyperplane that separates the LP relaxation and integer feasible
solutions of the problem.

This is done iteratively by solving a separation problem which determines

new cuts to be added to the problem.
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Previously on Transportation Logistics

Definition

An inequality wTx ≤ w0 is a valid inequality for X ⊆ Rn if
wTx ≤ w0 ∀ x ∈ X . A valid inequality is also denoted as (w,w0).

Proposition

An inequality wTx ≤ w0 is a valid inequality for
X = {x : Ax ≤ b, x ≥ 0} ⇔ ∃ y ≥ 0, such that
ATy ≥ w and bTy ≤ w0.

Ax ≤ b
x ≥ 0

w
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Previously on Transportation Logistics

Consider the set X = {x ∈ Rn
+ : Ax ≤ b}, where A ∈ Rm×n

+ and λ ≥ 0.
Recall that the following inequality is valid for X .

m∑
i=1

λiAi.x ≤
m∑
i=1

λibi

The inequality can also be written as
n∑

j=1

λTA.jxj ≤ λTb

Since, x ≥ 0, rounding the coefficients still makes it a valid inequality for
X

n∑
j=1

⌊λTA.j⌋xj ≤ λTb

Finally, the following inequality is valid for X ∩ Zn
+ since the variables are

integral.
n∑

j=1

⌊λTA.j⌋xj ≤ ⌊λTb⌋
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Previously on Transportation Logistics

Consider the Knapsack constraint X = {x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b}. Let
N = {1, . . . , n}. Assume that b > 0 and aj > 0 for all j. Is this restrictive?

Definition (Cover)

A set C ⊆ N is a cover/dependent set if
∑

j∈C aj > b. A cover is
minimal if C\{j} is not a cover or any j ∈ C .

Determine all covers of 2x1 + 5x2 + 3x3 + x4 ≤ 6.

▶ Which of these are minimal?

▶ What kind of valid inequalities are implied by covers?

Proposition

If C ⊆ N is a cover for X , then
∑

j∈C xj ≤ |C | − 1 is valid for X .
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Previously on Transportation Logistics

Before we begin, we need to partition the data into those corresponding
to the free and pivot columns. We will call these basic and non-basic
variables. The original LP is recast as

min cTx

s.t. Ax = b

x ≥ 0

min cTBxB + cTNxN

s.t.
[
B N

] [xB
xN

]
= b

xB , xN ≥ 0

We then set the non-basic variables to 0 and hence

[
xB
xN

]
=

[
B−1b
0

]
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Previously on Transportation Logistics

The series of steps in the Simplex algorithm
involved finding inverses and performing ma-
trix multiplications to obtain the reduced
cost vector and the descent direction.

min z = cTx

s.t. Ax = b

x ≥ 0

These steps can be compactly written in a table like format using row
operations and Gauss-Jordan style elimination.

xB xNB RHS

RC 0 cTN − cTBB
−1N −cTBB

−1b

xB I B−1N B−1b

The reduced costs follow from row operations that create 0 above I. Each
column in the Tableau is B−1A·j . Hence, the min-cost rule and the un-
bounded condition in the tableau method involves a sign reversal.
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Lecture Outline

1 Generic Cutting Plane Algorithm

2 Gomory’s Cutting Plane Algorithm
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Lecture Outline

Generic Cutting Plane Algorithm
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Generic Cutting Plane Algorithm
Introduction

Valid inequalities can potentially help improve LP relaxations of an opti-
mization problem.

Hence, one could add them to a formulation and proceed with branch and
bound. This method is also known as cut and branch.

However, there many valid inequalities to choose from. If a certain valid
inequality is known to be facet-defining, it is more useful than the others.

But finding such inequalities is often non-trivial. Even if we did, adding
them upfront may require adding an exponential number of constraints
which is prohibitive.

Can we iteratively add ‘useful’ valid inequalities?
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Generic Cutting Plane Algorithm
Introduction

Consider an IP formulation X = {x ∈ Zn
+ : Ax ≤ b}. Let Conv(X ) be the

convex hull of the feasible space and P = {x ∈ Rn
+ : Ax ≤ b} be the LP

relaxation space.

We can try to cut off the current solution to the LP relaxation using a
specific valid inequality so that we move closer to Conv(X ).

Algorithm Generic Cutting Plane Algorithm

x∗ ← argminx∈P cTx

while x∗ /∈ Zn
+ do

Separation Problem:
Determine a valid inequality (w,w0) that satisfies wTx > w0

P ← P ∩ {wTx∗ > w0}
x∗ ← argminx∈P cTx

end while

Does cTx always increase?
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Generic Cutting Plane Algorithm
Separation Problem

Searching for valid inequalities that violate the current LP solution is usu-
ally restricted to a family of known valid inequalities F .

In such cases, the while loop may not terminate since we may not reach
the IP solution.

From a practical perspective, the algorithm can be terminated if all in-
equalities in F are exhausted or if the improvement in the objective is not
significant.

The updated P can be used as a starting point for a branch and bound
algorithm.
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Generic Cutting Plane Algorithm
Example – Knapsack

Consider the knapsack constraint X =
{
x ∈ {0, 1}n :

∑n
j=1 ajxj ≤ b

}
. Let

N = {1, . . . , n}.

Suppose F is the family of cover inequalities. Note that
∑

j∈C xj ≤ |C |−1
is equivalent to ∑

j∈C

(1− xj) ≥ 1

Suppose we solve the problem as an LP and get a factional solution x∗.
The idea in the cutting plane algorithm is to find a cover inequality that
is not satisfied by x∗ and add it to the LP relaxation?
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Generic Cutting Plane Algorithm
Example – Knapsack

Can you find a cover C ⊆ N for which
∑

j∈C aj > b and
∑

j∈C (1−x∗j ) < 1?
Cast this as an optimization problem?

ζ = min
∑
j∈N

(1− x∗j )zj

s.t.
∑
j∈N

ajzj > b

z ∈ {0, 1}n

If ζ < 1, then indices for which zs are 1 give us a knapsack cover cut.
Why solve a minimization problem?

Notice that we replaced one IP problem with another one. What’s the
advantage of this method? Do we get a minimal cover using this method?
How can we find a minimal cover? What is the advantage of this formu-
lation over other alternatives?
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Generic Cutting Plane Algorithm
Example – Knapsack

Consider the knapsack constraint

11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19

Suppose a fractional solution (0.5, 1, 0.5, 0, 0, 1, 0) is obtained in one of
the iterations. Find a cover cut.
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Lecture Outline

Gomory’s Cutting Plane Algorithm
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Gomory’s Cutting Plane Algorithm
Introduction

The cutting plane algorithm discussed earlier is generic but the separation
problem depends on the formulation.

Gomory proposed a cutting plane method that uses the solution from the
final simplex tableau to generate new inequalities that cuts off the current
LP solution.

This method is problem-agnostic and is theoretically guaranteed to con-
verge to the IP solution. However, it is empirically known to suffer from
poor convergence.
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Gomory’s Cutting Plane Algorithm
Method

Consider an IP problem (left) and its LP relaxation (right).

min cTx

s.t. Ax = b

x ∈ Zn
+

min cTBxB + cTNxN

s.t.
[
B N

] [xB
xN

]
= b

xB , xN ≥ 0

The constraints can also be written as

xB + B−1NxN = B−1b

If B−1b is integral when simplex is terminated, the solution obtained is
optimal to the IP problem. Else, we can find a row i for which (B−1b)i is
fractional.
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Gomory’s Cutting Plane Algorithm
Method

The corresponding row can be written as

(xB)i +
∑
j∈N

(B−1N)ijxj = (B−1b)i

Since the above equation holds, the following inequality is also true.

(xB)i +
∑
j∈N

(B−1N)ijxj ≤ (B−1b)i

Applying the ideas from CG cuts, the following inequality is valid for the
LP polytope.

(xB)i +
∑
j∈N

⌊(B−1N)ij⌋xj ≤ ⌊(B−1b)i⌋
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Gomory’s Cutting Plane Algorithm
Method

Subtracting the above inequality with the first equality,∑
j∈N

(
(B−1N)ij − ⌊(B−1N)ij⌋

)
xj ≥ (B−1b)i − ⌊(B−1b)i⌋

We can write this valid inequality as wTx ≥ w0, where

w =
[
0B (B−1N)i. − ⌊(B−1N)i.

]
w0 = (B−1b)i − ⌊(B−1b)i⌋

Note that w0 ∈ (0, 1). Clearly, the optimal solution violates this valid
inequality. (Why?)
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Gomory’s Cutting Plane Algorithm
Example

Solve the following IP using Gomory’s cutting plane method.

min − 4x1 + x2

s.t.

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x ∈ Z2
+

The LP relaxation in standard form is

min − 4x1 + x2

s.t.

7x1 − 2x2 + x3 = 14

x2 + x4 = 3

2x1 − 2x2 + x5 = 3

x ∈ R5
+
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Gomory’s Cutting Plane Algorithm
Example – Iteration 1

The LP relaxation solution is
[
20/7 3 0 0 23/7

]
. The basic variables

include x1, x2, and x5.

B =

7 −2 0
0 1 0
2 −2 1

 B−1 =

 1
7

2
7 0

0 1 0
− 2

7
10
7 1

 N =

1 0
0 1
0 0


b =

143
3

 B−1N =

 1
7

2
7

0 1
− 2

7
10
7

 B−1b =

 20
7
3
23
7


Hence, we add the cut

1

7
x3 +

2

7
x4 ≥

20

7
−
⌊
20

7

⌋
=

6

7
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Gomory’s Cutting Plane Algorithm
Example – Iteration 2

Repeat by solving the following LP

min − 4x1 + x2

s.t.

7x1 − 2x2 + x3 = 14

x2 + x4 = 3

2x1 − 2x2 + x5 = 3
1
7x3 +

2
7x4 − x6 =

6
7

x ∈ R6
+
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Gomory’s Cutting Plane Algorithm
Example – Iteration 2

The new optimal LP solution is
[
2 1/2 1 5/2 0 0

]
with x1, x2, x3,

and x4 in the basis.

B =


7 −2 1 0
0 1 0 1
2 −2 0 0
0 0 1

7
2
7

 B−1 =


1
7

2
7 0 −1

1
7

2
7 − 1

2 −1
2
7 − 10

7 −1 5
− 1

7
5
7

1
2 1

 N =


0 0
0 0
1 0
0 −1



b =


14
3
3
6
7

 B−1N =


0 1
− 1

2 1
−1 −5
1
2 −1

 B−1b =


2
1
2
1
5
2


Hence, we add the cut

1

2
x5 ≥

1

2
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Gomory’s Cutting Plane Algorithm
Example – Iteration 3

Repeat by solving the following LP

min − 4x1 + x2

s.t.

7x1 − 2x2 + x3 = 14

x2 + x4 = 3

2x1 − 2x2 + x5 = 3
1
7x3 +

2
7x4 − x6 = 6

7
1
2x5 − x7 =

1
2

x ∈ R7
+

The optimal LP solution is
[
2 1 2 2 1

]
and integral. Hence, we

terminate the algorithm.
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Gomory’s Cutting Plane Algorithm
Example

When implementing cutting plane methods, you do not need to create new
variables but can add cuts to the original model using the original variables.

Write the cuts in terms of the original variables and plot the feasible region
in each iteration.

0 2 4
0

2

4

Lecture 11 Cutting Plane Algorithms



27/30

Gomory’s Cutting Plane Algorithm
CG Cuts

Gomory’s cutting plane algorithm is equivalent to generating CG cuts with
weights given by the ith row of B−1.

Specifically, we use the weights (B−1)i − ⌊(B−1)i⌋.

Apply this to the earlier example and derive CG cuts. Remember to use
the formulation in terms of the original variables in later iterations.

If you use the earlier formulations in which the cuts include slack variables,
use the weights (B−1As)i − ⌊(B−1As)i⌋, where As is the sub-matrix cor-
responding to the slack variables.
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Gomory’s Cutting Plane Algorithm
CG Cuts

In the first iteration,

B =

7 −2 0
0 1 0
2 −2 1

 B−1 =

 1
7

2
7 0

0 1 0
− 2

7
10
7 1


Using the row

[
1
7

2
7 0

]
of B−1, applying weights λ = ( 17 ,

2
7 , 0) to the

original constraints

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

we get x1 ≤ 20
7 . Rounding the LHS and RHS yields x1 ≤ 2.
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Gomory’s Cutting Plane Algorithm
CG Cuts

In the second iteration, the basis matrix for the original formulation is

B =


7 −2 1 0
0 1 0 1
2 −2 0 0
1 0 0 0

 B−1 =


0 0 0 1
0 0 − 1

2 1
1 0 −1 −5
0 1 1

2 −1


Using the row

[
0 0 − 1

2 1
]
of B−1 and λ = (0, 0, 1

2 , 0)

7x1 − 2x2 ≤ 14

x2 ≤ 3

2x1 − 2x2 ≤ 3

x1 ≤ 2

gives the valid inequality x1 − x2 ≤ 3
2 , which when rounded becomes

x1 − x2 ≤ 1.
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Your Moment of Zen

Source: xkcd.com
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