CE 205A Transportation Logistics

Lecture 10
Polyhedral Theory

Previously on Transportation Logistics

Definition (Polytope)

A polyhedron $P \subset \mathbb{R}^{n}$ is bounded, also called a polytope, if there exists a constant $C>0$ such that $\left|x_{i}\right| \leq C \forall i=1, \ldots, n$

All points inside a polytope can be expressed as a convex combination of its extreme points. Mathematically, let $X=\{\mathbf{x}: \mathbf{A} \mathbf{x} \geq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ be a polytope.

$$
X=\left\{\mathbf{x}: \mathbf{x}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i}, \boldsymbol{\lambda} \geq \mathbf{0}, \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

Previously on Transportation Logistics

How do you check if a given inequality, e.g., $-11 x_{1}+4 x_{2} \leq 6$ is valid?

Proposition

An inequality $\mathbf{w}^{\top} \mathbf{x} \leq w_{0}$ is a valid inequality for $X=\{\mathbf{x}: \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\} \Leftrightarrow \exists \mathbf{y} \geq \mathbf{0}$, such that $\mathbf{A}^{\top} \mathbf{y} \geq \mathbf{w}$ and $\mathbf{b}^{\top} \mathbf{y} \leq w_{0}$.

Proof.

$\mathbf{w}^{\top} \mathbf{x} \leq w_{0}$ is a valid inequality \Leftrightarrow

$$
\begin{gathered}
w_{0} \geq \max \mathbf{w}^{\top} \mathbf{x} \\
\text { s.t. } \mathbf{A x} \leq \mathbf{b} \\
\mathbf{x} \geq \mathbf{0}
\end{gathered}
$$

The dual problem of the above LP is $\min \mathbf{b}^{\top} \mathbf{y}$ s.t., $\mathbf{A}^{T} \mathbf{y} \geq \mathbf{w}, \mathbf{y} \geq 0$.

Previously on Transportation Logistics

Apply the CG procedure for the earlier example using $\boldsymbol{\lambda}=(7 / 30,0,0,1 / 10,0)$.

$$
\begin{aligned}
& -\frac{49}{30} x_{1}+\frac{7}{10} x_{2} \leq 0 \\
& -\frac{2}{10} x_{1}+\frac{3}{10} x_{2} \leq \frac{9}{10}
\end{aligned}
$$

Adding the above inequalities,

$$
-\frac{55}{30} x_{1}+x_{2} \leq \frac{9}{10}
$$

Rounding the LHS and RHS, we get $-2 x_{1}+x_{2} \leq 0$, which is one of the inequalities describing the convex hull.

Previously on Transportation Logistics

Consider the Knapsack constraint $X=\left\{\mathbf{x} \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}$. Let $N=\{1, \ldots, n\}$. Assume that $b>0$ and $a_{j}>0$ for all j . Is this restrictive?

Definition (Cover)

A set $C \subseteq N$ is a cover/dependent set if $\sum_{j \in C} a_{j}>b$. A cover is minimal if $C \backslash\{j\}$ is not a cover or any $j \in C$.

Determine all covers of $2 x_{1}+5 x_{2}+3 x_{3}+x_{4} \leq 6$.

- Which of these are minimal?
- What kind of valid inequalities are implied by covers?

Proposition

If $C \subseteq N$ is a cover for X, then $\sum_{j \in C} x_{j} \leq|C|-1$ is valid for X.

Previously on Transportation Logistics

Definition (Linear Independence)

A collection of vectors $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{n}$ is linearly independent if $\lambda_{1} \mathbf{x}^{1}+\lambda_{2} \mathbf{x}^{2}+\ldots+\lambda_{k} \mathbf{x}^{k}=\mathbf{0}$ implies that λ_{i} s are zeros.
The rank of a matrix is the number of linearly independent rows or columns.

Definition (Span)

A collection of vectors $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{n}$ is said to span \mathbb{R}^{n} if any vector $\mathbf{b} \in \mathbb{R}^{n}$ can be expressed as a linear combination of $\left(\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}\right)$.

Definition (Basis)

A collection of vectors $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{n}$ is said to form a basis if it spans \mathbb{R}^{n} and removing one vector results in a collection that does not span \mathbb{R}^{n}.

A collection of vectors $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{n}$ forms a basis of \mathbb{R}^{n} iff $k=n$ and the vectors are linearly independent.

Lecture Outline

1 Faces and Facets
2 Lifting Valid Inequalities

Lecture Outline

Faces and Facets

Faces and Facets

Background

Given a polytope X, we have methods to generate valid inequalities. But we saw that not all valid inequalities are useful.

In this context, the following questions are of interest.
11 Which constraints/valid inequalities of X are redundant. This gives us a "minimal description" of X.
2 More importantly, which valid inequalities of $\operatorname{Conv}\left(X \cap \mathbb{Z}_{+}^{n}\right)$ "make up" the convex hull.

Faces and Facets

Background

Proposition (Dominance)

Let $X=\left\{\mathbf{x} \in \mathbb{R}_{+}^{n}: \mathbf{A x} \leq \mathbf{b}\right\}$. Suppose $\left(\mathbf{w}, w_{0}\right)$ and $\left(\mathbf{v}, v_{0}\right)$ are valid for X. $\mathbf{w}^{\top} \mathbf{x} \leq w_{0}$ is said to dominate $\mathbf{v}^{\top} \mathbf{x} \leq v_{0}$ if $\exists \lambda>0$ such that

$$
\begin{aligned}
\mathbf{w} & \geq \lambda \mathbf{v} \\
w_{0} & \leq \lambda v_{0}
\end{aligned}
$$

with at least one of the inequalities being strict.
In other words, every \mathbf{x} that satisfies $\mathbf{w}^{\top} \mathbf{x} \leq w_{0}$ also satisfies $\mathbf{v}^{\top} \mathbf{x} \leq v_{0}$.
Can we write \Rightarrow in the definition?

Note that multiplying an inequality by a positive scalar will not change the inequality.

Faces and Facets

Background

Recall that non-negative linear combinations of valid inequalities generates another valid inequality. Any inequality that is dominated can be removed from the constraint set.

Definition (Redundance)

A valid inequality (\mathbf{w}, w_{0}) is redundant if $\exists k$ valid inequalities ($\mathbf{w}^{i}, w_{0}^{i}$) and weights $\lambda_{i}>0$ for $i=1, \ldots, k$ such that

$$
\sum_{i=1}^{k} \lambda_{i} \mathbf{w}^{i \top} \mathbf{x} \leq \sum_{i=1}^{k} \lambda_{i} w_{0}^{i}
$$

dominates $\mathbf{w}^{\top} \mathbf{x} \leq w_{0}$.
A valid inequality that is not dominated by other valid inequality is said to be maximal.

Faces and Facets

Background

Using the definitions, can you determine which of the following inequalities are redundant.

$$
\begin{aligned}
-7 x_{1}+3 x_{2} & \leq 0 \\
-2 x_{1}-3 x_{2} & \leq-6 \\
3 x_{1}-2 x_{2} & \leq 6 \\
-2 x_{1}+3 x_{2} & \leq 9 \\
-2 x_{1}-3 x_{2} & \leq 17 \\
-3 x_{1}+x_{2} & \leq 1 \\
x_{1} & \leq 4 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$-3 x_{1}+x_{2} \leq 1$ is dominated by $-7 x_{1}+3 x_{2} \leq 0$. Choose $\lambda=3$. Likewise, $x_{1} \leq 4$ is redundant. (Why?)

Faces and Facets

Affine Independence

Definition (Affine Independence)

A collection of vectors $\mathbf{x}^{1}, \ldots, \mathbf{x}^{k} \in \mathbb{R}^{n}$ are affinely independent if the unique solution to $\sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i}=\mathbf{0}, \sum_{i=1}^{k} \lambda_{i}=0$ is that all the λ_{i} s are zeros.

In other words, a collection of vectors are affinely independent if no vector can be written as an affine combination of the other vectors.

The definition is equivalent to the following versions when $k \geq 2$.

- $\left(\mathbf{x}^{1}, 1\right), \ldots,\left(\mathbf{x}^{k}, 1\right)$ are linearly independent. (Why?)
$-\mathbf{x}^{2}-\mathbf{x}^{1}, \ldots, \mathbf{x}^{k}-\mathbf{x}^{1}$ are linearly independent. (Why?)
Affine independence allows us to mathematically describe the dimension of a polyhedra and identify hyperplanes that contribute to the convex hulls.

Faces and Facets

Affine Independence

Affine independence can be viewed as shifting the origin to one of the vectors and checking for linear independence.

Faces and Facets

Affine Independence

Provide examples for the following scenarios in \mathbb{R}^{3} :

- Three linearly independent points.
- Four affinely independent points.
- Two vectors in that are linearly independent. Are they affinely independent?
- A collection of vectors that are affinely independent but not linearly independent.

Note that linear independence implies affine independence but not viceversa.

Faces and Facets

Affine Independence

Three points in \mathbb{R}^{3} are affinely independent if and only if there is a plane passing through them.

- What is the maximum number of vectors that can be linearly independent in \mathbb{R}^{n} ? Affinely independent?
- Can the origin vector be a part of a collection of linearly independent vectors? Affinely independent vectors?

Faces and Facets

Affine Independence

Just line convex hulls, it is also possible to define affine hulls where the weights are not required to be non-negative. Suppose $X=\left\{x^{1}, \ldots, x^{k}\right\}$.

$$
\operatorname{aff}(X)=\left\{\sum_{i=1}^{k} \lambda_{i} \mathbf{x}^{i}: \lambda_{i} \in \mathbb{R}, \sum_{i=1}^{k} \lambda_{i}=1\right\}
$$

Faces and Facets

Dimension of Polyhedra

Let $X=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \leq \mathbf{b}\right\}$. Although, we use $a \leq$ sign, assume that some or all of the rows can have an equality sign.

Definition (Dimension)

A polyhedron X is of dimension k, denoted by, $\operatorname{dim}(X)=k$, if the maximum number of affinely independent points in X is $k+1$.

What are the dimensions of the following polyhedra?

Faces and Facets

Dimension of Polyhedra

Definition (Dimension)

X is full dimensional if $\operatorname{dim}(X)=n$.

Consider the node packing problem with feasible region given by

$$
X=\left\{\mathbf{x} \in\{0,1\}^{n}: x_{i}+x_{j} \leq 1 \forall(i, j) \in E\right\}
$$

What is $\operatorname{dim}(\operatorname{Conv}(X))$? Select all unit vectors and the origin.
For the same reason, $\operatorname{dim}(\operatorname{Conv}(X))$ of the knapsack polytope is n, where $X=\left\{\mathbf{x} \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}$. Note that we can safely assume $a_{j} \leq b$. (Why?)

Faces and Facets

Dimension of Polyhedra

Suppose we split the constraints into inequalities and equalities.

$$
\left[\begin{array}{l}
\mathbf{A}^{\leq} \\
\mathbf{A}^{=}
\end{array}\right] \mathbf{x}=\left[\begin{array}{l}
\mathbf{b}^{\leq} \\
\mathbf{b}^{=}
\end{array}\right]
$$

Proposition (Dimension)

$\operatorname{dim}(X)+\operatorname{rank}\left(\mathbf{A}^{=}, \mathbf{b}^{=}\right)=n$.
We say \mathbf{x} is an interior point if $\mathbf{A}_{i .} \mathbf{x}<b_{i}$ for all $i=1, \ldots, m$. In other words, no constraint is of the equality form. Thus a polyhedron is full dimensional iff it has an interior point.

What is $\operatorname{dim}(X)$ and $\operatorname{rank}\left(\mathbf{A}^{=}, \mathbf{b}^{=}\right)$for the following set of constraints?

$$
\begin{aligned}
x_{1}+x_{3} & \leq 1 \\
x_{1}+x_{2}+2 x_{3} & \leq 2 \\
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Faces and Facets

Definition (Face)

Given a valid inequality (\mathbf{w}, w_{0}) for X, a set of points $F=\left\{\mathbf{x} \in X: \mathbf{w} \mathbf{x}=w_{0}\right\}$ is defined as the face of X.
We say the valid inequality $\mathbf{w}^{\top} \mathbf{x} \leq w_{0}$ represents or defines the face F.
Can F be \emptyset or X ? If that is not the case, it said to be proper. If F is non-empty, we also say that (\mathbf{w}, w_{0}) supports X.

To arrive at a minimal representation of a polyhedron, we can discard all valid inequalities/faces that do not support X.

Two faces F_{1} and F_{2} are unique only if $\operatorname{aff}\left(F_{1}\right) \neq \operatorname{aff}\left(F_{2}\right)$.

Faces and Facets

Facet

Definition (Facet)

A face F of X is a facet if $\operatorname{dim}(F)=\operatorname{dim}(X)-1$

Which of the three inequalities are faces and facets? The blue valid inequality is similar to $x_{1} \leq 4$ in the earlier example.

Faces and Facets

Facet

Proposition

If F is facet of X, then there exists some inequality $\mathbf{A}_{i .} \leq b_{i}$ representing F.

Proposition

An face $\mathbf{A}_{i} \mathbf{x} \leq b_{i}$ which has dimension less than $\operatorname{dim}(X)-1$ is redundant.

Proposition

A full dimensional polyhedron X has a unique (allowing scalar multiplication) minimal representation by a finite set of linear inequality, each of which is a facet.

Faces and Facets

Facet

Proposition

If X is not full dimensional, i.e., $\operatorname{dim}(X)=n-k, k>0$, then X can be described by k linearly independent rows of $\mathbf{A}^{=}, \mathbf{b}^{=}$and a set of linear inequalities, each of which represents a facet.

Is this representation unique?

Faces and Facets

Example

Consider the polytope defined by the following constraints.

$$
\begin{aligned}
x_{1}+x_{3} & \leq 1 \\
x_{1}+x_{2}+2 x_{3} & \leq 2 \\
x_{1}+x_{2}+x_{3} & =1 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Determine if the following inequalities are valid. If they are, check if the faces defined by them are facets.

$$
\begin{aligned}
& -x_{1}-x_{2}+x_{3} \leq 1 \\
& >2 x_{1}-7 x_{2}+2 x_{3} \leq 2
\end{aligned}
$$

Faces and Facets

Useful Valid Inequalities

For solving integer programs, the ideal valid inequalities are those which define facets of $\operatorname{Conv}(X)$. These cannot be dominated by other valid inequalities.

Suppose for a problem, you found a valid inequality. How can you check if it is facet inducing/defining?

- Show that $\operatorname{dim}(F)$ is $\operatorname{dim}(\operatorname{Conv}(X))-1$. That is, show that there are $\operatorname{dim}(\operatorname{Conv}(X))$ affinely independent points in F.
- However, determining $\operatorname{dim}(\operatorname{Conv}(X))$ can be difficult. In such cases, we try to find facet-defining inequalities for the relaxation X. Note that $\operatorname{dim}(\operatorname{Conv}(X)) \leq \operatorname{dim}(X)$. Why?)

Faces and Facets

Proofs

Show that $x_{i} \leq y$ is a valid inequality and a facet of the polytope

$$
X=\left\{(\mathbf{x}, y) \in \mathbb{R}_{+}^{m} \times\{0,1\}: \sum_{i=1}^{m} x_{i} \leq m y, x_{i} \leq 1, i=1, \ldots, m\right\}
$$

The required result can be shown by proving the following statements.

- $\operatorname{dim}(\operatorname{Conv}(X))=m+1$
- $F_{i}=\left\{(\mathbf{x}, y) \in \operatorname{Conv}(X): x_{i}=y\right\}$ is a facet, i.e., $\operatorname{dim}\left(F_{i}\right)=m$.

Faces and Facets

Proofs

Consider the following set points in $\operatorname{Conv}(X)$.

$$
\begin{array}{ccccc}
x_{1} & x_{2} & \ldots & x_{m} & y \\
\hline 1 & 0 & \ldots & 0 & 1 \\
0 & 1 & \ldots & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 1 \\
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 0 & 0
\end{array}
$$

Are they affinely independent? Hence, $\operatorname{dim}(\operatorname{Conv}(X))=m+1$.

Faces and Facets

Proofs

Likewise for $F_{i}=\left\{(\mathbf{x}, y) \in \operatorname{Conv}(X): x_{i}=y\right\}$, the following points are affinely independent.

x_{1}	x_{2}	\ldots	x_{m}	y
0	0	\ldots	0	0
1	0	\ldots	0	1
1	1	\ldots	0	1
\vdots	\vdots	\ddots	\vdots	\vdots
1	0	\ldots	1	1

Does this imply $\operatorname{dim}\left(F_{i}\right)=m$? We don't know if there are $m+2$ affinely independent points in F_{i}. Hence, $\operatorname{dim}\left(F_{i}\right) \geq m$.

To check if $\operatorname{dim}\left(F_{i}\right)=m$, we need to show $F_{i} \neq \operatorname{Conv}(X)$. (Why?) Consider $\mathbf{x}=(0, \ldots, 0)$ and $y=1 .(\mathbf{x}, y) \in \operatorname{Conv}(X)$ but $(\mathbf{x}, y) \notin F_{i}$.

Faces and Facets

Proofs

The previous exercise shows how a single inequality can be shown to be facet defining.

We may also want to check if a given set of inequalities describe the convex hull of the feasible region.

There are different ways of establishing this type of results. Consider one such approach using the facility location formulation X_{1}.

$$
X_{1}=\left\{(\mathbf{x}, y) \in \mathbb{R}_{+}^{m} \times\{0,1\}: \sum_{i=1}^{m} x_{i} \leq m y, x_{i} \leq 1, i=1, \ldots, m\right\}
$$

Show that the following X_{2} describes $\operatorname{Conv}\left(X_{1}\right)$.

$$
X_{2}=\left\{(\mathbf{x}, y) \in \mathbb{R}_{+}^{m} \times \mathbb{R}: x_{i} \leq y, y \leq 1, i=1, \ldots, m\right\}
$$

Faces and Facets

Proofs

We know that $X_{2} \subseteq \operatorname{Conv}\left(X_{1}\right)$. It thus is enough to show that points in X_{2} with fractional y are not extreme points of X_{2}. (Why?)

Suppose $(\mathbf{x}, y) \in X_{2}$ is an extreme point and fractional, i.e., $0<y<1$.
Consider two points $(\mathbf{0}, 0)$ and $\left(\frac{x_{1}}{y}, \frac{x_{2}}{y}, \ldots, \frac{x_{m}}{y}, 1\right)$. Note that both points are in X_{2}.

$$
(\mathbf{x}, y)=(1-y)(\mathbf{0}, 0)+y\left(\frac{x_{1}}{y}, \frac{x_{2}}{y}, \ldots, \frac{x_{m}}{y}, 1\right)
$$

However, extreme points cannot be written as the convex combination of distinct points. Hence, it cannot be a vertex of X_{2}.

Lecture Outline

Lifting Valid Inequalities

Lifting Valid Inequalities

Introduction

Lifting is a procedure for making valid inequalities stronger. This involves including more terms in the inequalities or adjusting the coefficients.

For example, consider the following knapsack constraint

$$
11 x_{1}+6 x_{2}+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6}+x_{7} \leq 19
$$

Recall that $C=\{3,4,5,6\}$ is a cover. The associated valid inequality is

$$
x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

What is $\operatorname{dim}(\operatorname{Conv}(X)) ?$ Is the cover inequality a facet?

Augmenting the LHS with non-negative quantities will always result in a stronger inequality. But we must ensure that it remains valid. Can we add more terms to the LHS in the above inequality?

Lifting Valid Inequalities

Cover Inequalities

Note that x_{1} and x_{2} have higher coefficients than that of the terms in the above valid inequality. Hence, the following inequality is also valid for X.

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

Proposition

If C is a cover for $X=\left\{\mathbf{x} \in\{0,1\}^{n}: \sum_{j=1}^{n} a_{j} x_{j} \leq b\right\}$, then the extended cover inequality

$$
\sum_{j \in C} x_{j}+\sum_{j \in N \backslash C: a_{j} \geq a_{i} \forall i \in C} x_{j} \leq|C|-1
$$

is also valid for X.
Is the extended cover inequality a facet? How about increasing the coefficients from 1 ?

Lifting Valid Inequalities

Example

Consider the following inequality generated by adding only x_{1} to the original cover $C=\{3,4,5,6\}$.

$$
\alpha_{1} x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

We know that $\alpha_{1}=1$ yields a valid inequality. Can we increase it?
If $x_{1}=0$, the value of α_{1} does not matter. Suppose $x_{1}=1$. The constraints can be rewritten as

$$
\begin{gathered}
6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 19-11=8 \\
\alpha_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
\end{gathered}
$$

What is the maximum value α_{1} can take?

Lifting Valid Inequalities

Example

The maximum α_{1} depends on the maximum of $x_{3}+x_{4}+x_{5}+x_{6}$, which can be found using

$$
\begin{aligned}
& \zeta=\max x_{3}+x_{4}+x_{5}+x_{6} \\
& \text { s.t. } 6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 8 \\
& \quad \mathbf{x} \in\{0,1\}
\end{aligned}
$$

Since $\zeta=1$, we can fix $\alpha_{1}=2$. Why did we set x_{2} and x_{7} to zero in the knapsack constraint?

In general, one can find values of α s for which the following is a stronger valid inequality.

$$
\sum_{j \in C} x_{j}+\sum_{j \in N \backslash C} \alpha_{j} x_{j} \leq|C|-1
$$

Lifting Valid Inequalities

Procedure

Suppose $j_{1}, j_{2}, \ldots, j_{k}$ is an ordering of $N \backslash C$. Consider the valid inequality

$$
\alpha_{j_{k}} x_{j_{k}}+\sum_{i=1}^{k-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} x_{j} \leq|C|-1
$$

Suppose we have already lifted $k-1$ variables, and want to find $\alpha_{j_{k}}$.

$$
\begin{aligned}
& \zeta_{k}= \max \\
& \sum_{i=1}^{k-1} \alpha_{j_{i}} x_{j_{i}}+\sum_{j \in C} x_{j} \\
& \text { s.t. } \sum_{i=1}^{k-1} a_{j_{i}} x_{j_{i}}+\sum_{j \in C} a_{j} x_{j} \leq b-a_{j_{k}} \\
& \mathbf{x} \in\{0,1\}^{|C|+k-1}
\end{aligned}
$$

Set $\alpha_{j_{k}}=|C|-1-\zeta_{k}$.

Lifting Valid Inequalities

Procedure

Using the sequential lifting procedure, find α_{2} and α_{7} in the earlier example.

Note that the order in which variables are lifted can result in different valid inequalities. A variable that is lifted first can have a higher coefficient.

It is possible to show that for 0-1 IPs under mild conditions, the resulting lifted inequalities are facets.

It is also possible to lift multiple coefficients simultaneously using a similar optimization problem instead of generating them sequentially.

Your Moment of Zen

THIS IS GOING TO BE ONE OF THOSE WEIRD, DARK-MAGIC PROOFS, ISN'T IT? I CAN TELL.

Source: xkcd.com

