
CE 205A
Transportation Logistics

Lecture 1

Linear Programming Review - Part I

Lecture 1 Linear Programming – Part I

2/53

Lecture Outline

1 Geometry of LPs

2 The Simplex Algorithm

Lecture 1 Linear Programming – Part I

3/53

Lecture Outline

Geometry of LPs

Lecture 1 Linear Programming – Part I

4/53

Geometry of LPs
Cannonical and Standard Form

One way of describing LPs is using Matrix notation for which we first write
the LP in the following Cannonical form:

min cTx

s.t. Ax ≥ b

x ≥ 0

To exploit ideas from linear algebra, it is also common to write LPs in the
following standard form.

min cTx

s.t. Ax = b

x ≥ 0

How do you convert a general LP with ≥ or ≤ constraints to standard
form?

Lecture 1 Linear Programming – Part I

5/53

Geometry of LPs
Cannonical and Standard Form

Original LP:

min 2x1 + 5x2

s.t. x1 + x2 ≥ 6

x1 + 2x2 ≤ 18

x1, x2 ≥ 0

Standard Form:

min 2x1 + 5x2

s.t. x1 + x2 − x3 = 6

x1 + 2x2 + x4 = 18

x1, x2, x3, x4 ≥ 0

The variables x3 and x4 are called surplus and slack variables respectively.

Note: CPLEX adds slack/artificial variables even if the original constraint
is of the equality form.

Lecture 1 Linear Programming – Part I

https://www.ibm.com/docs/en/icos/12.8.0.0?topic=optimizers-accessing-slack-variables-solution-values

6/53

Geometry of LPs
Example: Stigler’s Diet Problem

Consider the problem of optimizing
nutritional requirements from various
food types. Find the quantity of each
food type to purchase to meet the
minimum daily requirements (MDR)
from different quantities of food while
minimizing the total cost. [PDF]

Calories Protien Calcium Iron Unit Price

Milk 6.1 310 10.5 18 11
Wheat 44.7 1411 2 365 36

Rice 21.2 460 0.6 41 7.5
Sugar 34.9 0 0 0 51.7

Potatoes 14.3 336 1.8 118 34
Spinach 1.1 106 0 138 8.1

MDR 3000 70 0.8 12

Lecture 1 Linear Programming – Part I

https://www.mpi-inf.mpg.de/fileadmin/inf/d1/teaching/winter18/Ideen/Materialien/Dantzig-Diet.pdf

7/53

Geometry of LPs
Feasible Region

What does the feasible region of the following LP look like?

min 2x1 + 5x2

s.t. x1 + x2 ≥ 6

x1 + 2x2 ≤ 18

x1, x2 ≥ 0

0 5 10 15 20
0

5

10

15

20

x
1 +

x
2 =

6

x1 + 2x2 = 18

Lecture 1 Linear Programming – Part I

8/53

Geometry of LPs
Adding the Objective

In the previous example it is possible to visualize the objective function in
the third dimension.

As you can guess by looking at the objective, the optimal value must lie
somewhere on the boundary.

Alternately, we can visualize the problem by constructing level sets. Level
sets or iso-profit lines are points in the feasible region at which the function
is constant.

How does the feasbile region, objective, and the level sets look like for a
problem involving three variables?

Lecture 1 Linear Programming – Part I

9/53

Geometry of LPs
Solutions

The following cases can arise for solutions to LPs.

I Unique solution

I Multiple solutions (infinitely many)

I Infeasible

I Unbounded

Can you sketch the feasible region and the objective for each of the above
instances?

Lecture 1 Linear Programming – Part I

10/53

Geometry of LPs
Column and Null Space

Let us now start looking at general m × n matrices A.

Definition (Column Space)

The column space of a matrix A is defined as the set of vectors obtained
by taking the linear combination of all columns of A and is denoted by
C (A). The column space is also called the span of A.

A system of equations Ax = b has a solution only if b ∈ C (A). Is the
column space a subspace? In fact, it is the smallest subspace containing
columns of A.

Definition (Null Space)

The null space of a matrix A is denoted by N(A) and is defined as the
set of all vectors x that satisfy Ax = 0

Note that the null space is a subspace of Rn and the column space is a
subspace of Rm.

Lecture 1 Linear Programming – Part I

11/53

Geometry of LPs
Linear Independence

Definition (Span)

A collection of vectors x1, . . . , xk ∈ Rn is said to span Rn if any vector
b ∈ Rn can be expressed as a linear combination of (x1, . . . , xk).

Definition (Basis)

A collection of vectors x1, . . . , xk ∈ Rn is said to form a basis if it spans
Rn and removing one vector results in a collection that does not span Rn.

A collection of vectors x1, . . . , xk ∈ Rn forms a basis of Rn iff k = n and
the vectors are linearly independent.

Definition (Basic Solution)

A basic solution of Ax = b is a solution that only uses linearly
independent columns of A.

Lecture 1 Linear Programming – Part I

12/53

Geometry of LPs
Polyhedra

Definition (Halfspace)

Sets of the form {x ∈ Rn | aTx ≥ b}, where a ∈ Rn, a 6= 0, b ∈ R are
called halfspaces.

𝒂

𝒂𝑇𝒙 ≤ 𝑏𝒂𝑇𝒙 ≥ 𝑏

𝑨𝟏⋅

𝑃

𝑨𝟐⋅

𝑨𝟒⋅

𝑨𝟑⋅

Definition (Polyhedron)

A polyhedron is a set of the form P = {x ∈ Rn |Ax ≥ b} where
A ∈ Rm×n,b ∈ Rm.

Lecture 1 Linear Programming – Part I

13/53

Geometry of LPs
Convex Spaces

Definition (Convex Combinations)

Let x1, x2, . . . , xk ∈ Rn. Suppose λ1, λ2, . . . , λk ≥ 0 such that∑k
i=1 λi = 1. Then, x =

∑k
i=1 λix

i is called a convex combination of
x1, x2, . . . , xk .

𝒙1

𝒙2

𝒙3

𝒙4

𝒙

Lecture 1 Linear Programming – Part I

14/53

Geometry of LPs
Convex Spaces

Definition (Convex Hull)

Convex hull of a set X is the intersection of all convex sets containing X .
It is denoted as Conv(X).

𝑥
𝑦

Convex hull of X is the smallest convex set that contains X . It can be
defined for spaces containing a discrete number of points as well.

Lecture 1 Linear Programming – Part I

15/53

Geometry of LPs
Extreme Points

Definition (Extreme Points)

An element x ∈ X is an extreme point of a convex set X if @ distinct
x1, x2 ∈ X and λ ∈ (0, 1) such that x = λx1 + (1− λ)x2

𝒙1

𝒙2

𝒙3

𝒙4

𝒙6

𝒙5

In other words, extreme points are the ones which cannot be expressed as
a strict convex combination of any two distinct points of a convex set.

Lecture 1 Linear Programming – Part I

16/53

Geometry of LPs
Polytopes

Definition (Polytope)

A polyhedron P ⊂ Rn is bounded, also called a polytope, if there exists a
constant C > 0 such that |xi | ≤ C ∀ i = 1, . . . , n

All points inside a polytope can be expressed as a convex combination of
its extreme points. Mathematically, let X = {x : Ax ≥ b, x ≥ 0} be a
polytope.

X =

{
x : x =

k∑
i=1

λix
i ,λ ≥ 0,

k∑
i=1

λi = 1

}
Lecture 1 Linear Programming – Part I

17/53

Geometry of LPs
Cones

In order to get a mathematical hold on unbounded polyhedra, it is impor-
tant to understand the geometry of cones.

Definition (Cone)

A set C is called a cone if for every x ∈ C and λ ≥ 0, λx ∈ C .

𝒙𝟑

𝒙𝟐

𝒙𝟏

𝟎

𝒚

𝒙

Definition (Convex Cone)

A set C is called a convex cone if it is convex and a cone, i.e., ∀ x, y ∈ C
and λ1, λ2 ≥ 0, λ1x + λ2y ∈ C .

Lecture 1 Linear Programming – Part I

18/53

Geometry of LPs
Polyhedral Cones

Polyhedral cones are special types of cones which are both polyhedra and
cones. They can be expressed as non-negative linear combinations of a
finite number of extreme directions.

Extreme directions are those that
cannot be expressed as non-negative
combinations of two distinct direc-
tions.

Note that the vertex of all cones must
be the origin. Also, the linear com-
bination must involve non-negative
scalars according to the definition of
a cone.

Polyhedral cones have some neat connections with restricted versions of
the column spaces of the constraint matrix (Minkowsky-Weyl theorems).

Lecture 1 Linear Programming – Part I

19/53

Geometry of LPs
Unbounded Polyhedra

It turns out that unbounded polyhedra can
be viewed as a combination of a polytope
(with a finite number of extreme points) and
a polyhedral cone (with a finite number of
extreme directions). For example, consider
this feasible region:

−3x1 + x2 ≤ −2

−x1 + x2 ≤ 2

−x1 + 2x2 ≤ 8

−x2 ≤ −2

x1, x2 ≥ 0

𝑥3 =
4
6

𝑥2 =
2
4

𝑥1 =
4/3
2

Lecture 1 Linear Programming – Part I

20/53

Geometry of LPs
Resolution and Separation Theorem

Theorem (Goldman (1956))

A non-empty polyhedron X can be expressed as the sum of a polytope P
and a polyhedral cone C. That is,

X = P + C =

{
y : y = x + d, x ∈ P,d ∈ C

}

P can be expressed as Conv({x1, . . . , xk}) and C can be expressed as
C≥({d1, . . . ,dl}) (non-negative combination of extreme directions). Al-
ternately, we can write it as,

x =
k∑

i=1

λix
i +

l∑
i=1

µid
i

for some (λ,µ) satisfying
∑k

i=1 λi = 1,λ ≥ 0,µ ≥ 0

Lecture 1 Linear Programming – Part I

21/53

Geometry of LPs
Row View

Consider the following example. Since we care only about the corner points,
let us pick two constraints at a time and find the solution to their equal-
ity versions and evaluate the objective at these points. How many such
solutions are possible?

max 6x1 + 4x2

s.t. x1 + x2 ≤ 6

2x1 + x2 ≤ 9

2x1 + 3x2 ≤ 16

x1, x2 ≥ 0

0 2 4 6 8
0

2

4

6

8

x
1 +

x
2 =

6

2x
1
+
x
2
=

9

2x
1 +

3x
2 =

16

The constraints which create the optimal solution are called active or bind-
ing constraints.

Lecture 1 Linear Programming – Part I

22/53

Geometry of LPs
Column View

Notice that we can work with the original/canonical LP for the row view.
However, for the column view, we will need to convert it into the standard
form. The Simplex algorithm follows the column view.

Like before, we can visualize the solutions to Ax = b as selecting different
amounts of the columns of A to produce b. In other words, b must belong
to the polyhedral cone C≥(A·1, . . . ,A·n).

Lecture 1 Linear Programming – Part I

23/53

Geometry of LPs
Column View

Converting the original LP into standard form:

max 6x1 + 4x2

s.t. x1 + x2 ≤ 6

2x1 + x2 ≤ 9

2x1 + 3x2 ≤ 16

x1, x2 ≥ 0

max 6x1 + 4x2

s.t. x1 + x2 + x3 = 6

2x1 + x2 + x4 = 9

2x1 + 3x2 + x5 = 16

x1, x2, x3, x4, x5 ≥ 0

We want b = (6, 9, 16) to lie in the polyhedral cone created by1
2
2

 ,
1

1
3

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1


b can be constructed by scaling these vectors in multiple ways. Each one
of them will produce a certain objective and we need to pick the one with
the maximum objective. Note that the solution now lies in a 5D space and
we have only 3 equations.

Lecture 1 Linear Programming – Part I

24/53

Geometry of LPs
Column View

The trick in the column view is to select three of the five columns at a
time and try to produce b while setting the amounts of the other two to
0. In other words, we are trying find basic solutions.

This reduces, the problem to m equations in m unknowns! But we have
ignored the non-negativity constraints. So we check if the resulting solution
satisfies the left-out constraints. If yes, we call this a basic feasible solution.

In this example, can you check if we
have a basic feasible solution when
we select columns 1,2, and 3? How
about 2, 4, and 5?1

2
2

 ,
1

1
3

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1


0

2 0

20

2

x1
x2

x 3

Lecture 1 Linear Programming – Part I

25/53

Geometry of LPs
Summary

Row View

max 6x1 + 4x2

s.t. x1 + x2 ≤ 6

2x1 + x2 ≤ 9

2x1 + 3x2 ≤ 16

x1, x2 ≥ 0

0 2 4 6 8
0

2

4

6

8

Column View

max 6x1 + 4x2

s.t. x1 + x2 + x3 = 6

2x1 + x2 + x4 = 9

2x1 + 3x2 + x5 = 16

x1, x2, x3, x4, x5 ≥ 0

0
2 0

20

2

x1
x2

x 3

Lecture 1 Linear Programming – Part I

26/53

Lecture Outline

The Simplex Algorithm

Lecture 1 Linear Programming – Part I

27/53

The Simplex Algorithm
Motivating Questions

Before we try to design an algorithm that finds the optimal solution to an
LP, let us try to characterize it by understanding its properties.

Specifically, we will ask the following questions:

1 Do the optima have any special property that we could exploit?

2 Does the problem have a minimum or is it unbounded?

3 Is there certificate of optimality that we can use to claim that we
have reached an optimal solution?

We’ve seen that answers to Q1 has something to do with extreme points
and Q2 is related to extreme directions. We will formalize these now, along
with Q3, which helps us terminate the algorithm with an optima.

Lecture 1 Linear Programming – Part I

28/53

The Simplex Algorithm
Question 1: What does the Optima Look Like?

We can derive a feasible solution by setting the free variables to 0 and
finding a basic solution and checking if it satisfies the non-negative con-
straints.

Theorem

Suppose X = {x : Ax = b, x ≥ 0}. xB is a basic feasible solution of X ⇔
xB is an extreme point of X .

These basic feasible solutions are the same as the extreme points of the
feasible region, i.e., they can’t be written as a convex combination of two
distinct points in X .

Lecture 1 Linear Programming – Part I

29/53

The Simplex Algorithm
Question 1: What does the Optima Look Like?

Intuitively, we see why the optimal solution must occur at the extreme
point. But why is cTx minimized at such a point? The answer’s in Gold-
man’s separation and resolution theorem. To make things simple, let’s
imagine that the feasible region is a polytope.

min
λ

k∑
i=1

λic
Txi

s.t.
k∑

i=1

λi = 1

λ ≥ 0

What are the decision variables in the above model? Can you construct
an argument based on contradiction?

Lecture 1 Linear Programming – Part I

30/53

The Simplex Algorithm
Question 2: When is an LP Unbounded?

Characterizing unboundedness is easy. Let’s use Goldman’s separation and
resolution theorem again.

min
λ,µ

k∑
i=1

λic
Txi +

l∑
i=1

µic
Tdi

s.t.
k∑

i=1

λi = 1

λ ≥ 0

µ ≥ 0

What are the decision variables in the above model? When does the above
LP become unbounded?

Lecture 1 Linear Programming – Part I

31/53

The Simplex Algorithm
Question 2: When is an LP Unbounded

Theorem

If the feasible region has an extreme direction d for which cTd < 0, then
the LP is unbounded.

Answers to Q1 and Q2 indicate that if we can devise a method that finds
extreme points and extreme directions, we can check if the problem is
unbounded or keep track of the objective for different extreme points and
find the optimum.

But how do we know when to stop? Enumerate all corner points? Can we
do better?

Lecture 1 Linear Programming – Part I

32/53

The Simplex Algorithm
Question 3: Certificate of Optimality

Before we begin, we need to partition the data into those corresponding
to the free and pivot columns. We will call these basic and non-basic
variables. The original LP is recast as

min cTx

s.t. Ax = b

x ≥ 0

min cTBxB + cTNxN

s.t.
[
B N

] [xB
xN

]
= b

xB , xN ≥ 0

We then set the non-basic variables to 0 and hence

[
xB
xN

]
=

[
B−1b

0

]

Lecture 1 Linear Programming – Part I

33/53

The Simplex Algorithm
Question 3: Certificate of Optimality

Expanding the constraints we can write BxB + NxN = b. Hence, xB =
B−1b−B−1NxN . Writing the objective function in terms of the non-basic
variables

z = cTBxB + cTNxN

= cTB(B−1b− B−1NxN) + cTNxN

= cTBB−1b + (cTN − cTBB−1N)xN

Theorem

Suppose x∗ is a basic feasible solution and cT − cTBB−1A ≥ 0T, then x∗

is optimal

Lecture 1 Linear Programming – Part I

34/53

The Simplex Algorithm
Question 3: Certificate of Optimality

The term cT − cTBB−1A ≥ 0T is also called the reduced cost vector. Let
us denote it using c̄T. What are the reduced costs of the basic variables?

Reduced cost of variable xj = cj − cTBB−1A·j

We care only about the reduced cost of the non-basic variables c̄TN =
cTN − cTBB−1N

Theorem (Optimality Condition)

Suppose x∗ is a basic feasible solution and c̄N ≥ 0, then x∗ is optimal

This is an important result in linear programming. We’ll soon see that it
not only tells us when to stop but also shows us the direction in which we
should move if we haven’t reached optimality.

Lecture 1 Linear Programming – Part I

35/53

The Simplex Algorithm
Descent Direction

In general, we can move from one solution
x to another by taking a step in direction d.
That is, x̂ = x+ηd, where η is some positive
scalar.

We however don’t want to move in any di-
rection, but one that improves the objec-
tive. That is, an ideal move should satisfy
cTx̂ < cTx⇒ cTd < 0.

Directions which satisfy cTd < 0 are called descent directions. Did we
see this condition before? How is this different? If cTd < 0 and d is an
extreme direction, then the problem is unbounded.

Lecture 1 Linear Programming – Part I

36/53

The Simplex Algorithm
Descent Direction

1

1

1

x1

x2

x3

I How can you move from one basic feasible solution to another?

I Does moving along the edges produce an extreme direction? Check
if Ad = 0, d ≥ 0

If cTd < 0 and d is an extreme direction, then the problem is unbounded.

Lecture 1 Linear Programming – Part I

37/53

The Simplex Algorithm
Reverse Engineering

In the earlier example, we could see the extreme points and hence we’re
able to easily construct direction vectors to move from one corner to the
other.

How can we do this in the general case? Imagine the column view. Moving
from one corner to another is equivalent to moving from one basic feasible
solution to another.

What if we move between basic feasible solutions by changing the non-
basic/free variable status of one column? Let’s increase a non-basic vari-
able xj by moving in its direction

d =

[
dB

dN

]
=

[
dB

ej

]

Lecture 1 Linear Programming – Part I

38/53

The Simplex Algorithm
Reverse Engineering

Can you compute cTd when we move in the direction that increases the
non-basic variable xj?

d =

[
dB

dN

]
=

[
dB

ej

]

cTd =
[
cTB cTN

] [dB

ej

]
= cTBdB + cTNej = cTBdB + cj

Recall, that the reduced cost of non-basic variable xj is cj −cTBB−1A·j and
if we are not at an optimal solution, we may find a j such that c̄j < 0*

Hence, we pick a direction vector

d =

[
dB

dN

]
=

[
−B−1A·j

ej

]

Lecture 1 Linear Programming – Part I

39/53

The Simplex Algorithm
Reverse Engineering

Theorem

If a variable xj has negative reduced cost c̄j < 0, then the direction

d =

[
dB

dN

]
=

[
−B−1A·j

ej

]
is a descent direction, i.e., cTd < 0.

Lecture 1 Linear Programming – Part I

40/53

The Simplex Algorithm
Step Size

We have a basic feasible solution/corner point and a direction. The im-
mediate question is how far should we move along this direction.

Too small a step size and we will be close to where we started. Too big
and we may overshoot the feasible region. We want the right step size to
help us land at the extreme point.

Let’s find the largest step size which will keep the new point x̂ feasible.
Hence, the following conditions must be true

A(x + ηd) = b (Condition 1)

x + ηd ≥ 0 (Condition 2)

Lecture 1 Linear Programming – Part I

41/53

The Simplex Algorithm
Step Size

For what values of η is Condition 1 true?

A(x + ηd) = b + ηAd = b + η
[
B N

] [−B−1A·j
ej

]
= b− ηBB−1A·j + ηNej

= b− ηA·j + ηA·j

= b

This aligns with our observation in the earlier example. Any step along the
edges of the feasible region will always keep us on x1 + x2 + x3 = 1.

The above calculation also has a hidden result. Ad = 0, or d is always in
the null space of A. So if d ≥ 0, then it is an extreme direction.

Theorem (Infeasibility Condition)

If c̄j < 0 and dB ≥ 0, then the LP is unbounded

Lecture 1 Linear Programming – Part I

42/53

The Simplex Algorithm
Step Size

For what values of η is Condition 2 true?

x + ηd ≥ 0⇒
[

xB
0

]
+ η

[
dB

ej

]
≥ 0

We can ignore the rows associated with the non-basic variables. We are
left with m inequalities xB + ηdB ≥ 0

Writing this component-wise, η(dB)k ≥ −(xB)k . What happens when
(dB)k ≥ 0 and < 0?

In other words,

η = min

{
− (xB)k

(dB)k
: (dB)k < 0

}
Why take the minimum? This result is also called the min-ratio rule.

Lecture 1 Linear Programming – Part I

43/53

The Simplex Algorithm
Pseudocode

We now have all the ingredients to construct an algorithm for finding the
optimal solutions of an LP.

In summary, our method will

I Find a basic feasible solution xB and compute the reduced costs and
check for its optimality.

I Determine a descent direction and check if it leads to
unboundedness.

I If not, go as far as possible along that direction while maintaining
feasibility.

I End up at a new corner point and repeat the above steps.

Lecture 1 Linear Programming – Part I

44/53

The Simplex Algorithm
Pseudocode

1 Start with an initial basic feasible solution x =

[
xB
xN

]
=

[
B−1b

0

]
2 Compute the reduced cost vector c̄TN = cTN − cTBB−1N

3 If c̄N ≥ 0, then x is optimal and terminate, else go to Step 4

4 Pick j∗ : c̄j∗ < 0 and compute descent direction d =

[
−B−1A·j∗

ej∗

]
5 If dB ≥ 0, then the LP is unbounded, else go to Step 6

6 Set k∗ ∈ arg min
{
− (xB)k

(dB)k
: (dB)k < 0

}
7 Modify the basis by swapping B·k∗ and A·j∗ , set xB = B−1b, and

go to Step 2.

Lecture 1 Linear Programming – Part I

45/53

The Simplex Algorithm
Example

Consider the problem

max 6x1 + 4x2

s.t. x1 + x2 ≤ 6

2x1 + x2 ≤ 9

2x1 + 3x2 ≤ 16

x1, x2 ≥ 0

Converting it into standard form

min −6x1 − 4x2

s.t. x1 + x2 +x3 = 6

2x1 + x2 + x4 = 9

2x1 + 3x2 +x5 = 16

x1, x2, x3, x4, x5 ≥ 0

Lecture 1 Linear Programming – Part I

46/53

The Simplex Algorithm
Example

In matrix notation, the standard form is

min cTx

s.t. Ax = b

x ≥ 0

where

A =

1 1 1 0 0
2 1 0 1 0
2 3 0 0 1

 x =


x1
x2
x3
x4
x5

b =

 6
9

16

 c =


−6
−4
0
0
0



Lecture 1 Linear Programming – Part I

47/53

The Simplex Algorithm
Iteration 1

Starting with the initial basic feasible solution by setting the slacks to the
right hand sides, we have

A =

1 1 1 0 0
2 1 0 1 0
2 3 0 0 1

 x =


x1
x2
x3
x4
x5

 =


0
0
6
9

16

b =

 6
9

18

 c =


−6
−4
0
0
0


Computing the reduced cost vector using c̄TN = cTN − cTBB−1N and the
descent direction using dB = −B−1A·j∗

c̄ =


-6
−4
0
0
0

d =


1
0
−1

-2

−2


Lecture 1 Linear Programming – Part I

48/53

The Simplex Algorithm
Iteration 2

Swapping the first and fourth columns and setting xB = B−1b,

A =

1 1 1 0 0
2 1 0 1 0
2 3 0 0 1

 x =


x1
x2
x3
x4
x5

 =


9/2

0
3/2

0
9

b =

 6
9

18

 c =


−6
−4
0
0
0


Computing the reduced cost vector using c̄TN = cTN − cTBB−1N and the
descent direction using dB = −B−1A·j∗

c̄ =


0

-1
0
3
0

d =



−1/2
1

-1/2

0
−2


Lecture 1 Linear Programming – Part I

49/53

The Simplex Algorithm
Iteration 3

Swapping the second and third columns and setting xB = B−1b,

A =

1 1 1 0 0
2 1 0 1 0
2 3 0 0 1

 x =


x1
x2
x3
x4
x5

 =


3
3
0
0
1

b =

 6
9

18

 c =


−6
−4
0
0
0


Computing the reduced cost vector using c̄TN = cTN − cTBB−1N, we find
that all the reduced costs of the non-basic variables are positive. Hence,
the current solution is optimal.

c̄ =


0
0
2
2
0


Lecture 1 Linear Programming – Part I

50/53

The Simplex Algorithm
Graphical Solution

Can you trace the path of the Simplex iterations on the original feasible
region?

0 2 4 6 8
0

2

4

6

8

x
1 +

x
2 =

6

2x
1
+
x
2
=

9

2x
1 +

3x
2 =

16

Lecture 1 Linear Programming – Part I

51/53

The Simplex Algorithm
Why Does it Work?

The series of steps in the Simplex algorithm
involved finding inverses and performing ma-
trix multiplications to obtain the reduced
cost vector and the descent direction.

min z = cTx

s.t. Ax = b

x ≥ 0

These steps can be compactly written in a table like format using row
operations and Gauss-Jordan style elimination.

xB xNB RHS

RC 0 cTN − cTBB−1N −cTBB−1b

xB I B−1N B−1b

The reduced costs follow from row operations that create 0 above I. Each
column in the Tableau is B−1A·j . Hence, the min-cost rule and the un-
bounded condition in the tableau method involves a sign reversal.

Lecture 1 Linear Programming – Part I

52/53

The Simplex Algorithm
Food for Thought

I How do we find the B−1 in any iteration? This is similar to finding
the inverse by augmenting a matrix with the identity matrix

[
A I

]
and using Gauss-Jordan elimination.

I Can a variable leave and re-enter the table? Yes, think about
binding constraints.

I Can we have a negative RHS? No, because the solution should be
basic feasible. The min-cost rule always ensures we don’t create
negative RHS during row operations. Recall Condition 2 that gave
us the min-cost rule.

Caution: Books on optimization may use different sign conventions in the
Simplex Tableau, but they all do similar operations.

Lecture 1 Linear Programming – Part I

53/53

Your Moment of Zen

Source: xkcd

Lecture 1 Linear Programming – Part I

