
A Note on Detecting Unbounded Instances of the Online Shortest

Path Problem

Stephen D. Boyles∗and Tarun Rambha†

December 26, 2015

Abstract

The online shortest path problem is a type of stochastic shortest path problem in which certain arc

costs are revealed en route, and the path is updated accordingly to minimize expected cost. This note

addresses the open problem of determining whether a problem instance admits a finite optimal solution

in the presence of negative arc costs. We formulate the problem as a Markov decision process and show

ways to detect such instances in the course of solving the problem using standard algorithms such as

value and policy iteration.

Keywords: online routing; recourse; stochastic shortest paths; policy iteration; label correcting; absorbing

Markov chains; negative arc costs

1 Introduction

The online shortest path (OSP) problem, also known as the shortest path problem with recourse, involves

finding a minimum expected cost strategy to reach the destination in a stochastic network in which the

arc travel times are revealed en route [3, 9, 10]. While positive arc travel times guarantee the existence of

an optimal strategy, the presence of negative arc costs1 can result in strategies with unbounded cost. In

such cases, determining if the OSP problem has a finite optimal solution has been an open question since it

was first discussed in Provan [9]. In this note, we address this issue by formulating the OSP problem as a

∗Assistant Professor, Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin
†Ph.D. candidate, Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin
1For an example of a network with negative arc costs, assume that travelers are offered incentives for using certain arcs.

1

Markov decision process (MDP) and suggest how unbounded instances can be detected when using standard

algorithms such as value and policy iteration.

Consider a probabilistic, directed graph G = (N,A) with a set of nodes N , a set of arcs A, and a

destination node v. Assume that a directed path exists from each node to v. Let FS(i) denote the forward

star of node i, that is, the set of arcs leaving node i. The cost of arc (i, j) ∈ A is a discrete random

variable c̃ij taking values from the set Cij = {c1ij , c2ij , . . . , c
Sij
ij }. Upon arrival at a node i, the cost of all arcs

(i, j) ∈ FS(i) are revealed, and the traveler chooses the next arc so as to minimize the expected travel cost

to the destination. Let t be a dummy node that is connected to the destination, i.e., (v, t) ∈ FS(v), with an

arc cost 0. Also suppose that t has a zero-cost self-loop2.

Let Θi = ×j:(i,j)∈ACij represent the set of node-states at i, that is, all joint realizations of arc costs in

FS(i), and let cθij represent the cost of arc (i, j) in node-state θ ∈ Θi. Finally, let pθ be the probability that

node-state θ is observed. The cost of these arcs are determined independently upon each arrival at a node;

this implies the “reset” assumption [9], where arcs traversed more than once are not constrained to have the

same cost every time.

The OSP problem is to determine the least expected cost from every node i to v, as well as a routing

policy π(i, θ) mapping each node i ∈ N and node-state θ ∈ Θi to an adjacent node j. This problem is

evidently a total cost MDP, although this connection has not been fully exploited in recent literature on the

problem [3, 9, 10]. MDPs provide a framework for sequential decision making in a stochastic environment.

Systems that are modeled as MDPs are primarily characterized by a set of states and a set of actions at

each state. Upon choosing an action at a particular state, the system transitions to a new state with a

certain probability and some cost is incurred. The goal is to find the optimal action to be taken at each

state to minimize the total, discounted, or per-stage expected cost. Using this framework, stochastic routing

problems can be cast as an MDP by appropriately defining the state space, transition probabilities, and

costs associated with choosing an action3. For a more comprehensive discussion on MDPs and stochastic

shortest paths see Bertsekas and Tsitsiklis [2]. In the remainder of this section, we describe the components

of the MDP for the OSP problem and the associated Bellman equations.

For the OSP problem, the states of the MDP are tuples (i, θ) and the action space at state (i, θ) is {j ∈

N : (i, j) ∈ A}, the set of nodes adjacent to i. The cost of choosing π(i, θ) in state (i, θ) is simply cθi,π(i,θ). The

2The OSP problem with non-negative arc costs may be solved, without defining a dummy node, by initializing the label of
the destination to zero. However, when arc costs are negative, a traveler may cycle even after reaching the destination, and
hence an absorbing state is necessary.

3Examples of other stochastic routing problems include minimizing the expected costs in networks with stochastic, time-
varying arc costs [6] and maximizing the probability of arriving on-time [7].

2

state associated with the dummy node (t, 0) forms a cost-free absorbing state as the probability of returning

to itself is 1. The value function Lπ(i, θ) at state (i, θ) is the expected cost incurred by a traveler at node

i and node state θ following policy π. Mathematically, Lπ(i, θ) = lim
K→∞

E
{∑K

k=0 cik,π(ik,θk)|i0 = i, θ0 = θ
}

,

where (ik, θk) is the state at the kth stage (stages here represent decision points of the traveler). When using

policy π, let the expected cost of reaching the destination from node i prior to the realization of node states

at i (which we will henceforth refer to as labels) be denoted by Lπi and defined as follows

Lπi =
∑
θ∈Θi

pθLπ(i, θ) (1)

We refer to Lπi as the cost of the policy π when departing from node i. Denote the set of all policies by Π.

The objective is to find π∗ ∈ Π that minimizes Lπi over the set Π for all i ∈ N . Notice from the definitions

of Lπ(i, θ) and Lπi that Lπ(t, θ) = Lπt = 0 for θ ∈ Θt. For all other nodes and π ∈ Π, the values of Lπ(i, θ)

satisfy the following equations

Lπ(i, θ) = cθi,π(i,θ) +
∑

θ′∈Θπ(i,θ)

pθ
′
Lπ (π(i, θ), θ′) ∀ i ∈ N\{t}, θ ∈ Θi (2)

Fixing a policy π results in a Markov chain with states (i, θ), where i ∈ N, θ ∈ Θi. We will refer to this as

the original Markov chain for reasons that will become apparent shortly. Let Pπ represent the matrix of

transition probabilities for moving between pairs of states under policy π, that is, for all i, j ∈ N\{t}, θ ∈

Θi, θ
′ ∈ Θj , Pπ [(i, θ), (j, θ′)] = pθ

′
if π(i, θ) = j and is zero otherwise. Using this definition, equation (2)

can be compactly written as Lπ = cπ +PπLπ, where Lπ and cπ are column vectors (of length equal to the

total number of states excluding the states at node t) containing the Lπ(i, θ) and cθi,π(i,θ) values respectively.

Using equations (1) and (2), Lπ(i, θ) = cθi,π(i,θ) +Lππ(i,θ) ∀ i ∈ N\{t}, θ ∈ Θi and using equation (1) again

Lπi =
∑
θ∈Θi

pθ
(
cθi,π(i,θ) + Lππ(i,θ)

)
∀ i ∈ N\{t} (3)

The system of equations (3) in matrix form can be written as Lπ = bπ +PπLπ, where Lπ is a column vector

of labels with a component Lπi for each node i ∈ N\{t}; bπ is a column vector of expected costs with ith

element bπ[i] =
∑
θ∈Θi

pθcθi,π(i,θ); and Pπ is a transition matrix with elements Pπ[i, j] =
∑
θ∈Θi:π(i,θ)=j p

θ

for all i, j ∈ N\{t}. The transition matrix corresponds to an aggregated Markov chain in which all states

that share the same node in the original Markov chain are grouped to form a single state. If a vector of

3

labels satisfying equation (3) also satisfies

π(i, θ) ∈ arg min
j:(i,j)∈A

{cθij + Lπj } ∀i ∈ N, θ ∈ Θi (4)

then the labels are said to satisfy the Bellman equations and are optimal to the OSP problem. The reader

is encouraged to verify these equations using the example in Appendix A which is based on the network in

Figure 1.

When arc costs are allowed to take zero or negative values, the optimal policy may cycle indefinitely

without reaching the absorbing state4. If the optimal policy in such instances has a bounded cost, then it

cycles while incurring zero cost on average. Unbounded problem instances may arise when cycling among a

subset of nodes with a negative average cost. Provan [9], using the example in Figure 1, showed that two

simple criteria are incapable of precisely distinguishing unbounded instances from those with finite optimal

solutions. As shown below, requiring all cycles to have non-negative cost with probability 1 is too strong

a condition and excludes well-defined problem instances, while simply forbidding cycles with a negative

expected cost is too weak and allows unbounded instances.

First, suppose that arcs (2, 3) and (2, 4) either have zero cost or a cost d < 0 with equal probability. Let

node 5 be the destination. If d = −6, the cycles (1, 2, 3, 1) and (1, 2, 4, 1) have negative cost with positive

probability; yet a finite optimal solution exists: the policy π(2, [0, 0, 1]) = 5, π(2, [0,−6, 1]) = 4, π(2, θ2) = 3

for all other θ2 and labels Lπ =
(

1 −2 3 3 0

)T
satisfy equations (3) and (4).

Next, setting d = −7, there are no negative cycles when link costs are replaced by their expected

values, yet no solution exists to equations (3) for the policy π(2, [0,−7, 1]) = 4, π(2, θ2) = 3 for all other θ2.

Furthermore, a traveler leaving node 1 will never reach the destination node 5: when following this policy,

the travel cost is reduced by an average of −1/4 between successive arrivals at node 1, so indefinite cycling

can make the travel cost arbitrarily negative even though neither cycle (1, 2, 3, 1) nor cycle (1, 2, 4, 1) has

negative expected cost.

This note describes a necessary and sufficient condition separating unbounded instances from instances

with a finite optimal solution in the presence of negative costs. We further show that this condition can be

naturally checked when solving the OSP problem using standard algorithms for solving MDPs.

4While Bertsekas and Tsitsiklis [2] allow non-positive arc costs in their model, they restrict their attention to what they call
proper policies which have a positive probability of reaching the destination after at most a certain number of stages.

4

21

4

5

2

0 or d

3

2

3

0 or d

1

Figure 1: Detecting unbounded problem instances is nontrivial [9].

2 Characterizing policies

We saw earlier that fixing a policy π defines a Markov chain in the original and aggregated state spaces.

Notice that these state spaces are finite. In this section, we characterize the states of such Markov chains to

understand their long run behavior.

A closed communicating class is a subset of states with the property that a Markov chain beginning at

any state in the subset reaches every other state in the subset with positive probability, and furthermore

remains within the subset with probability one. In general, the state space of a Markov chain can be written

as C1 ∪ C2 ∪ · · · ∪ Cr ∪ T , where C1, C2, . . . , Cr are closed communicating classes and T is the set of transient

states. All states in a finite closed communicating class are recurrent and hence we also refer to these classes

as recurrent classes.

Clearly the set {(t, 0)} is a recurrent class for any policy. Ideally, one would want the optimal policy to

yield a Markov chain in which all the remaining states are transient. In such cases, the stochastic process

is guaranteed to reach the absorbing state and the expected cost to reach t is finite because the arc costs

are bounded and the Markov chain has a finite state space. However, in the presence of non-positive arc

costs, other recurrent classes may exist in minimum-expected cost solutions. Thus, our goal is to be able to

(i) verify if a given policy contains any recurrent classes and (ii) determine the sign of the cost associated

with each recurrent class incurred over an infinite horizon. By a recurrent class we will henceforth refer to

a closed communicating class that is not {(t, 0)}.

Toward the first goal, the following proposition helps us focus our attention on only the aggregated

Markov chain and its associated transition matrix Pπ. It is advantageous to do so since the size of Pπ is

5

much smaller than that of Pπ.

Proposition 1. The original Markov chain has a recurrent class iff the aggregated Markov chain has a

recurrent class.

Proof. (⇒) Let there exist a recurrent class C containing the state (j, θj) in the original Markov chain. To

prove that the aggregated Markov chain has a recurrent class, we show that that all states (j, θ′j), where

θ′j ∈ Θj , also belong to C. Suppose not, i.e., assume (j, θj) ∈ C and (j, θ′j) /∈ C. Clearly, the recurrent class

C cannot be a singleton containing the state (j, θj). Hence, there exists (i, θi) ∈ C, where θi ∈ Θi, such that

Pπ [(i, θi), (j, θj)] > 0 and π(i, θi) = j. Therefore, Pπ
[
(i, θi), (j, θ

′
j)
]
> 0 for all θ′j ∈ Θj , contradicting the

fact that (i, θi) belongs to C.

(⇐) Trivial. �

Finding recurrent classes in the aggregated Markov chain is easy as one can construct a digraph using

the transition matrix and use any reachability algorithm to determine the pairs of states that communicate

with each other. The following well-known result gives an alternate way to discover a recurrent class which

will be of use later.

Proposition 2. A policy π contains a recurrent class if and only if the matrix I − Pπ is singular.

Proof. If π contains a recurrent class then the system of equations (3) either has no solutions or has infinitely

many solutions. In either case I−Pπ must be singular. To complete the proof, assume that I−Pπ is singular.

Let C ⊆ N represent the indices of a minimal set of linearly dependent rows of I − Pπ. Then, there exist

multipliers µi, i ∈ C, all non-zero, such that
∑
i∈C µi(I − Pπ)i = 0, where (I − Pπ)i is the ith row of

I − Pπ. Each multiplier must thus satisfy µi =
∑

(h,i):h∈C µhP
π[h, i]. Furthermore, one of these multipliers

is arbitrary, so fix µa = 1, where a ∈ C. It follows that each multiplier µi represents the expected number

of times node i is traversed by a random walk starting at a and moving according to policy π, before either

returning to a or leaving the set of nodes C. Thus, µi > 0 for all i ∈ C and every pair of states communicate

with each other. Now, consider all columns corresponding to nodes not in C; if i ∈ C and k is such a column,

(I − Pπ)[i, k] = −Pπ[i, k]. By linear dependence, we have
∑
i∈C µiP

π[i, k] = 0. Since µi > 0 for all i ∈ C,

Pπ[i, k] = 0 for all i as well. As this holds for all k /∈ C, the probability of leaving nodes in C is zero and

hence these nodes form a recurrent class. �

Let us now address the second goal. If a Markov chain associated with a policy has a recurrent class,

the ergodic theorem allows us to use the average cost per stage to distinguish between the bounded and

6

unbounded instances. Let PπC be the transition matrix of the recurrent class C. In other words, it is a

sub-matrix of Pπ with rows and columns corresponding to the states in C. Then, a non-negative solution to

the system of linear equations (5) and (6) gives λ, the limiting occupancy distribution5.

λj =
∑
i∈C

λiP
π
C [i, j] (5)

∑
j∈C

λj = 1 (6)

Let bπC be a column vector obtained by selecting the rows of bπ that correspond to states in C. Then, the

average cost per stage is given by λTbπC .

For instance, in Figure 1, suppose we follow the policy π(2, [0,−7, 1]) = 4 and π(2, θ2) = 3 for all other θ2.

The limiting occupancy distribution associated with states 1, 2, 3, and 4 is λ =
(

1/3 1/3 1/4 1/12

)T
.

When d = −7, the average cost per stage is −1/12. Hence, every transition saves a traveler −1/12 units on

an average and therefore the problem is unbounded. For d = −6, the average cost per stage for the same

policy is 1/6 and is hence not optimal. When d = −20/3, the recurrent class has an average cost 0. Existence

of a policy containing a recurrent class with negative average cost is necessary and sufficient for OSP to be

unbounded below as a traveler starting at any node in such a recurrent class can experience arbitrarily large

negative cost by cycling indefinitely.

3 Detecting recurrent classes

Common methods to solve total cost MDPs include policy and value iteration (see Bertsekas [1] for a detailed

account of these algorithms and convergence results). In this section, we discuss how to use these methods in

networks having non-positive arc costs to address cases in which (i) recurrent classes with zero average cost

and (ii) recurrent classes with negative average cost exist. It turns out that the first case can be effortlessly

avoided by careful initialization. The second case can also be detected easily using policy iteration, but may

be harder to detect when using value iteration.

5The limiting occupancy distribution is the fraction of time spent by the system in each of the states of the recurrent class.
Note that as the recurrent class is not always aperiodic, λ is not necessarily the limiting distribution. For more information on
limiting behavior of Markov chains see Kulkarni [5].

7

3.1 Policy iteration

In policy iteration, we begin with a policy π0 and use equation (3) to first solve for the labels. Then, using

equation (4), a new policy π1 is derived and these two steps are repeated until the policy remains unchanged

between successive iterations. Also, when multiple solutions exist in equation (4), tie-breaking rules are

important. For the policy to converge, we set πk+1(i, θ) = πk(i, θ) if possible (i.e., if ∃ j′ 6= πk(i, θ) such

that j′, πk(i, θ) ∈ arg minj:(i,j)∈A{cθij + Lπ
k

j }), where k is the iteration number. In order to address case (i)

the following proposition is useful.

Proposition 3. If the policy π0 used to initialize policy iteration does not contain any recurrent classes with

zero or positive average cost per stage, no future iteration will introduce them.

Proof. To see why, assume that at some iteration k, no recurrent class exists; but at a later iteration k+ 1, a

recurrent class exists with node set C. In such cases, we show that the average cost per stage of the recurrent

class C is always negative. Since the policy update is done using πk+1(i, θ) ∈ arg minj:(i,j)∈A{cθij +Lπ
k

j }, for

all nodes in C, we may write

cθi,πk+1(i,θ) + Lπ
k

πk+1(i,θ) ≤ c
θ
i,πk(i,θ) + Lπ

k

πk(i,θ) ∀ i ∈ C, θ ∈ Θi (7)

Recall that if there are ties in the policy update step, we set πk+1(i, θ) = πk(i, θ) if possible. Further, as C

is a recurrent class in iteration k + 1 but not in iteration k, the policy must have changed for at least one

(i, θ) pair. Therefore, at least one of the above inequalities is strict.

Let the limiting occupancy distribution of recurrent class C be λ. For a node i ∈ C, adding the inequalities

(7) for all θ ∈ Θi, we get

∑
θ∈Θi

cθi,πk+1(i,θ) ≤
∑
θ∈Θi

(
cθi,πk(i,θ) + Lπ

k

πk(i,θ) − L
πk

πk+1(i,θ)

)
(8)

∑
θ∈Θi

pθcθi,πk+1(i,θ) ≤
∑
θ∈Θi

pθ
(
cθi,πk(i,θ) + Lπ

k

πk(i,θ)

)
−
∑
θ∈Θi

pθLπ
k

πk+1(i,θ) (9)

bπ
k+1

C [i] ≤ Lπ
k

i −
∑
θ∈Θi

pθLπ
k

πk+1(i,θ) [using equation (3) and the definition of bπC] (10)

λib
πk+1

C [i] ≤ λi
(
Lπ

k

i −
∑
θ∈Θi

pθLπ
k

πk+1(i,θ)

)
[since λi is positive] (11)

Summing the above inequalities for all i ∈ C and using the fact that one of the inequalities in (7) is strict,

8

we have

∑
i∈C

λib
πk+1

C [i] <
∑
i∈C

λi

(
Lπ

k

i −
∑
θ∈Θi

pθLπ
k

πk+1(i,θ)

)
(12)

=
∑
i∈C

λiL
πk

i −
∑
i∈C

λi
∑
j∈C

Lπ
k

j

∑
θ∈Θi:

πk+1(i,θ)=j

pθ (13)

=
∑
i∈C

λiL
πk

i −
∑
j∈C

Lπ
k

j

∑
i∈C

λi
∑
θ∈Θi:

πk+1(i,θ)=j

pθ (14)

=
∑
i∈C

λiL
πk

i −
∑
j∈C

Lπ
k

j λj [using equation (5)] (15)

= 0 (16)

Hence, if the policy iteration algorithm discovers a policy with a recurrent class, its average cost per stage

can only be negative. �

Thus, with careful initialization6, there is no danger of introducing a recurrent class with zero or positive

average cost. Therefore, if I − Pπk is ever singular, a recurrent class with negative average cost exists and

the problem is unbounded.

3.2 Value iteration

Value iteration on the original state space can also be used to solve for the optimal labels. Specifically, in the

kth iteration, we estimate Lk(i, θ) = minj:(i,j)∈A

{
cθij +

∑
θ′∈Θj

pθ
′Lk−1(j, θ′)

}
and update the label of node

i using Lki =
∑
θ∈Θi

pθLk(i, θ). If we initialize the values of L0(i, θ) to 0 when i = t and ∞ otherwise, value

iteration is known to converge to the optimal labels and the optimal policy can be obtained using equation

(4). While this method involves updating all node labels in each iteration, computationally efficient versions

(such as the TD-OSP algorithm of Waller and Ziliaskopoulos [10]) which update node labels based on a scan

eligible list can also be used. The initialization scheme also ensures that the labels decrease over subsequent

iterations and hence value iteration never results in a policy that has a recurrent class with positive average

cost. It can however provide an optimal solution with a recurrent class having zero average cost. But in

such cases, changing the tie-breaking rules in equation (4) helps discover an optimal policy with no recurrent

classes.

6For instance, initializing the policy and labels based on a deterministic shortest path problem using expected costs.

9

Value iteration can converge slowly to the optimal labels which poses a problem when there are recurrent

classes with negative average costs. In such instances, as the labels decrease, it is unclear if the labels have

not converged or if the problem is unbounded. Lower bounds on the optimal labels can resolve this issue

but estimating these bounds appears challenging.

To overcome this issue, a hybrid approach that combines value and policy iteration can be used to solve

the OSP problem. Specifically, one could run the TD-OSP algorithm for a fixed number of iterations kmax,

use the labels to construct a policy, and perform a policy update using equation (3). If I − Pπ is found to

be singular during the policy update process, the problem is unbounded. Else, we repeat this process by

running the TD-OSP algorithm for another kmax iterations followed by a policy update and so on. If, during

this process, the scan eligible list in a TD-OSP iteration becomes empty (i.e., an optimal solution is found)

or if the policy update step suggests that the problem is unbounded, we terminate.

Alternately, when using the TD-OSP algorithm, one could check if the scan eligible list repeatedly

admits a certain sequence of nodes. This would potentially indicate cycling among a subset of nodes.

Several methods are available for detecting the reappearance of a set of elements in a sequence. One option,

based on Nivasch [8], is to store the scan eligible list from selected iterations in an ordered stack. If a cycle

is detected, terminate TD-OSP, construct a policy using the current labels and switch to policy iteration

(while making sure that the current policy does not have a recurrent class with zero average cost). Otherwise,

TD-OSP will terminate with the optimal solution, and we stop.

To get a sense of the computational effort required for the aforementioned approaches, we solved the

OSP problem on the Barcelona network which has 1020 nodes and 2522 links (http://www.bgu.ac.il/

~bargera/tntp/). These networks are based on standard test instances involving positive costs, which were

retained for the experiments in this paper. Since the policy-based algorithms that solve the OSP problem

also detect unbounded instances, the computation time for detecting an unbounded instance is expected to

be of the same order.

The hybrid approach involved a policy update after every kmax TD-OSP iterations. The algorithms

were implemented in C and tested on a Linux machine with an 8 core Intel Core i7-870 CPU @ 2.93 GHz.

The results are shown in Table 1 and suggest that the run times of all the algorithms are comparable to each

other.

10

Table 1: Average run time (in seconds) for various OSP algorithms.

Policy Iteration Hybrid Approach Value Iteration

kmax 0 1|N | 2|N | 3|N | 4|N | 5|N | −
Time 0.5517 0.5156 0.4835 0.4547 0.4251 0.4472 0.5872

4 Conclusion

This note addressed an open problem concerning the online shortest path problem, identifying a necessary

and sufficient condition for the existence of a finite optimal solution in the presence of non-positive arc costs

– namely, the nonexistence of a policy with a recurrent class with negative average cost. Viewing the online

shortest path problem as a Markov decision process, we discussed methods that are capable of detecting

whether the problem admits a finite optimal solution (in which case the algorithm returns the solution), or

alternatively discovering a policy with a recurrent class with negative average cost in finite time.

However, there are many open questions surrounding the complexity of the policy iteration method and

hence the question of existence of a polynomial-time algorithm for detecting unbounded instances remains

to be explored. While it was shown by Ye [11] that policy iteration is strongly polynomial for discounted

problems, Fearnley [4] demonstrated, using a carefully constructed example which requires probabilistic

actions at some states, that policy iteration for the total and average cost MDP may take an exponential

number of steps. Although the OSP problem is a total cost MDP, it is defined on a network, which imposes

additional structure that may possibly help in showing that the worst-case instances of policy iteration run

in polynomial time.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Nos. 1069141/1157294

and 1254921. Partial support was also provided by the Data-Supported Transportation Planning and Oper-

ations University Transportation Center at The University of Texas at Austin. The authors are grateful for

this support. The authors would also like to thank two anonymous reviewers for their insightful comments.

11

References

[1] D.P. Bertsekas, Dynamic programming and optimal control, Vol. II, Athena Scientific, Cambridge, MA,

2007.

[2] D.P. Bertsekas and J.N. Tsitsiklis, An analysis of stochastic shortest path problems, Math Oper Res 16

(1991), 580–595.

[3] R.K. Cheung, Iterative methods for dynamic stochastic shortest path problems, Naval Res Logist 45

(1998), 769–789.

[4] J. Fearnley, “Exponential lower bounds for policy iteration,” Automata, languages and programming,

S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. Spirakis (Editors), Springer

Berlin Heidelberg, 2010, Vol. 6199 of Lecture Notes in Computer Science, pp. 551–562.

[5] V.G. Kulkarni, Modeling and analysis of stochastic systems, CRC Press, 2009.

[6] E. Miller-Hooks, Adaptive least-expected time paths in stochastic, time-varying transportation and data

networks, Networks 37 (2001), 35–52.

[7] Y. Nie and Y. Fan, Arriving-on-time problem: discrete algorithm that ensures convergence, Transporta-

tion Res Record: J Transportation Res Board (2006), 193–200.

[8] G. Nivasch, Cycle detection using a stack, Informat Process Lett 90 (2004), 135–140.

[9] J.S. Provan, A polynomial-time algorithm to find shortest paths with recourse, Networks 41 (2003),

115–125.

[10] S.T. Waller and A.K. Ziliaskopoulos, On the online shortest path problem with limited arc cost depen-

dencies, Networks 40 (2002), 216–227.

[11] Y. Ye, The simplex and policy-iteration methods are strongly polynomial for the Markov decision

problem with a fixed discount rate, Math Oper Res 36 (2011), 593–603.

12

Appendix A An example

In this section, we provide an example of the original and aggregated Markov chain defined in Section 1

using the network in Figure 1. Consider the policy π(2, [0, 0, 1]) = 5, π(2, [0, d, 1]) = 4, π(2, θ2) = 3 for all

other θ2. The original state space corresponding to policy π is shown in Figure 2. The values on the arcs

between states represent the transition probabilities.

5, [0]

2, [0,0,1]

1, [3]

3, [2]

4, [2]

2, [0,d,1]

2, [d,0,1]

2, [d,d,1]

t, [0]

1

1

1

1

1

1

1

1

1/4

1/4

1/4

1/4

Figure 2: Original state space for policy π.

The transition probability matrix Pπ and the cost vector cπ are shown below. The value functions can

be obtained by solving Lπ = cπ + PπLπ.

Pπ =

1, [3] 2, [0, 0, 1] 2, [0, d, 1] 2, [d, 0, 1] 2, [d, d, 1] 3, [2] 4, [2] 5, [0]



1, [3] 0 1/4 1/4 1/4 1/4 0 0 0

2, [0, 0, 1] 0 0 0 0 0 0 0 1

2, [0, d, 1] 0 0 0 0 0 0 1 0

2, [d, 0, 1] 0 0 0 0 0 1 0 0

2, [d, d, 1] 0 0 0 0 0 1 0 0

3, [2] 1 0 0 0 0 0 0 0

4, [2] 1 0 0 0 0 0 0 0

5, [0] 0 0 0 0 0 0 0 0

cπ =



3

1

d

d

d

2

2

0



13

The aggregated state space groups all states corresponding to node 2 and is shown in Figure 3. The

numbers on the arcs represent the transition probabilities defined by Pπ.

5 2 1

3

4

1/2

1/4

1/4

1

1

1

1

t
1

Figure 3: Aggregated state space for policy π.

The labels associated with policy π can be obtained using Lπ = bπ+PπLπ, where Pπ and bπ are shown

below. When d = −6, solving these equations yields Lπ =
(

1 −2 3 3 0

)T
.

Pπ =

1 2 3 4 5



1 0 1 0 0 0

2 0 0 1/2 1/4 1/4

3 1 0 0 0 0

4 1 0 0 0 0

5 0 0 0 0 0

bπ =



3

d
2 + d

4 + 1
4

2

2

0



14

