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Abstract

This article proposes ∆-tolling , a simple adaptive pricing scheme which only requires travel time
observations and two tuning parameters. These tolls are applied throughout a road network, and can
be updated as frequently as travel time observations are made. Notably, ∆-tolling does not require
any details of the traffic flow or travel demand models other than travel time observations, rendering it
easy to apply in real-time. The flexibility of this tolling scheme is demonstrated in three specific traffic
modeling contexts with varying traffic flow and user behavior assumptions: a day-to-day pricing model
using static network equilibrium with link delay functions; a within-day adaptive pricing model using
the cell transmission model and dynamic routing of vehicles; and a microsimulation of reservation-based
intersection control for connected and autonomous vehicles with myopic routing. In all cases, ∆-tolling
produces significant benefits over the no-toll case, measured in terms of average travel time and social
welfare, while only requiring two parameters to be tuned. Some optimality results are also given for the
special case of the static network equilibrium model with BPR-style delay functions.

1 Introduction

Road pricing as a tool for congestion management has a long history in the transportation world, being
first suggested nearly a century ago (Pigou, 1920) as a method for internalizing congestion costs. Recent
advances in connected and automated vehicle (CAV) technology offer unprecedented flexibility and scope
for implementing these tolls. In principle, tolls can be charged on many or all network links, and changed
frequently in response to real-time observations of traffic conditions. Toll values and traffic conditions can
then be communicated to vehicles which instantly change routes in response, with minimal to no intervention
needed on behalf of drivers, who might only indicate some measure of the trip urgency or other proxy
for value of time before departing. Even before CAV technology reaches full penetration, communication
capabilities and automated route selection software (as can be found on modern cell phones) may be sufficient
to implement such a scheme.

Developing an optimal strategy for calculating tolls in such an environment appears difficult. There is a
plethora of traffic flow models in the literature, and each of them suggests a different optimization problem.
A similar issue exists for modeling route choice behavior. For these reasons, this article investigates a model-
free adaptive1 tolling procedure, which only requires travel time observations on links and which calculates

1In this article, we use adaptive to mean both time-varying and reactive to observed conditions. By this definition, time-of-
day pricing according to a predetermined schedule is not adaptive.
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tolls extremely quickly. We term this strategy ∆-tolling. In particular, ∆-tolling does not require knowing
travel demand or the traffic flow model which maps route choices to congestion. In this procedure, we
sacrifice provable optimality for generality, tractability, and decentralizability.

The past literature on adaptive tolling generally takes one of the following forms: optimization-based ap-
proaches which generally assume demand and the traffic flow model are known; or corridor pricing approaches
which only toll a small set of links and are only interested in flow on a small set of links (as with managed
lanes). This paper suggests a different approach that allows computing network-wide tolls in real-time, with
the intent of reducing average travel time, and without requiring perfect knowledge of travel demand or how
congestion forms.

The ∆-tolling scheme is exceptionally simple, and involves charging a toll on each link proportional to its
delay (the difference between observed and free-flow travel times), updating this toll periodically. There
are only two parameters to tune: the proportionality constant, and a smoothing parameter used to damp
transient spikes in toll values. Furthermore, being model-free, it is readily adaptable to application and
testing in multiple environments.

Despite the simplicity of the ∆-tolling scheme itself, practical implementation requires answering many inter-
esting and non-trivial questions regarding its effectiveness in various settings, and how the tuning parameters
should be chosen. In this article, we describe numerical tests of ∆-tolling with three widely different traffic
models: Model A uses link performance functions which are commonly used in static traffic assignment, is
deterministic, and travelers are fully rational; Model B uses the cell transmission model, commonly used in
regional dynamic traffic assignment, and travelers update their routes by recalculating shortest paths at each
node; and Model C uses microsimulation, commonly used for detailed corridor studies, with the same behav-
ioral assumption. These models focus on how travelers’ route choice is affected by ∆-tolling . Implementing
∆-tolling within these models achieved significant reductions in travel times. Furthermore, for the case of
link performance functions (Model A), we are able to show that the ∆-tolling scheme is in fact optimal if
the model parameters are correctly chosen. The effectiveness of ∆-tolling across three distinct traffic models
is encouraging, given the complexity of traffic flow which renders all such models approximate.

The remainder of the article is organized as follows. Section 2 provides a partial literature review on previous
tolling approaches. Section 3 then specifies the ∆-tolling framework. Next, Sections 4–6 demonstrate
∆-tolling on the three different traffic models, describing the demand and traffic flow assumptions in each
scenario, and providing numerical results testing its effectiveness. Finally, Section 7 concludes the article
and discuss future research directions.

2 Related Work

Road pricing has received considerable attention due to its potential to reduce congestion, and the economic
fairness of charging users for the delays they cause to other travelers. It has long been established that in a
static equilibrium setting, marginal tolls can eliminate the inefficiency associated with selfish routing (Pigou,
1920; Beckmann et al., 1956). A detailed history along with practical aspects of congestion pricing can
be found in (de Palma and Lindsey, 2011). However, such steady state conditions rarely exist in practice.
Changes in supply, demand and other driver characteristics such as bounded rationality and value of time
result in traffic that is dynamic both day-to-day and within-day. To control congestion in the presence of
these factors, researchers have proposed a wide range of tolling models, based on different representations
of traffic flow and different assumptions on the source of variability. In this section, we review these studies
and highlight some of the gaps that will be addressed in this article.
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2.1 Pricing models using link delay functions

The simplest way to model congestion is by using link delay functions that predict the travel time on links
as a function of its traffic volume. In this subsection, we review adaptive pricing articles built on this
assumption. These studies can be broadly grouped into the following three categories: (1) pricing models
with route switching behavior, (2) congestion pricing under supply and demand side uncertainty, and (3)
trial-and-error methods for congestion pricing.

(Friesz et al., 2004) proposed an optimal control formulation for finding tolls that maximize social welfare,
while also achieving a minimum revenue target. Traveler choices were represented by an ordinary differential
equation that corresponds to a tâtonnement route switching process. In a similar vein, (Yang et al., 2007)
suggested an adaptive tolling framework that reaches the system optimum state, assuming that travelers
follow the proportional switch adjustment process (Smith, 1984). (Tan et al., 2015) incorporated user
heterogeneity in such day-to-day pricing models by proposing a multi-class flow evolution dynamic in which
users with different values of time respond differently to current congestion levels. Adaptive tolls that
minimize a weighted sum of system cost and time were sought. (Guo et al., 2016) and (Rambha and Boyles,
2016) studied similar problems with slightly different objectives in discrete time settings where travelers’
choices depended on the previous day’s flow. While the former focused on the asymptotic behavior of the
system under the rational behavior adjustment process (Guo et al., 2015), the latter supposed that users
select routes according to the logit choice model and the tolls were used to minimize the average system
travel time over an infinite horizon.

Marginal tolls are usually computed assuming fixed trip tables and fixed network parameters such as capacity
and free flow travel time. However, when these supply and demand inputs are uncertain, the marginal prices
can be non-optimal and in some cases may worsen the network performance (Gardner et al., 2008, 2010;
Boyles et al., 2010). To address this issue, (Gardner et al., 2011) defined six scenarios that take into account
the information states of the system manager and travelers and suggested different optimization models in
which responsive tolls are designed based on the realizations of the supply and demand. Recently, (Rambha
et al., 2017) extended the problem of finding the optimal tolls under supply side uncertainty to cases in
which travelers respond to online information by changing their decisions en route.

A third class of adaptive pricing models are what are called trial-and-error methods. Tolls in these models
vary across different days but are not set to address the variability in network congestion. Instead, the tolls
are adaptive because the system manager, may in reality, not know the demand and delay functions. By
levying certain “trial-and-error tolls” and updating them over different days using observed link volumes,
provable convergence to system optimal tolls can be guaranteed (Yang et al., 2004; Han and Yang, 2009;
Yang et al., 2010). While travelers in these models are assumed to be aware of current day’s tolls and react
rationally, extensions in which travelers respond using day-to-day route dynamics also have been proposed
(Ye et al., 2015). The ∆-tolling framework with link delay functions that will be described in Section 4 can
be seen as a variant of the trial-and-error method.

2.2 Pricing models using macroscopic traffic simulators

The earliest work studying dynamic congestion used Vickrey’s (1969) bottleneck model. Road pricing also
affects the number of trips and their departure times, this elasticity was added by (Arnott et al., 1993).
Demand elasticity could be affected by alternative modes, so (Danielis and Marcucci, 2002) combined the
bottleneck model with a railroad mode. Similarly, (Huang, 2002) studied a bottleneck model with a parallel
mass transit alternative mode, and compared the effects of several pricing schemes on congestion and overall
system efficiency. (Verhoef, 2003) proposed a heuristic for adaptive tolling for dynamic traffic congestion in
continuous time. (van den Berg and Verhoef, 2011) extended the results to continuous distributions of values
of time, and found that congestion pricing could improve the social welfare of the majority of travelers even
without returning toll revenues.
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Adaptive tolling has also been widely studied in the context of managed lanes. (Yin and Lou, 2009) suggested
a feedback control approach in which tolls are raised or lowered proportionally to the difference between the
current and desired occupancy. They also proposed a self-learning approach in which the willingness to pay
is estimated in an online manner and the lane choice is captured using a logit choice model, which was later
extended to a multi-lane hybrid traffic flow model (Lou et al., 2011). (Gardner et al., 2013) analyzed managed
lane pricing using an additive logit model and an all-or-nothing assignment. Extensions that incorporate
demand uncertainty (Gardner et al., 2015) and departure time choices (Boyles et al., 2015) were also studied.

For pricing at a network level, (Carey and Srinivasan, 1993) define dynamic externalities and tolls using exit
flow functions as defined by (Merchant and Nemhauser, 1978). (Wie and Tobin, 1998) formulated optimal
control programs assuming point-queue models. (Wie, 2007) suggested a bi-level model in which the lower
level involves a simplified dynamic traffic loading mechanism. It was assumed that a subset of arcs can be
tolled and the objective was to maximize net consumer surplus. However, the traffic flow models in these
approaches do not capture queue spill-backs. (Tsekeris and Voß, 2009) reviews several studies that used
bottleneck or point queue models, and therefore did not capture the effects of queue spillback. (Waller et al.,
2006) and (Lo and Szeto, 2005) showed that these traffic flow dynamics were important to the effectiveness
of congestion pricing, and that ignoring them could result in tolls that increased congestion. Therefore, it
is important to study tolling schemes such as ∆-tolling on mesoscopic or microscopic models that properly
capture spatial propagation of congestion.

For more realistic flow models applied to large networks, such as the hydrodynamic model (Lighthill and
Whitham, 1955; Richards, 1956), marginal costs are much more difficult to compute because of discontinuities
in the flow model and congestion effects that transcend link boundaries. For such models it is not known
how to reduce the problem beyond its fundamental bi-level form. The upper-level problem chooses the
optimal tolls subject to route choice constraints, which form the lower-level problem. These route choice
constraints are often in the form of dynamic traffic assignment (Chiu et al., 2011), which itself is a difficult
optimization problem. Such bi-level problems have been studied extensively for both static and dynamic flow
models as network design problems (Farahani et al., 2013), and are known to be NP-hard even when both
the upper-level and lower-level problems are convex. Consequently, they are typically solved using heuristics
or meta-heuristics. (Lin et al., 2011) formulated such a bi-level program in which route and departure time
choices for a single destination network were captured with the cell transmission model. A dual variable
based heuristic was used to solve the proposed MPEC (mathematical program with equilibrium constraints).
(Joksimovic, Bliemer, Bovy and Verwater-Lukszo, 2005) and (Joksimovic, Bliemer and Bovy, 2005) included
both departure time and route choice in the lower level through a discrete choice model (stochastic user
equilibrium). Although results used a small test network, tolls were observed to encourage travel on less
congested routes or departure times. (Ekstrm et al., 2016) devise a surrogate-based optimization method
in which a small number of dynamic cordon tolling schemes are tested on the Stockholm network using
VisumDUE, a dynamic traffic assignment tool.

When applied to real-world traffic networks, ∆-tolling can be classifed as a within-day pricing scheme, as
described in Sections 5 and 6. Within-day pricing varies the tolls at different times of day in response
to (expected) congestion. Within-day strategies can affect both route choice and departure times because
travelers may respond to congestion pricing by delaying their trip until a less congested time. While many
within-day strategies set a predictable schedule of tolls that human drivers can react to, ∆-tolling assumes
the use of route guidance software that can more quickly react to rapidly changing tolls. Furthermore,
∆-tolling is responsive to fluctuations that may be caused due to uncertain demand.

2.3 Pricing models using microscopic traffic simulators

Very few researchers have used microscopic traffic simulators to study congestion pricing. The outputs of
microscopic simulators cannot be analytically expressed, a challenge in optimizing control strategies. Thus,
existing studies have used feedback mechanisms for computational tractability. The ∆-tolling approach
proposed in this article can also be seen as a feedback mechanism much like ramp metering strategies such
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as ALINEA (Papageorgiou et al., 1991). (Zhang et al., 2008) developed a feedback control theory-based
tolling for high-occupancy/toll lanes in VISSIM to avoid the potential hysteresis problem, and was later
extended by (Cheng et al., 2014) to include the effects of travel time reliability and income levels of users.
However, their pricing model is fairly complicated and may be difficult to apply to other traffic flow models,
and testing was limited to several connected freeway segments. (Zheng et al., 2012) and (Simoni et al., 2015)
used a hybrid approach involving a microscopic simulator MATSim and a macroscopic fundamental diagram
flow model to set cordon tolls in the city of Zurich. This model was used to calculate the aggregate density,
from which the cordon tolls were inflated or deflated based on a linear feedback control strategy. (Grether
et al., 2008) also used MATSim along with an activity based model that simulated users plans, modes of
travel, and values of time, but only evaluated fixed time-of-day dynamic tolls.

3 Framework

The ∆-tolling framework is designed to be widely applicable across a broad range of traffic and user behavior
assumptions. The modeling framework has three major components:

• The traffic model.

• The travel time calculation model.

• The tolling model.

These three models make use of four variables:

• τ - the vector of tolls applied to each link.

• d - the travel demand, expressed in amount of vehicles departing each origin towards each destination.

• X - the system state, a tuple of sets or vectors reflecting current traffic conditions corresponding to a
particular traffic model.

• T - the vector of measured link travel times.

If the underlying network is represented by G = (N,A,Z) where N and A are the sets of nodes and links, and
Z ⊆ N is the set of origins and destinations where trips start and end, then we have τ ∈ R|A|, d ∈ R|Z|×|Z|,
and T ∈ R|A|. We use Ta∈A to represent the travel time on link a, same goes for Xa and τa (a link (a)
might also be expressed as a pair i, j representing the link connecting node i with j). Similarly, dr,s∈Z is the
demand originating at node r towards node s.

Each of these variables evolves over time according to the traffic flow, travel time, and tolling models, which
are described next. The reader may find it useful to refer to Figure 1 during this discussion. Arrows in this
figure reflect direct dependencies between the variables, as described below.

The traffic flow model M encompasses the routing decisions made by drivers, as well as the congestion
effects caused by interactions amongst drivers. We express this relationship as

Xt =M(Xt−1, T t−1, dt, τ t) . (1)

This equation represents the following potential dependencies: the system state at time t may depend on
the system state at the previous time interval (Xt−1); the measured link travel times at the previous time
interval (T t−1); the vehicles departing during time t (dt), and the current tolls (τ t).2 Particular traffic flow

2The time interval between time steps (t, t + 1) may differ between models and between instances of the same model.
Examples are given in the following sections.
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models may not make use of all of these dependencies (for instance, the traffic state for Model A in Section 4
does not explicitly depend on previous time intervals) but they are included for generality. All of the models
in this article assume that the last measured travel times T t−1 and current tolls τ t are communicated to all
vehicles (based on the assumption of CAV technology), but in principle the framework could allow for route
choice decisions made without perfect knowledge of these. Specific examples of traffic models M and the
corresponding system states X are given in Sections 4–6.

The travel time calculation model T maps the system state to link travel times used for tolling:

T t = T (Xt) . (2)

Although the travel times T t−1 may be part of the system state Xt−1, we include a separate dependence on
T t−1 to allow for measurement errors, as might occur in practice if travel times are measured from sensors
or probe vehicles in the field, or to allow for approximate travel time calculations, as are often obtained from
simulation-based traffic models (such as Models B and C below). This separation also emphasizes that the
toll calculation only relies on travel times, and does not require additional information about the system
state or demand. Examples of travel time models are also found in the sections that follow.

The toll calculation model for ∆-tolling is the equation

τ t = (1−R)τ t−1 +Rβ(T t−1 − T 0) (3)

where T 0 is the vector of link free-flow times,3 and R and β are tuning parameters. Parameter β is the
proportionality constant relating link delay and the toll value, while R is a weighting parameter that results
in an exponential decay effect for tolls assigned in previous time steps. For further explanation regarding
the motivation behind the R parameter please refer to Appendix A. Both the R and β parameters must be
tuned for a given network.

To summarize, the dependencies between the variables are intended to fit the following story: at time step t
all users are informed with the tolls (τ t) imposed during time interval t to t+ 1, as well as the travel times
(T t−1) measured at the end of the previous time interval. Given this data, users choose and follow a route
leading from their current location to their destination that optimizes their utility. Based on the routes they
choose, the system evolves to state Xt, and at the end of this time interval, the updated travel times (T t)
are measured. These updated travel times, along with the updated tolls, are fed-back to all users which,
once again, re-optimize their route. Figure 1 presents a schematic illustrating these dependencies.

Note that allowing users to predict and react to future congestion and tolls can have a positive effect on
the system as the convergence towards a user equilibrium would be faster or even instant. On the one
hand, assuming such capabilities is reasonable from a practical standpoint (recurring congestion can be
predicted). On the other hand, considering such capabilities significantly complicates our theoretical and
empirical models. As a result they are not assumed in this study. Nonetheless, due to its relevance to the
application of ∆-tolling , we intend to explore this topic in future work.

The following three sections show specific instantiations of this framework for varied traffic models: one
inspired by day-to-day pricing in static traffic assignment, and two meant to represent within-day pricing in
dynamic models (the cell transmission model and a microsimulator). The intent of these demonstrations is
to study the performance of ∆-tolling across different modeling contexts, in contrast to many prior studies
which demonstrate effectiveness only in a single traffic model (often the same model used to derive the
tolling scheme). The focus of the presented experiments is on robustness of performance across widely-
varying models, rather than claiming that any of the specific models is the “right” one for any particular
application.

3Free flow travel time T 0 may change over time e.g., due to weather conditions, and should be appropriately updated.
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Figure 1: Schematic for ∆-tolling framework. Dashed lines reflect the traffic model, dotted lines the travel
time calculation model, and solid lines the tolling model. Note that the toll calculation only requires travel
times, and no other details of the demand or traffic model.

4 Model A: Link Performance Functions

In the first model, the traffic model is based on link performance functions which map the flow on each link
to its travel time. The presumption is that the intervals between successive time steps (and toll updates)
are large enough that most trips can be completed during a single time interval, and that delays and flows
can be well-approximated by deterministic, steady-state conditions. In this model, we assume that drivers
choose routes to minimize their travel cost (time+tolls). Because delays are deterministic and the interval
between time steps is assumed long, we further assume that CAV technology can choose routes rationally,
leading to a Nash equilibrium in which each vehicle chooses a route with minimum cost (cf. Wardrop, 1952).

4.1 Model specification

For an origin-destination (OD) pair (r, s) ∈ Z2, let Πrs denote the set of simple paths in G connecting origin
r to destination s, Πs = ∪r∈ZΠrs the set of paths ending at s, and Π = ∪s∈ZΠs the set of all network paths.
Let dt be the demand during time period t. The vector of path flows ht ∈ R|Π| is feasible if each element is
nonnegative, and if

∑
π∈Πrs

htπ = dtrs (each vehicle is assigned a path for its OD pair). Each vector of path

flows generates a vector of link flows xt ∈ R|A| given by xtij =
∑
π∈Π:(i,j)∈π h

t
π. Furthermore, we assume

that each link (i, j) ∈ A is equipped with an increasing and differentiable link performance function Ψij(xij),
giving the travel time on link (i, j) as a function of its flow xij alone. That is, Ti,j = Ψi,j(xi,j). Let X (dt)
denote the set of feasible link flows when the demand is dt, that is, the set of link flow vectors corresponding
to a feasible path flow vector.

For this model, the state vector is simply the vector of link flows:

Xt = xt (4)

and the traffic model M in equation (1) is specified with the following formula:

xt = arg min
x∈X (dt)

∑
(i,j)∈A

∫ xij

0

(Ψij(x) + τ tij) dx . (5)

In this formula we assume that the value of time is homogeneous among all travelers, allowing us to choose
units so that the tolls τ and travel time t can be directly added. The minimizer of the function on the
right-hand side is known to satisfy the Nash equilibrium principle, and to be unique under the assumption
that the Ψij are increasing. Note that there is no explicit dependence on Xt−1 in Model A.

One special case of Model A occurs when the demand is stationary with time, dt ≡ d. In this case, Model
A can be thought of as a day-to-day tolling model, where the tolls are updated on sequential days as drivers
make the same trips.
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4.2 Scenario specification

Every scenario simulated through Model A follows the following principles:

• Demand model - demand is modeled as a fixed amount of flow that needs to be routed between any
two given nodes in the network at any time step.

• Vehicle model - in model A there is no notion of atomic vehicles, traffic is viewed as a set of infinitely
divisible flows.

• Path assignment model - instead of assigning paths to vehicles, Model A assigns flows to paths. The
vehicles comprising each flow are assumed to be self interested and are assigned the minimal generalized
cost path (travel time + tolls). Such a policy leads to the Nash equilibrium that is defined by Equation
5.

4.3 Theoretical results

One advantage of Model A is that the analytical form of the traffic model (5) is amenable to mathematical
analysis. In particular, we are able to show several optimality results if demand is stationary with time and
the link performance functions are of the form specified by the Bureau of Public Roads (BPR),

Ψij(xij) = T 0
ij

(
1 +A

(
xij
uij

)B)
(6)

where T 0
ij is the free-flow travel time, uij the practical capacity, and A and B are shape parameters assumed

uniform throughout the network. In this section, we mean “optimality” in the sense of minimizing the
average travel time, which is proportional to

∑
(i,j)∈A xijΨij(xij). This is a convex function of the link

flows, so optimal link flows x∗ij exist and are unique.

The next results make use of the following well-known facts. (Both can easily be shown by writing the
optimality conditions of the associated convex minimization programs.)

Fact 1. Let xt ∈ X (dt) and let ht be any feasible path flow vector generating xt. The flows xt satisfy (5) if
and only if every positive component of ht corresponds to a path whose generalized cost (the sum of T tij + τ tij
along its links) is minimal for its OD pair.

Fact 2. Let xt ∈ X (dt) and let ht be any feasible path flow vector generating xt. The flows xt are optimal
if and only if every positive component of ht corresponds to a path whose marginal cost (the sum of T tij +
xtijΨ

′
ij(x

t
ij) along its links) is minimal for its OD pair.

The first result shows that the ∆-tolling rule is equivalent to marginal cost pricing if the parameter β is
chosen correctly:

Proposition 1. If the link performance functions are of the BPR form and β = B, then β(Tij − T 0
ij) =

xijΨ
′
ij(xij) = BAT 0(xtij/uij)

B.

Proof. Routine.

Next, we show that if the tolls do not change from one time step to the next, then the resulting link flows
must be optimal. Furthermore, the system has reached a stable state, and the optimal state will persist for
future time iterations. In other words, if the tolls are stable, the flows are optimal and stable.
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Proposition 2. Let the link performance functions have the BPR form, and let demand be stationary with
time. If β = B and τ t = τ t+1 for any time interval t, then xt is optimal, and furthermore xT is optimal for
any T > t.

Proof. Stationary demand implies that the set of feasible x and h are stationary. By the ∆-toll update
rule (3), if τ t = τ t+1 then we must have τ t = τ t+1 = β(T t − T 0) = BAT 0(xt/u)B , where this vector
equation holds componentwise. Let ht be a feasible path flow vector generating xt. By Fact 1, every positive
component of ht corresponds to a path whose sum of T tij+BAT 0

ij(x
t
ij/uij)

B along its links is minimal. But by
Proposition 1, this implies that every component of ht corresponds to a path whose sum of T tij + xtijT

′
ij(x

t
ij)

is minimal, and thus xt is optimal by Fact 2. Furthermore, since the minimizer of (5) is unique, τ t = τ t+1

implies xt = xt+1, and thus τT = τ t and xT = xt whenever T > t.

The converse of Proposition 2 is not true, because the vector of tolls which produce a particular flow x under
the mapping (5) is not unique, and only the marginal-cost tolls corresponding to Proposition 1 are fixed
points of the toll update rule (3). If xt is optimal but generated by a different toll vector, we will not have
τ t = τ t+1. Nevertheless, we can show that if xt is optimal, the flows are stable in subsequent iterations, even
if the tolls still change.

Proposition 3. Let the link performance functions have the BPR form, and let demand be stationary with
time. If β = B and xt is optimal at any time interval t, then xT is optimal whenever T > t.

Proof. Let ht be any feasible path flow vector generating xt. By Fact 1, every positive component of
ht corresponds to a shortest path with link weights T tij + τ tij . Since these flows are optimal, Fact 2 and

Proposition 1 imply that these are also shortest paths with link weights T tij + β(T tij − T 0
ij). That is, for each

node i and origin r, there exist node potentials πri and ρri such that

πri + T tij + τ tij ≥ πrj (7)

ρri + T tij + β(T tij − T 0
ij) ≥ ρrj (8)

for each link (i, j) ∈ A and origin r ∈ Z, with equality holding along all of the paths with positive flow at
ht. Multiplying inequality (7) by 1−R, inequality (8) by R, and adding, we have

(1−R)πri +Rρri + T tij + τ t+1 ≥ (1−R)πrj +Rρrj , (9)

implying that (1− R)π + Rρ form valid node potentials for the new toll vector τ t+1, with equality holding
for exactly the same links and origins as before. Thus, the shortest paths with respect to T t + τ t+1 are the
same as those with respect to T t + τ t, and xt remains optimal for xt+1. The argument can be repeated for
any T > t.

4.4 Experiments and results

Model A was implemented in C using Algorithm B (Dial, 2006) to solve the equilibrium subproblem. It
was tested on two city networks, representing the cities of Sioux Falls, SD and Austin, TX. The Sioux Falls
network is a standard test instance in the transportation network literature (Bar-Gera, 2014), with 76 links,
24 nodes, and 360,600 trips spanning 24 hours. The Austin network represents the central business district
of the city, and contains 1247 links, 546 nodes, and 62,836 trips over a two-hour morning peak period.
Additional details on the Austin network can be found in (Levin et al., 2015). Figure 2 shows schematics of
both networks.

In both networks, the link performance functions are BPR functions, using the standard values of the shape
parameters: A = 0.15 and B = 4. For the experiments in this article, the time intervals t were interpreted

9



Figure 2: Sioux Falls (left) and Austin (right) networks.

as subsequent days, so demand was assumed stationary and the experiment represents a day-to-day pricing
scenario.

Because Model A assumes fixed demand and homogeneous travelers, we can use the average travel time
ATT t = (xt · T t)/(d · 1) as a performance metric. In this demonstration, the weights Rt = 1/(t + 1) were
chosen, effectively setting the toll during time step t to the average of the daily “target” tolls β(T t − T 0).
This choice of Rt value was inspired by the method of successive averages (Liu et al., 2009).

Table 1 shows the steady-state average travel time for both networks as the sensitivity parameter β varies.
For both networks, with the above choice of Rt, fairly rapid convergence was obtained to a steady state.4

For β values of 1, 2, 4, 8, convergence on Sioux Falls required 95, 27, 11, and 94 iterations, respectively. For
Austin, these values required 24, 16, 27, and 42 iterations to converge, respectively.

Over the range of β values tested, the ∆-tolling strategy always reduced average travel time from the no-toll
value. When β was set equal to the B exponent in the link performance functions, the travel times were the
lowest observed, and in fact correspond to the system-optimal solution, as suggested by Proposition 1. Note
that the performance of ∆-tolling seems to be insensitive to the chosen β value as beta values twice as big
(8) or small (2) from the optimal (4) result in a system performance which is almost identical to the optimal
one.

5 Model B: Cell Transmission Model

Model B implements the ∆-tolling framework in the cell transmission model (CTM) developed by (Daganzo,
1994, 1995a) as an explicit solution method for the hydrodynamic theory of traffic flow proposed by (Lighthill
and Whitham, 1955) and (Richards, 1956). CTM is frequently used in dynamic traffic assignment. The time

4The system is said to converge to a steady state if the change in average travel time between successive time steps was less
than a tenth of a millisecond
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Scenario No tolls SO β = 1 β = 2 β = 4 β = 8
Sioux Falls

Model A 20.74 19.95 20.09 19.98 19.95 19.96
Model B 24.74 NA 20.28 20.08 19.92 20.26

Downtown Austin
Model A 21.92 21.78 21.81 21.79 21.78 21.79
Model B 20.67 NA 16.06 15.64 15.82 17.39

Table 1: Average travel time (minutes) at UE for different β values using Models A (Rt = 1/(t+ 1)) and B
(R = 10−4). Note that for Model A with β = 4 the UE and SO allign (this is the provable SO for model A).
The SO for Model B is not applicable .

step used in this model is typically short, on the order of a few seconds. When used with ∆-tolling , this allows
for a truly adaptive toll which can be updated based on traffic conditions. Because the tolls are updated
frequently, we believe that the equilibrium behavior assumed in Model A is not appropriate. Rather, we
assume that CAVs dynamically receive updates of travel times and tolls, and may alter their route to the
destination in response to receiving such information. This update is based on the currently reported travel
times and tolls when they reach the diverge point.5 Modeling the behavior of specific vehicles (each individual
vehicle has a value-of-time, and chooses routes according to its own generalized cost function) requires that
model B follows a variant of CTM that models discretized flow (Ziliaskopoulos and Waller, 2000; Chiu et al.,
2011).

5.1 Model specification

The CTM divides each link into a set of cells, each of length equal to the distance a vehicle would travel
in one time step at free-flow conditions. Cells result from a fixed division of a link into discrete segments.
The length of each segment corresponds to the distance a vehicle would travel on that link at free-flow speed
in one time step. This choice of cell length ensures stability of the cell transmission model (it satisfies the
Cournout-Friedrich-Lewy conditions for the underlying system of partial differential equations). Let C be
the set of cells in the entire network, and for a given cell c ∈ C, let C+(c) denote the set of cells immediately
downstream of c, and C−(c) the set of sells immediately upstream of c. For cells in the interior of a link
|C+(c)| = |C−(c)| = 1, whereas if c is at the upstream end of a link we may have |C−(c)| > 1 (if there are
multiple links incident from upstream) and if c is at the downstream end we may have |C+(c)| > 1 (if there
are multiple links adjacent downstream). Let xtc,π ∈ N denote the number of vehicles in cell c at the start of
time interval t which are currently following path π ∈ Π, and xtc =

∑
π∈Π x

t
c,π the total number of vehicles

in the cell. Based on these values, the CTM respectively defines the sending flow Stc and receiving flow Rtc
as the maximum number of vehicles which could possibly exit cell c during time step t, and the maximum
number of vehicles which could possibly enter cell c during time t. If we denote Qc as the capacity of cell
c, Nc the maximum number of vehicles which can physically occupy cell c, and δ the ratio between the
maximum backward shockwave speed and free-flow speed, common expressions for the sending and receiving
flow are

Stc = min{xtc, Qc} (10)

and
Rtc = min{δ(Nc − xtc), Qc} . (11)

See (Daganzo, 1995a,b) for additional details.

The update rules for the cell transmission model (the traffic model M) involve the auxiliary variables ytcd

5Particularly, vehicles do not anticipate future changes in travel conditions, nor the impact of receiving future information,
cf. (Waller and Ziliaskopoulos, 2002; Boyles, 2009). While such computations are more involved, they may be feasible with
CAV technology, and would be an interesting topic for future study.
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representing the number of vehicles moving from cell c to cell d ∈ C+(c) during time step t. If c and d belong
to the same link, we have

ytcd = min{Stc, Rtd} . (12)

If c and d belong to different links, ytcd is calculated using various intersection models representing traffic
behavior at diverges, merges, traffic signals, roundabouts, or other intersection types; see (Tampère et al.,
2011) for discussion of intersection model desiderata and some examples. The simulations reported in this
section use intersection models reflecting traffic signals.

Once the yt values are calculated, cell occupancies update in the natural way:

xt+1
c = xtc +

∑
b∈C−(c)

ytbc −
∑

d∈C+(c)

ytcd (13)

with the path-disaggregated xtc,π values updated according to the first-in, first-out principle.

The travel time model for T tij calculates the average time spent on link (i, j) by the vehicles which most
recently exited the link, based on the difference between their entry and exit times. This results in a slight
lag in the travel times used for ∆-tolling and for the adaptive routing procedure, since link travel times for
vehicles are not computed until they leave the link, even though the routing and tolls are based on decisions
made as vehicles enter a link.

5.2 Scenario specification

Every scenario simulated through Model B follows the following principles:

• Demand model - demand is given as the amount of vehicles originating at node n1 at time step t and
are assigned a destination n2 for any n1, n2 ∈ N and t > 0 combination.

• Vehicle model - each vehicle is affiliated with a value of time6 (V OT ). Vehicles seek to minimize their
generalized cost that is defined as travel time + tolls × value of time.

• Path assignment model - let T t−1
π be the sum of travel times along path π during time step t− 1 and

let τ tπ be the sum of tolls along π during time step t. When reaching a diverge node n at time step
t all paths (Πns) leading from n to destination s are considered. The vehicle in question is assigned
the path arg minπ∈Πns

cost(π) = {τ tπ +T t−1
π ·V OT}. An additional rule was added to prevent gridlock

problems which can arise in dynamic traffic models when a cycle of links are at jam density: if a vehicle
is unable to enter a link because its receiving flow is zero for more than 96 seconds,7 the vehicle is
assigned the least cost path to its destination that avoids that link, if such a path exists.

5.3 Experiments and results

For running Model B we used the DTA simulator (Chiu et al., 2011) implemented in Java. Model B was
tested on the Sioux Falls and Austin networks also used for the Model A results. A few changes were
needed to accommodate the differences in time scale and modeling assumptions between Models A and B.
Because the original Sioux Falls demand was specified over 24 hours, the demand was modified to fit a
3-hour experiment more suitable for dynamic traffic assignment, including 28,835 trips over this time period.
Both networks also required traffic signal timings. The Austin network data was originally used for dynamic
traffic assignment and contained real-world signal data. The Sioux Falls network does not include this data,
so we generated an artificial timing based on Webster’s (1958) formula for signal timing. The variations in

6Value of time represents the monetary value of a single unit of time. It is used to map time into monetary cost.
7This value was chosen by trial-and-error and resulted in the best performance.
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departure rates over time for these scenarios can be seen as the solid black line in Figure 4. Whenever a
vehicle is loaded onto the network, it is assigned a value of time randomly drawn from a Dagum distribution
with parameters â = 22020.6, b̂ = 2.7926, and ĉ = 0.2977, reflecting the distribution of personal income in
the United States ( Lukasiewicza et al., 2012).

The average travel times for Model B for particular values of R and β are shown in Table 1. Since Model
B allows heterogeneity in travelers’ values of time, in addition to evaluating average travel times, we also
evaluate the social welfare, defined as the weighted sum of each traveler’s travel time according to his or her
value of time.8 If V is the set of vehicles, and vehicle v experiences a travel time of Tv and has a value of
time of αv, social welfare is defined as −

∑
v Tvαv. The tolls are not included in the calculation of social

welfare, because we assume that toll revenues are transfer payments which remain internal to society. This
assumption was made implicitly in the use of average travel time as the metric for Model A.

Figure 3 shows the effects of ∆-tolling on social welfare as the responsiveness parameter R varies. The red
series indicates the no-toll scenario used as a benchmark, while the blue series shows social welfare under
the ∆-tolling regime. Each data point represents the average of ten scenario runs, and the bands represent
95% confidence intervals around each point. Scenario runs differ from each other in the value of time that
is (randomly) assigned to each vehicle. For the experiments in this plot, a fixed value of β = 4 was used.
This value was optimal in Model A for its assumption of BPR-type delay functions, but this choice is not
necessarily optimal for Model B which uses a dynamic network loading procedure. (As shown in Table 1, in
Austin, a slightly better performance was obtained with β = 2 compared to β = 4.) In this plot, note that
extreme R values are less effective, whether high or low: when R is near 1 tolls oscillate rapidly (worsening
performance over the no-toll baseline), and when R is near zero the tolls have little impact. The best
performance occurred in a narrow band around R ≈ 10−4, yielding increases of 26% and 33% in social
welfare for the Sioux Falls and Austin scenarios, respectively. Indeed, for any given β value, near-optimal
tolls cluster around a single order of magnitude of R values.

Figure 3: Social welfare in Sioux Falls (left) and Austin (right) as responsiveness parameter R varies using
Model B. The legend is identical in both plots.

Figure 4 shows the impacts on social welfare for travelers departing at different times during the simulation
for R values in the range 10−5–10−3. All series in this plot correspond to β = 4. This plot shows the superior
performance of R = 10−4 in a different way, and indicates that the benefits from tolling increase throughout
the peak period, and that the onset of congestion is delayed. In the Sioux Falls scenario, which includes the
end of the peak period, we see that the recovery from congestion occurs earlier as well.

Figure 5 shows performance of the tolling scheme as both R and β vary, depicting the difference in social
welfare (in percentage) compared to a scenario where no tolls are applied (a value of 126, for instance,
correspond to a 26% increase in social welfare). For any fixed value of one parameter, there is a near-optimal

8For Model A, where value of time is homogeneous, social welfare is directly proportional to the average travel time.
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Figure 4: Social welfare over time in Sioux Falls (left) and Austin (right), R varies using Model B. The
legend is identical in both plots.

value for the other parameter. This observation leads us to suspect that there are dependencies between
the two parameters. We leave exploring such dependencies for future work. Nonetheless, this observation
justifies the use of a single β value in the results described earlier.

Figure 5: Heat maps showing the difference (in precentage) in social welfare compared to the no tolls scenario
for different R and β values in Sioux Falls (left) and Austin (right). (Model B)

6 Model C: Microsimulation

AIM (Autonomous Intersection Manager) is a traffic microsimulator developed by (Dresner and Stone, 2004)
to model the flows of CAVs at intersections where priority is granted by reservation, rather than with signals.
AIM provides a multiagent framework for simulating autonomous vehicles on a road network grid, and it
presents a much more detailed traffic flow model than Models A or B. The AIM simulator uses two types
of agents: intersection managers and driver agents. Intersection managers are responsible for directing the
vehicles through the intersections, while the driver agents are responsible for controlling the vehicles to which
they are assigned. To improve the throughput and efficiency of the system, the driver agents “call ahead” to
the intersection manager and request a path reservation (space-time sequence) within the intersection. The
intersection manager then determines whether or not this request can be met. If the intersection manager
approves a driver agent’s request, the driver agent must follow the assigned path through the intersection.
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On the other hand, if the intersection manager rejects a driver agent’s request, the driver agent may not
pass through the intersection but may attempt to request a new reservation. AIM has been used in various
studies on reservation-based intersection control: (Dresner and Stone, 2006, 2007) studied variants of the
reservation protocol that provided intersection access to human drivers through an occasionally activated
traffic signal, and (Fajardo et al., 2011) found that reservations had lower delays than optimized traffic
signals for a symmetric intersection. Figure 6 shows a typical snapshot of simultaneous vehicle flow at a
congested intersection.

Figure 6: The AIM simulator depicting a reservation-based intersection in operation.

Link travel times T t−1 are estimated as an average of the time spent on each link by the vehicles most
recently exiting. The scenario specifications for this model are identical to those specified for model B. As
with Model B, due to the frequency of updates there is no presumption that an equilibrium is reached when
vehicles choose routes.

Unlike Models A and B, the microsimulation environment is not well-suited to explicit mathematical de-
scription. The state vector can be defined as Xt = (V t, It), where V t is the set of vehicles on the network at
the start of time step t, including associated information such as their value of time and position, velocity,
and acceleration in the network, and It is the set of intersections and associated information at time t, such
as the trajectories of scheduled reservations. This information is updated according to the rules described
above.

6.1 Experiments and results

For running Model C we used the AIM4 microsimulator (http://www.cs.utexas.edu/ aim/aim4sim/aim4-
release-1.0.3/aim4-root/docs/install.html). AIM4 is unable to model large networks of the type used for
Models A and B, because of the level of detail in its representation of agent behavior (both vehicles and
intersection reservations). Hence, the Sioux Falls and Austin scenarios are intractable within AIM. Figure 7
shows the 3× 3 grid network used for these experiments. Vehicle agents are generated randomly according
to a Poisson process, at a mean rate of 500 vehicles per hour per incoming lane. Each vehicle is assigned
either to destination D1 or D2. The network also includes alternative destinations for vehicles headed to
either of these destinations. Alternative destinations are used to simulate route choice effects on a network
much smaller than the city networks used in Models A and B. These alternative destinations, marked as A1
and A2 in Figure 7, are associated with a time penalty if vehicles leave the network through them instead of
their original destination. Vehicles may opt for a path ending at an alternative destination when performing
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Figure 7: Grid network used for Model C results, with destinations and alternatives marked.

the A∗ search when arriving at each intersection.

Figure 8: Results from running AIM in the 3 × 3 grid network. Heat map showing the difference (in
precentage) in social welfare compared to the no tolls scenario for different R and β values (left). Social
welfare as responsiveness parameter R varies (right). (Model C)

Figure 8 present results that are similar in format to those presented for Model B (Figures 3 and 5). That is,
in the left figure, social welfare as responsiveness parameter R varies and β is set (β equals 16). In the right
figure, heat map showing social welfare with different R and β values.9 Each data point in the right figure,
and each bracket shade in the left figure, represents the average social welfare over 30 simulation runs, where

9Results in a format similar to that in Figure 4 are not presented for this model since, unlike the Model B results, traffic
demand is not time varying in this experiment.
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social welfare for a single simulation is the average utility over all agents (vehicles). Each run simulates one
hour of traffic. Error bars reflecting 95% confidence intervals are shown in the right figure (social welfare vs
R).

The general trends that are observed in these results are very similar to those observed in the CTM model:
that is, reducing R to approximately 10−4 improves system performance (due to mitigation of oscillation and
spike effects), and that near-optimal performance can be achieved with most β values by properly tuning
the R values . Nonetheless, there are two notable differences between these results and those presented for
the CTM:

• Low β values (< 8) do not have a suitable R that yield optimized performance. We believe this
discrepancy stems from differences in the congestion accumulation model. Recall that AIM manages
intersection in a way that is conceptually different than traffic signals. When traffic signals are con-
sidered, the marginal impact of a single vehicle is negligible at low traffic levels (low demand) since
vehicles must wait for a green signal regardless of the number of vehicles arriving from other directions.
With AIM however, the marginal impact of a vehicle is noticeable even at low traffic levels.

• R = 1 (right-most data point in the right figure), presents performance that is better than applying no
tolls. We believe this discrepancy also stems from the fact that AIM does not use traffic signals which
contribute to spikes and oscillation (see Apendix A).

Though these results are not identical to those obtained by the CTM, their similarity still provides additional
evidence of the robustness of ∆-tolling across different models and network topologies. On the other hand,
the listed discrepancies suggest that the parameters used by ∆-tolling need to be re-tuned following changes
in traffic flow modeling (such as changes to the intersection management policy).

7 Conclusions

This article presented ∆-tolling , a simple road pricing scheme which makes minimal assumptions on the
traffic flow model or driver behavior. This scheme involves only two parameters, and only requires link travel
time and free flow travel times measurements to set tolls. The flexibility of ∆-tolling was demonstrated by
applying it in three very different contexts: a day-to-day pricing framework where delay is determined by
link performance functions and a static equilibrium model; a within-day adaptive tolling framework using
the cell transmission model for dynamic network loading, with adaptive route choice but no equilibrium; and
an adaptive tolling application using a new reservation-based intersection scheme for automated vehicles,
evaluated in microsimulation. In all of these cases, the ∆-tolling scheme was able to achieve significant
benefits (measured in average travel time or social welfare) over the no-toll case, even without knowledge of
the different traffic models being used, or the different assumptions on driver behavior. Benefits were seen
both in small, artificial grid networks with randomized parameters as well as in larger networks representing
real-world cities. We also note that ∆-tolling does not necessarily require a computer-controlled vehicle; it
only requires computer-controlled route choice. Current smart-phone software already provides navigation
to human drivers, and such software could be modified to interact with tolling systems.

The ∆-tolling scheme represents an advance over previously-suggested toll schemes, by not requiring any of
the following assumptions: that demand is known or fixed, that roadway capacity is known or fixed, that
the value of time is homogeneous; that the traffic model is known. Furthermore, ∆-tolling is applicable
across large networks and aims to optimize social welfare. As discussed in Section 2, all previous work we
are aware of makes one or more of these assumptions, all of which have significant practical implications.
As a few examples, drivers are unlikely to voluntarily report all of their trips to the tolling agency (so that
demand is not fully known), all traffic models are approximations to real traffic flow, and what is optimal
for a single corridor may not be optimal over a larger network. Our aim in presenting ∆-tolling is to show
that substantial benefits can be obtained even without knowing all of this information.
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∆-tolling is simple to implement since it requires measuring only two variables: current travel time and free
flow travel time, both measurements are feasible with now days technology. It is robust to the underlying
traffic model, and does admit optimality results under certain assumptions (Model A). Even when optimality
is not provable, ∆-tolling results in significant average travel time reduction in Models B and C. The fact
that ∆-tolling gains significant improvements over three different traffic models suggests it may be beneficial
in other models as well, including real-life traffic. Our study further found that the optimized β and R values
are similar across two, non static, traffic networks. Future work will examine if these values are effective
across other models and scenarios. If they are not, techniques for optimizing β and R values should be
developed and investigated.

There still remain many assumptions in ∆-tolling which future research should address. It is unrealistic to
assume 100% responsiveness to tolls. Future work will investigate what ratio of responsive traffic is needed
to ensure optimal system performance, and the effect of different responsiveness ratios on the system’s
performance. Future research will also test the ∆-tolling scheme for other combinations of traffic models,
network topologies, and driver behavior assumptions such as mode choice, destination choice, and departure
time choice.

We also plan to further investigate properties of ∆-tolling within Model A, whose analytical framework may
determine conditions for provable convergence of ∆-tolling to system optimality. Other important topics for
future study include developing tolling schemes which may be more politically acceptable than universally
tolling network links, including opt-in systems, credit-based systems, or the use of incentives in addition to
(or in lieu of) punitive tolls.
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Appendix

A The Need for a Weighting Parameter R

In a road network, agents often plan a full origin to destination route prior to embarking. The route chosen
by an agent is optimized according to current traffic conditions and tolls. The lag between decision making
and the impact of these decisions might produce oscillation effects, as demonstrated in the following example.

Assume that time is discretized into time steps and that an agent planing its route at time step t will traverse
the system at time step t+ 1. Consider a road network with a single origin and destination and two parallel
links (highway and shortcut), each leading from origin to destination. The travel time on the highway equals
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Ψhw(xhw) = 1, while the travel time on the shortcut is Ψsc(xsc) = xsc. Assume that ∆-tolling is used and
that at t = 0 the network is empty and tolls are zero on both links. Table 2 specifies the flow volume (x),
travel time (T ) and toll value (τ) for both the highway and shortcut at each time step.

Time Shortcut Highway
step x T τ x T τ

0 0 0 0 0 1 0
1 1 1 1 0 1 0
2 0 0 0 1 1 0
3 1 1 1 0 1 0

Table 2: Example demonstrating the need for a weighting parameter to prevent oscillation.

At t = 0 the travel time is 0 on the shortcut and 1 on the highway. As a result, all agents planning at t = 0
will choose the shortcut. The resulting congestion would cause the shortcut’s travel time to increase to 1,
along with its toll. All agents planning at t = 1 would thus choose to travel via the highway. As a result,
the shortcut will remain empty at t = 2 and its travel time and toll will reduce to 0. This phenomenon,
where all agents choose to go via the shortcut in one time step and the highway in the next, will repeat
itself, resulting in sub optimal system performance.

Moreover, if the a link performance function isn’t assumed, tolls may unpredictably spike due to traffic
irregularities. For instance, whenever a traffic light turns red, traffic stops and the toll set by ∆-tolling
spikes. On the other hand, when the light turns green traffic flow resumes and the toll drops. Both of these
effects can be mitigated by introducing a weighting parameter (specified as R in the model presented in
this paper). Effectively, this weighting parameter accounts for the delay between route choice and realized
congestion due to such route choices, by introducing a compensatory delay in the tolling system.
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