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Relatively few studies have addressed water management and adaptation measures in the face of changing
water balances due to climate change. The current work studies climate change impact on a multipurpose
reservoir performance and derives adaptive policies for possible future scenarios. The method developed in
this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India, which is
a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on
annual hydropower generation and four performance indices (reliability with respect to three reservoir
functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with
respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenar-
ios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045–65
and 2075–95. Increased irrigation demands, rule curves dictated by increased need for flood storage and
downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting
future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydro-
power and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio
and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP)
using current rule curves for flood protection is employed. An optimal monthly operating policy is then
derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of cli-
mate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect
to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive pol-
icy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydro-
power for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to
irrigation and flood control, hydropower reliability and generation can be increased for future scenarios.
This suggests that reservoir rules for flood control may have to be revised in basins where climate change
projects an increasing probability of droughts. However, it is also seen that power generation is unable to
be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests
that future water balance deficits may limit the success of adaptive policy options.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The competing demand for water has increased manyfold in
developing countries, with high economic growth, change in life-
styles, industrialization, and urbanization. Available supplies are un-
der great stress as a result of population growth, unsustainable
consumption patterns and poor management practices. Hydrologic
impact of climate change can cause further stress on an already
stressed system and needs to be considered in water management.
It is important to consider the range of such impacts for adoption
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of appropriate planning and mitigation measures of water resource
systems. A large number of studies have been conducted in recent
years on hydrologic impacts of climate change. These studies project
changes in regional hydrology such as precipitation, streamflows
and floods/droughts due to climate change. Large-scale atmospheric
variables output from general circulation models (GCMs) are used to
downscale to basin-scale hydrologic variables, through statistical
relationships or using a regional climate model (see reviews
[16,38,55]). Many studies have also tried to quantify the uncertainty
associated with such projections. A typical method of evaluating ef-
fects of climate change on flow regime is to use an ensemble of GCMs,
scenarios and statistical downscaling/regional climate models to
provide inputs to a hydrological model, and examine the range of ef-
fects on a statistic of the modeled flows [4,19,39,57].

There are only a few hydrological impact studies which consider
applied research to enable informed decision-making, and there is
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little use of Reliability–Resiliency–Vulnerability (RRV) analysis [18].
However, over the last few years the literature on adaptation (not
necessarily hydrologic) to climate change has expanded consider-
ably. Some studies have explored conceptual issues such as defini-
tions and classifications [46,47,58], and others have shown the
benefits of different adaptation options [11,31,36,51]. Studies such
as Schneider et al. [43] have drawn lessons from adaptation to cli-
matic variability or extreme events, whereas others have focused
on how adaptation can reduce vulnerability to climate change
[24,58]. Vogel et al. [53] showed that the standardized net inflow
and the coefficient of variation of net inflow completely characterize
the refill properties of storage reservoirs. They compared the resil-
ience, reliability, yield, and vulnerability of individual storage reser-
voirs under existing scenarios and one future climate scenario.
Brekke et al. [5] presented a flexible methodology for conducting cli-
mate change risk assessments involving reservoir operations. Using
a case study for California’s Central Valley Project and State Water
Project systems, they showed that assessed risk for a given risk atti-
tude was sensitive to the analytical design choices, namely, the
assumption that climate change will influence flood control con-
straints on water supply operations, and weighting of climate
change scenarios. Li et al. [28] investigated potential impacts of fu-
ture climate change on streamflow and reservoir operation perfor-
mance in a Northern American Prairie watershed. Lopez et al. [29]
used perturbed physics ensembles of climate models for impacts
analysis and planning for public water supply in England under cli-
mate change. They show that additional information contained in
the climate model ensemble provides a better understanding of
the possible ranges of future conditions, compared to the use of sin-
gle model scenarios. Arnell and Delaney [1] examined adaptation to
climate change by water supply companies in England and Wales.
Fowler et al. [15] studied the impacts of climatic change and vari-
ability on water resource reliability, resilience, and vulnerability
of the Yorkshire water resource system by modeling changes to
weather type frequency, mean rainfall statistics, and potential
evapotranspiration. Their results indicated future improvements
in water resource reliability due to increased winter rainfall but
reductions in resource resilience and an increased vulnerability to
drought. Dvorak et al. [13] studied potential impacts of climate
change on hydrological system and water resources in four river ba-
sins in the Czech Republic. They provided suggestions for adapta-
tion policy options with a preference for nonstructural measures
such as water conservation, efficient water demand management
and protection of water resources. Buttle et al. [8] studied the im-
pact of changes in the lake levels and flows of the Great Lakes in
terms of the hydro-electric power produced. Tanaka et al. [50]
examined the ability of California’s water supply system to adapt
to long-term climatic and demographic changes with population
and land use estimates for the year 2100 using an economic-engi-
neering optimization model of water supply management. They
found considerable value in including population changes, allowing
the system to adapt to changes in conditions, and representing the
system in sufficient hydrologic and operational detail to allow sig-
nificant adaptation. O’Hara and Georgakakos [35] presented a meth-
odology to assess the ability of existing storage to meet urban water
demand under present and projected future climatic scenarios, and
to determine the effectiveness of storage capacity expansions.
Uncertainties in climatic forcing and projected demand scenarios
were considered explicitly in the models. Burn and Simonovic [7]
studied the potential impacts of climate change on the operational
performance of the Shellmouth reservoir in Manitoba, Canada.
Using two different ‘warm’ and ‘cool’ sets of climatic conditions,
synthesized monthly streamflow sequences were input to a reser-
voir operation model. The impacts from implementation of the res-
ervoir operating policy on the reliability of the reservoir for meeting
three purposes, viz. flood control, recreation and water supply were
determined. The reservoir performance was determined to be sen-
sitive to the inflow data. Kaczmarek [22] studied the possible im-
pacts of long-term hydrological nonstationarity on the design and
operation of water reservoir systems, using a case study of Lake Kar-
iba in the Zambezi river basin. Stochastic storage theory was used to
derive the relationship between annual storage capacity, water de-
mand and various performance criteria of reservoir management.
This was applied to a number of scenarios, and it was shown that
even relatively small changes in the stochastic characteristics of
the inflow to the reservoir may be amplified into much larger
changes in reliability and other operational criteria. Lettenmaier
and Gan [27] analyzed the hydrologic sensitivities of four catch-
ments in the Sacramento and San Joaquin River basins to long-term
global warming. Under carbon dioxide doubling scenarios from
three GCMs, they showed that winter runoff increased while spring
snowmelt runoff decreased in these catchments. The snowmelt and
soil moisture accounting models also simulated large increases in
the annual flood maxima, with the time of occurrence of many large
floods shifting from spring to winter. Klemes [25] developed criteria
to determine the suitability of a model for application to the assess-
ment of climate change, which include a sound physical foundation
for the model structure, separate validation for each of the struc-
tural components and geographic and climatic transferability of
the model.

The work presented in this paper deals with studying the im-
pact of climate change on reservoir performance, for the ‘busi-
ness-as-usual’ scenario, and with optimal operating policies.
Adaptive policies for mitigation of hydrologic impacts in terms of
performance criteria are suggested for future scenarios. Climate
change effects on monthly power generation and four performance
criteria (reliability with respect to three purposes, viz. hydropower,
irrigation and flood control, resiliency, vulnerability and deficit ra-
tio with respect to hydropower) are studied initially with the stan-
dard operating policy (SOP) using current rule curves for flood
protection. Increased irrigation demands, rule curves dictated by
increased need for flood storage and downscaled projections of
streamflow from three GCMs for three scenarios each are used
for projecting future hydrologic scenarios. The results show that
using current operations, annual hydropower and reliability with
respect to hydropower and irrigation will decrease, while vulnera-
bility and deficit ratio are likely to increase as a result of climate
change. A stochastic dynamic programming (SDP) model [30]
which addresses the uncertainty associated with inflow is then ap-
plied to derive an adaptive optimal monthly operating policy with
the objective of maximizing reliabilities with respect to multiple
reservoir purposes of hydropower, irrigation and flood control.
The adaptive operation shows lower reliability for hydropower
but higher reliability for irrigation as compared to the standard
operation, while flood control reliability was almost unchanged.
Two variations to this adaptive policy are tested for extreme sce-
narios showing highest decreases in hydropower reliability. The
first assigns 1.5 times weightage to hydropower reliability and
the second assigns three times weightage to hydropower reliability
as compared to other reliabilities. Application of these policies
shows that a marginal reduction in irrigation and flood control reli-
ability can achieve an increased hydropower reliability in future.
Hence, reservoir rules for flood control may have to be revised in
the future. However, it appears that future water balance deficits
caused by decreases in streamflows and increased demands may
limit the outcome of application of adaptive policies.
2. Case study background

The Hirakud reservoir is a multipurpose project, created by con-
structing a dam across the river Mahanadi in Sambalpur district,



Fig. 1. Mahanadi river basin, including locations of selected diversions and irrigation projects (Source: Sengupta et al. [44]).

314 D. Raje, P.P. Mujumdar / Advances in Water Resources 33 (2010) 312–326
Orissa state, India. The Mahanadi basin lies in eastern India be-
tween 80� 300E to 86� 500E longitude and 19� 200N to 23� 350N lat-
itude. It has an area of 145,818 km2 and flows east to the Bay of
Bengal. Fig. 1 shows the Mahanadi river basin, along with the loca-
tion of Hirakud reservoir and dam (21.32� N, 83.45� E). There is no
major control structure upstream of the Hirakud reservoir and
hence the inflow to the dam is considered as unregulated flow. A
major portion of annual rainfall over most parts of India is received
during a short span of four months from June to September, which
is known as the summer monsoon season. The Mahanadi river is
rain-fed with high streamflow during June to September due to
monsoon rainfall, with insignificant contribution from groundwa-
ter during this season. In the non-monsoon season, low rainfall re-
sults in low flow conditions, when baseflow component is
significant. Moreover, the monsoon flows are important in Hirakud
reservoir to meet the demands during the year. Hence, only mon-
soon streamflow is downscaled in this study, under climate change
conditions. For purposes of this analysis, it is assumed that non-
monsoon streamflows remain unchanged in the future. Fig. 2
shows a schematic diagram of the Hirakud project. The reservoir
has a catchment area of 83,400 km2. The Hirakud project is a mul-
tipurpose scheme and the storage is used in the following order of
priority: flood control, municipal water supply, industrial supply,
irrigation and power generation. Water levels begin rising in July
with the beginning of monsoon season in the region, and begin
declining in October, at the end of the season.

2.1. Projections of future streamflow

Derivation of optimal reservoir operating policy for Hirakud res-
ervoir requires monthly inflows at the reservoir. Previous studies
have provided projections of future streamflow through downscal-
ing the monsoon streamflow in Mahanadi river [17,32,42]. In this
work also, a statistical downscaling method is used to provide pro-
jections of monsoon streamflow. Predictor variables used for
downscaling [54,56] should be: (a) reliably simulated by GCMs,
(b) readily available from archives of GCM outputs, and (c) strongly
correlated with the surface variables of interest. Monsoon stream-
flow is largely a resultant of rainfall and evaporation. Rainfall is
linked to air mass transport and atmospheric water content and
thus can be related to atmospheric circulation or pressure patterns
and wind velocities [3,20,54], specific humidity [10], geopotential
height and temperature [6]. Cannon and Whitfield [9] have used
MSLP, 500 hPa geopotential height, 800 hPa specific humidity,
and 100–500 hPa thickness field as the predictors for downscaling
GCM output to streamflow. Mujumdar and Ghosh [32] and Raje
and Mujumdar [42] have used 2 m surface air temperature, MSLP,
500 hPa geopotential height and surface specific humidity as pre-
dictor variables for the same case study considered in this paper.
Indian monsoon rainfall exhibits large interannual variations
which are generally attributed to the slowly varying boundary con-
ditions of sea surface temperature, soil moisture and snow cover
over the land surface [45]. Evaporation is mainly influenced by
temperature and humidity.

Following Raje and Mujumdar [42], the present study also con-
siders 2 m surface air temperature, MSLP, 500 hPa geopotential
height and surface specific humidity as predictors for modeling
streamflow in the monsoon season. These variables were found
to be significantly correlated with monsoon streamflow at Hirakud.
Land use is one of the important factors in generation of stream-
flow. In the present study, land use pattern is assumed to remain
unchanged in the future. Predictor variable data is obtained from
the National Center for Environmental Prediction/National Center
for Atmospheric Research (NCEP/NCAR) reanalysis data [23] for a
region spanning 15�–25�N and 80�–90�E for years 1959–2005.
For future projections, data from the Intergovernmental Panel for



Fig. 3. Training results for CRF downscaling model for monsoon monthly stream-
flow at Hirakud for years 1959–2005 (Source: Raje and Mujumdar [42]).
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Fig. 2. Schematic diagram of Hirakud project.
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Climate Change Assessment Report 4 (IPCC AR4) dataset runs for
three GCMs for three scenarios each (A2, A1B, B1) is extracted for
two time slices of years 2045–65 and 2075–95 from the multi-
model dataset of the World Climate Research Programme’s Cou-
pled Model Intercomparison Project (WRCP CMIP3). The GCMs
used are CGCM2 (Meteorological Research Institute, Japan), MIR-
OC3.2 medium resolution (Center for Climate System Research, Ja-
pan) and GISS model E20/Russell (NASA Goddard Institute for
Space Studies, USA). These GCMs were found to reproduce statisti-
cal properties of current streamflows well, by downscaling from
the 20C3M scenario (climate of the 20th century experiment). They
are also chosen based on availability of predictor variable data for
all scenarios. Monthly mean inflow data of the Hirakud reservoir
for years 1959–2005 is obtained from the Department of Irrigation,
Government of Orissa, India. Predictor variable data output from
the three GCMs for two time slices of years 2046–2065 and
2075–2095 for the A2, A1B and B1 scenarios are used to project fu-
ture monsoon streamflow. The methodology for downscaling is ex-
plained in the following subsection.

2.2. Downscaling model for projections of future streamflow

Conditional random fields (CRFs) belong to a class of stochastic
models called undirected discriminative models [26]. CRFs have
been applied to a variety of domains, from initial applications in
text processing to computer vision, image processing and bioinfor-
matics. A detailed explanation and introductory tutorial of CRFs
may be found in Sutton and McCallum [49]. Raje and Mujumdar
[41] introduced the CRF model for downscaling to daily precipita-
tion in the Mahanadi basin and provide details of the training and
inference methodology. Raje and Mujumdar [42] have downscaled
streamflow in the Mahanadi river for uncertainty modeling of
hydrologic drought. Following that study, in the current work also,
the monsoon mean monthly streamflow is modeled as a condi-
tional random field (CRF). The conditional distribution of the
streamflow sequence at a site, given the monthly atmospheric
(large-scale) variable sequence, is modeled as a linear-chain CRF.
If the monthly streamflow sequence at a site is y, and the observed
daily atmospheric variable sequence is x, then the conditional dis-
tribution of the streamflow sequence y is:

pðyjxÞ ¼ 1
ZðxÞ exp

XT

t¼1

XK

k¼1

kkfkðyt ; yt�1;xÞ
( )

ð1Þ

where fkkg is a parameter vector, and ffkðy; y0;xÞgK
k¼1 is a set of real

valued feature functions defined on pairs of consecutive streamflow
values and the entire sequence of atmospheric data. Various feature
functions used in this model are intercept and transition features,
raw observation features, difference features and threshold features
[42]. Prior to training, bias removal, normalization and principal
component analysis is performed on the raw NCEP as well as
GCM data. The CRF downscaling model is trained using the first
few principal components of atmospheric predictor variables
(accounting for more than 95% of the variance) and streamflow.
Maximum likelihood training [49] is used, where the regularized
log-likelihood (log pðyjx; kÞ as a function of k) is maximized. A lim-
ited-memory version of Broyden–Fletcher–Goldfarb–Shanno
(lBFGS) [34] is used for optimization in this model. Using maximum
a posteriori inference by the Viterbi algorithm [40], the most likely
streamflow sequence is computed for testing. Prediction for a future
scenario is made using principal components of standardized
monthly outputs of atmospheric variables from a GCM to compute
the most likely streamflow sequences.

Fig. 3 shows training results for the CRF downscaling model for
downscaling to monsoon streamflow in the Mahanadi river. Using
the parameters obtained from training, the model is used for future
projection of monsoon streamflow for years 2045–65 and 2075–
95. Fig. 4 shows the CDFs of projected monsoon monthly stream-
flow and flow duration curves for 2045–65 and 2075–95 for the
range of GCM-scenario combinations. It is seen that for most future
scenarios, there is a decrease in middle level flows (equaled or ex-
ceeded 20–70% of the time). This decrease becomes more promi-
nent by years 2075–95. High flows increase in most scenarios for
2045–65, but the number of scenarios showing an increase in high
flows also decreases by years 2075–95. Low flows show a slight in-
crease for 2045–65 (above 80% flows) but a smaller range of low
flows increase for 2075–95 (above 90% flows only).

These projected changes in streamflows affect performance of
water resource systems and have direct implications for reservoir
operation. The following sections describe the methodology for
reservoir management in the case study using current and future
downscaled flows.
2.3. Projections for future hydrologic scenarios

Adaptation of multipurpose reservoir operation to offset ad-
verse impacts of climate change calls for capturing all impacts that
climate change can have on the operations of the reservoir. In an
integrated future hydrologic scenario, it is likely that water de-
mands will change along with changes in inflows to the reservoir.
Also, changes in the frequency and severity of flood events need to
be incorporated into adaptive policies, through modification of rule
curves for the reservoir. Since analysis of flood events requires dai-
ly or even hourly simulation of streamflows, projections from other
studies in the case study region were used for this purpose. Asokan



Fig. 4. Range of projected future CDFs ((a) and (b)) and flow duration curves ((c) and (d)) for monsoon inflows at Hirakud for two time slices, 2045–65 and 2075–95, using
three GCMs (MIROC, CGCM2, GISS) and three scenarios (A1B, A2, B1).
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and Dutta [2] analyzed water resources availability and demand in
the Mahanadi River Basin under climate change conditions for
years 2000, 2025, 2050, 2075 and 2100 for wet and dry months.
They used daily precipitation output from the CGCM2 GCM for
the A2 scenario with a physically-based distributed hydrologic
model, to project increases in peak runoff in the Mahanadi river
for wet months. Fig. 5 shows the percentages of increase in river
discharge for wet months for future years, projected from their
study. The increases in peak runoff reported in their study are used
in the present study to project a correspondingly equal increase in
volumetric storage needed at Hirakud dam for flood control.

Irrigation water demands were projected in the same study [2]
for future years by incorporating estimated water demands for cur-
rent and proposed irrigation projects. A change in irrigation inten-
sity was also considered, based on possible changes in land use for
future years. Fig. 6 shows projections of absolute irrigation water
demand, for all catchments in the Mahanadi basin, reported in that
study. The relative increases projected are used in the present
study to estimate corresponding equal relative increases in future
irrigation demand at Hirakud reservoir. The study also projected
F
A

domestic and industrial water demand for future years, but since
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this demand is currently extremely low for Hirakud, an increase is
unlikely to impact operations and was not accounted for, in the
present work.
2.4. Reservoir data

The Hirakud reservoir provides irrigation to an area
1554.01 km2 in the Kharif cropping season (July–October) and
1082.09 km2 in the Rabi cropping season (November–April). The
installed capacity of power generation is 347.5 MW out of which
275.5 MW can be produced from seven units at Burla hydropower
station (dam toe power house), and 72 MW from three units at
Chiplima hydropower station, located further downstream of Hir-
akud dam (Fig. 2). The firm power requirement is 134 MW [48].
The water used for power generation at Hirakud, flows from Burla
hydropower station to Chiplima hydropower station through a
power channel 22.4 km. long. After generating power at Chiplima,
water flows back into the river. The revised reservoir storage
capacities (year 2000) were reported as 5896 Mm3 gross storage
and 4823 Mm3 live storage capacity [21]. It should be noted that
this report [21] significantly revises the storage capacities as per
a remote sensing study by the Central Water Commission, reduced
due to sedimentation in the reservoir. The current rule curve fol-
lowed since 1988 recommends upper and lower limits of levels
within which the reservoir is to be maintained at particular periods
of the monsoon. During monsoon months, appropriate lower reser-
voir levels are maintained and a full reservoir level is achieved by
the end of September.

The area–capacity curves for the reservoir, which have been
modified in 2002 taking into consideration the results of sedimen-
tation survey of the reservoir, and area-elevation curve were ob-
tained [21], and polynomial fits to these curves were derived and
used in this study. The municipal water supply demand was re-
ported as 0.411 Mm3 per month and industrial demand is
51.29 Mm3 per month. Average monthly pan evaporation rates
(1974–1995) and monthly irrigation demands (1959–2006) at Hir-
akud reservoir were also obtained from the Government of Orissa
Water Resources Department [21]. The average monthly power
generated in megawatts, P by a turbine of efficiency g is given by

P ¼ 9810� R
30� 24� 3600

� H � g ¼ 0:003785R� H � g ð2Þ

where R is the monthly release in Mm3 and H is the net head of
water available for power generation in meters. Here g is taken as
0.9. The Eq. (2) is used for computation of monthly power generated
in this study.
2.5. Performance evaluation

Four performance indices, viz. reliability with respect to hydro-
power, irrigation and flood control, and resiliency, vulnerability
and deficit ratio, all with respect to power generation, are used
for performance evaluation in the present study. The definitions
for reliability and resiliency, are slightly altered from those given
by Hashimoto et al. [18] to incorporate a failure index [14], which
incorporates both the frequency and severity of failure. For defin-
ing hydropower reliability, a full failure is defined as one when
not even 75% of demands are met and smaller failures are mea-
sured as:

FMhp ¼
Di

0:25Ti
; for Di

0:25Ti
6 1

1; for Di
0:25Ti

> 1

8<
: ð3Þ

where FMhp is the hydropower failure measure, Di is the deficit
power in period i, and Ti is the target power (firm power). For defin-
ing irrigation reliability, the failure measure is defined as a propor-
tional failure:

FMirr ¼
Ui

Di
ð4Þ

where FMirr is the irrigation failure measure, Ui is the deficit irriga-
tion in period i, and Di is the irrigation demand for that period. Sim-
ilarly, the failure measure for flood control is defined as:

FMfc ¼
Hi

Ka � FCmaxi
ð5Þ

where FMfc is the flood control failure measure, Hi is the excess live
storage over maximum storage prescribed by flood control rules for
period i, Ka is the live storage capacity of the reservoir and FCmaxi is
the maximum storage per flood control rules for that period. The
failure index F is then calculated for each failure measure as the ra-
tio of the sum of all failure measures over all periods to the total
number (N) of (monthly) operation periods:

F ¼
PN

i¼1ðFMÞi
N

ð6Þ

The corresponding reliability ðaÞ is then defined as a ¼ 1� F.
The resiliency ðcÞ with respect to hydropower is defined as the ra-
tio of the number of transitions from a full failure state
ðPi 6 0:25TiÞ to a satisfactory state ðPi > 0:25TiÞ to the sum of fail-
ure measures:

c ¼
PN�1

i¼1 hPi 6 0:25TiihPiþ1 > 0:25TiiPN
i¼1ðFMÞi

ð7Þ

where Pi is the power generated in period i, and h�i is the indicator
function (equal to one when the condition is satisfied, else equal to
zero). The vulnerability ðmÞ with respect to power is defined here as
the expected value of the maximum deficit in any sojourn into fail-
ure states. Hence, it is computed as:

m ¼ 1
Ns

XNs

s¼1

maxðTi � PiÞs ð8Þ

where Ns are the number of sojourns into failure states.
The deficit ratio ðdÞ with respect to power is defined in this

study as the ratio of total deficit to total demand:

d ¼
PN

i¼1DiPN
i¼1Ti

ð9Þ

where Di ¼
Ti � Pi for Pi < Ti

0 for Pi P Ti

�
ð10Þ

and Ti is the target power (firm power).



Table 1
Current and future flood control storage for monsoon months at Hirakud.

Minimum required flood control storage (Mm3)

Current (1959–2005)
July 4325.3
August 4650.3
September 625.3
October 0

Years 2045–65
July 4650.3
August 4650.3
September 781.6
October 0

Years 2075–95
July 4650.3
August 4650.3
September 862.9
October 0
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3. Reservoir performance impacts: business-as-usual case

Climate change impacts on future reservoir performance are
first quantified for the ‘‘business-as-usual” case using the standard
operating policy (SOP). SOP aims to best meet the demands in a
period given water availability for that period, while meeting the
rule curves for flood control in monsoon months. In this study,
the total demand in any month is the sum of municipal, industrial,
irrigation and power demands. The release as determined by SOP
in any time period is equal to the availability or demand, which-
ever is less. In this study, release is also determined by flood con-
trol rules for maximum and minimum storages in monsoon
months. Impacts on reservoir performance are determined for nine
future hydrologic scenarios. These scenarios incorporate changed
streamflows specific to each GCM-emission scenario combination
considered, increased irrigation demands common to all scenarios
as per Fig. 6 and changes to the rule curve for flood control, again
common across scenarios, needed for absorbing increased peak
runoff as per Fig. 5. Hence, irrigation demands were increased
2.5 times for years 2045–65 (corresponding to year 2050 from
Fig. 6), and 7.5 times for years 2075–95 (corresponding to year
2100 from Fig. 6). Increased flood control storage of 25% and 38%
was projected for monsoon months for years 2045–65 (corre-
sponding to years 2050–2075 from Fig. 5) and 2075–95 (corre-
sponding to years 2075–2100 from Fig. 5), respectively. The
minimum and maximum values of permitted monsoon storages
were decreased by these amounts to allow increased flood control
storage. However, they were not allowed to fall below live storage
levels. Table 1 shows the current and future projected minimum
required flood control storages considered in this study.
4. Adaptive policies for future scenarios

In order to derive adaptive policies for the reservoir as a multi-
purpose structure, all impacts of climate change on the operations
of the reservoir need to be captured. An optimal adaptive policy
then needs to be formulated which optimizes impacts on each of
these multiple reservoir purposes. For Hirakud reservoir, impacts
on hydropower, irrigation and flood control are important, and
are hence optimized in this adaptive policy. A stochastic dynamic
programming (SDP) model [30] which addresses the uncertainty
associated with inflow is applied to derive an optimal monthly
operating policy for each future hydrologic scenario with the
objective of maximizing reliabilities with respect to multiple pur-
poses of hydropower, irrigation and flood control. In SDP, it is as-
sumed that the inflow to the reservoir constitutes a first-order
Markov chain. Assuming that the unconditional steady state prob-
ability distributions for monthly streamflows do not change from
one year to the next, twelve transition probability matrices are
determined for each month, using the available historical stream-
flow records (1959–2005) for deriving operating policies without
climate change effects, and future simulated streamflows for poli-
cies with climate change effects considered. In the SDP formula-
tion, time periods are considered as stages. The storage at the
beginning of a time period and the inflow during the period repre-
sents the state of the system. The decisions to be taken at each
stage are the quantities of water to be released. These can be
implicitly identified by specifying the storage volumes at the next
stage. Here, live storage is discretized into 24 classes, while
monthly inflows were discretized into 12–14 classes.

The SDP backward recursive equation for any stage n and period
t is

f t
n ¼ max

ffeasible lg
Bkilt þ

X
j

Pt
ijf

tþ1
n�1ðl; jÞ

" #
8k; i ð11Þ

subject to reservoir capacity limitations:

0 6 Skt 6 Ka and 0 6 Sltþ1 6 Ka ð12Þ

where Bkilt is the system performance measure for period t corre-
sponding to inflow class i, initial storage class k, and final storage
class l; Pt

ij is the transition probability for streamflow from class i
to class j in period t, Ka is the active storage capacity of the reser-
voir, i and j are class intervals or states of inflow in period t and
ðt þ 1Þ respectively. Skt and Sltþ1 denote the reservoir storages for
storage class k in period t and storage class l in period ðt þ 1Þ,
respectively. The performance measure Bkilt , used here is the nega-
tive sum of normalized deviations below target hydropower, irriga-
tion and flood control:

Bkilt ¼ � w1
ðTt�HPkiltÞ

Tt
hHPkilt < Ttiþw2

ðDt�RirrkiltÞ
Dt

hRirrkilt <Dti
�

þw3
ðSkt�FCmaxtÞ
ðKa�FCmaxtÞ

hSkt > FCmaxti
�

ð13Þ

where HPkilt is the power generated in period t corresponding to ini-
tial storage class k, inflow class i and final storage class l; Tt is the
target power in the same period (firm power), Dt is the irrigation
demand in period t;Rirrkilt is the irrigation release in period t corre-
sponding to initial storage class k, inflow class i and final storage
class l;Ka is the active (live) storage capacity and FCmaxt is the
maximum live storage required at time t for flood control. h�i is
the indicator function, equal to one when the enclosed condition
is satisfied, else equal to zero. w1;w2 and w3 are weights associated
with each of the three objectives in this multi-objective optimiza-
tion formulation, which are all taken here as equal to 1. Since each
of the three objective function terms has been normalized between
0 and 1, approximately equal weightages are given to each objec-
tive. The objective function essentially minimizes sums of devia-
tions from targets for hydropower, irrigation and flood control.
The RHS of Eq. (11) uses only those values of end of-period storages
l which are feasible, i.e. lead to non-negative release and satisfy Eq.
(12). Eq. (11) is solved recursively till it yields a steady state policy
within a few annual cycles [12]. The steady state probabilities of re-
lease PRkit corresponding to an inflow i, storage k at time t and l at
ðt þ 1Þ can be obtained from the optimal policy and the marginal
probabilities of storage and inflow can also be obtained [30,52].
The SDP optimization is used to derive optimal operating policy
for years 1959–2005, as well as each of the nine scenarios
(3 GCMs � 3 scenarios) for two future time slices. Fig. 7 shows a
sample optimal policy derived for Hirakud reservoir for current
(1959–2005) and a future (MIROC A1B scenario for 2045–65) sce-
nario for the month of October, for various inflow classes. For any
given storage value in October and an inflow class (computed from



Fig. 7. Optimal SDP policy derived for Hirakud for month October for (a) current
period (1959–2005) and (b) a future scenario (MIROC A1B scenario for 2045–65).

Fig. 8. Future marginal inflow distributions at Hirakud computed from SDP steady
policies compared to distributions of downscaled monsoon streamflows for 2045–
65 for (a) GCM:MIROC scenario:A1B and (b) GCM:CGCM2 scenario:A1B.
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value, lower class has a lower value) for that month, the policy
shows the optimal storage value for November, derived as per the
policy. It is seen from the figure that the derived future policy
changes for mid-level storages. The marginal probabilities of inflow
computed from the optimal policies for future projected stream-
flows should be expected to match the downscaled streamflow
CDFs and this was verified for all GCMs and scenarios. Fig. 8 com-
pares CDFs for two scenarios, which show a good fit of marginal dis-
tributions with downscaled streamflow distributions.

Because hydropower generation is an important function of Hir-
akud reservoir, adaptive policies which minimize impacts on
power can better mitigate economic impacts of climate change.
Hence, in variations to the above adaptive policy, increasingly
more weightage is given to the purpose of maximizing reliability
with respect to hydropower. Hence, two other SDP policies (re-
ferred to as SDP-1 and SDP-2) were derived and tested for two ex-
treme scenarios showing largest decreases in hydropower
reliability by varying the weights w1;w2 and w3 in the benefit func-
tion given by Eq. (13). In the SDP-1 policy, w1 was increased to 1.5
while w2 and w3 were kept equal to 1. In SDP-2 policy, w1 was fur-
ther increased to three while w2 and w3 were kept equal to 1. It
was expected that SDP-1 policy would increase hydropower reli-
ability as compared to the earlier SDP policy while lowering other
reliabilities. An acceptable tradeoff needs to be achieved between
the three reliabilities for future scenarios.
Derived policies were applied to the respective streamflow se-
quences, to get performance measures and monthly power gener-
ation and storages. Reliability and deficit ratio can also be obtained
theoretically from the steady state release probabilities as

at ¼ 1�
X

k

X
i

PRkit � FMkit; aannual ¼
X12

t¼1

at

12
ð14Þ

where PRkit are the steady state probabilities of release correspond-
ing to an inflow i, storage k at time t, at are the monthly reliabilities
and aannual is the annual reliability. The deficit ratio can be computed
as

d ¼ E½total yearly deficit�
Total yearly demand

¼
P

t

P
k

P
iPRkit � ðDeficitÞkit

12� firm power
ð15Þ

Similarly, resiliency can also be obtained but its theoretical
computation is very expensive since it involves pair probabilities.
Vulnerability as used in this work also requires probabilities for
all combinations of sojourns into failure states to be computed,
which is computationally infeasible. The expected value of
monthly power generation can be obtained theoretically as



Fig. 9. Impacts on (a) mean monthly live storage and (b) mean monthly power generation (as a fraction of maximum) at Hirakud reservoir for future scenarios, for the
‘business-as-usual’ case using standard operating policy.
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E½HPt � ¼
X

k

X
i

PRkit � HPRkit
ð16Þ

where HPt is the hydropower generated in month t, and HPRkit is the
hydropower generated from a release Rkit .
5. Results and discussion

5.1. Business-as-usual versus adaptive policy

The SOP and SDP optimal policy derived for each scenario are
applied to inflows for the current (1959–2005) period, years
2045–65 and years 2075–95 for each GCM-scenario combination.
The outputs from each policy are monthly releases, storages, and
overflows, from which monthly power generated and performance
measures are computed. Fig. 9 shows the mean monthly power
generated and monthly live storage (as a fraction of maximum)
for SOP, while Fig. 10 shows the values obtained for SDP operation.
It is seen that the mean monthly storages are likely to decrease for
future scenarios, as a result of hydrologic impacts of climate
change. The reservoir is unable to get filled by the end of monsoon
in October, for many scenarios in 2075–95. Also, climate change is
likely to negatively impact mean monthly power generation, espe-
cially in the monsoon months. Since this period is especially
important in meeting power demands, this will have a significant
impact on annual power generation. Standard operation aims to
meet only firm power demands, except in months where flood con-
trol rules demand specific end-of-month storages, i.e. the months
June–October. Adaptive SDP policy tries to minimize deviations be-
low firm power, while also minimizing deviations below irrigation
demand and above flood control storage targets. These are conflict-
ing objectives, since decreasing storage to meet flood control or
irrigation demands leads to a reduced head available for power
generation. A comparison of annual hydropower production at Hir-
akud for current and future periods for ’business-as-usual’ versus
adaptive policy is shown in Fig. 11. For SOP as well as SDP policy,
it is seen that for all scenarios in 2045–65, there is a decrease in an-
nual hydropower generation. There is a further decrease in hydro-
power generation for years 2075–95. It is seen from the figure that
the optimized operation (SDP) is able to increase hydropower pro-
duction above SOP values in most, but not all future scenarios, pri-
marily because it is a multi-objective optimization which achieves
a tradeoff between conflicting objectives.

The four performance indices defined in Section 2.5 are com-
puted for SOP and SDP operation and shown in Table 2. It is seen
that climate change has an adverse impact on reservoir perfor-
mance measures for the future hydrologic scenarios considered.
For both standard and optimized operation, reliability with respect
to hydropower and irrigation show a decrease for 2045–65, while
vulnerability and deficit ratio with respect to hydropower increase



Fig. 10. Impacts on (a) mean monthly live storage and (b) mean monthly power generation (as a fraction of maximum) at Hirakud reservoir for future scenarios, using
adaptive optimized SDP policies.

Fig. 11. Annual hydropower production at Hirakud for future scenarios, for ‘business-as-usual’ case using SOP and adaptive policy using SDP.
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for this period. The impact worsens for years 2075–95, with further
decreases in reliability and increases in vulnerability and deficit ra-
tios. SOP shows 100% reliability for flood control, for current as
well as future scenarios, since by definition the operation has to al-
ways meet flood control rule curves. SDP shows a slightly lower
flood control reliability as compared to SOP, however it is seen that



Table 2
Impact of climate change on performance of Hirakud reservoir for standard and optimized operation.

Reliability-power Resiliency-power Vulnerability-power

Standard operating policy
Current (1959–2005) 0.642 0.239 0.529

A1B A2 B1 A1B A2 B1 A1B A2 B1
2045–65 MIROC 0.573 0.553 0.508 MIROC 0.251 0.249 0.250 MIROC 0.739 0.743 0.764

CGCM2 0.514 0.529 0.538 CGCM2 0.237 0.287 0.241 CGCM2 0.732 0.773 0.737
GISS 0.588 0.597 0.598 GISS 0.270 0.256 0.237 GISS 0.755 0.696 0.764

A1B A2 B1 A1B A2 B1 A1B A2 B1
2075–95 MIROC 0.362 0.250 0.386 MIROC 0.193 0.201 0.200 MIROC 0.854 0.967 0.909

CGCM2 0.306 0.141 0.341 CGCM2 0.160 0.097 0.181 CGCM2 0.846 0.933 0.866
GISS 0.422 0.422 0.492 GISS 0.240 0.240 0.226 GISS 0.911 0.853 0.778

Reliability-irrigation Reliability-flood control Deficit ratio-power

Current (1959–2005) 0.785 1.000 0.316
A1B A2 B1 A1B A2 B1 A1B A2 B1

2045–65 MIROC 0.713 0.703 0.697 MIROC 1.000 1.000 1.000 MIROC 0.389 0.400 0.436
CGCM2 0.716 0.725 0.729 CGCM2 1.000 1.000 1.000 CGCM2 0.427 0.406 0.392
GISS 0.719 0.724 0.731 GISS 1.000 1.000 1.000 GISS 0.363 0.358 0.348

A1B A2 B1 A1B A2 B1 A1B A2 B1
2075–95 MIROC 0.544 0.424 0.549 MIROC 1.000 1.000 1.000 MIROC 0.603 0.725 0.585

CGCM2 0.507 0.391 0.540 CGCM2 1.000 1.000 1.000 CGCM2 0.666 0.828 0.629
GISS 0.553 0.573 0.603 GISS 1.000 1.000 1.000 GISS 0.547 0.534 0.476

Reliability-power Resiliency-power Vulnerability-power

Adaptive policy using SDP
Current (1959–2005) 0.604 0.229 0.688

A1B A2 B1 A1B A2 B1 A1B A2 B1
2045–65 MIROC 0.500 0.484 0.462 MIROC 0.214 0.215 0.206 MIROC 0.824 0.895 0.931

CGCM2 0.453 0.523 0.471 CGCM2 0.218 0.224 0.202 CGCM2 0.956 0.750 0.935
GISS 0.502 0.515 0.514 GISS 0.215 0.221 0.213 GISS 0.911 0.873 0.903

A1B A2 B1 A1B A2 B1 A1B A2 B1
2075–95 MIROC 0.366 0.286 0.382 MIROC 0.155 0.159 0.177 MIROC 1.000 0.933 0.966

CGCM2 0.276 0.146 0.294 CGCM2 0.123 0.103 0.255 CGCM2 0.952 1.000 1.000
GISS 0.403 0.423 0.458 GISS 0.178 0.175 0.180 GISS 0.878 0.883 0.865

Reliability-irrigation Reliability-flood control Deficit ratio-power

Current (1959–2005) 0.834 0.907 0.311
A1B A2 B1 A1B A2 B1 A1B A2 B1

2045–65 MIROC 0.799 0.798 0.795 MIROC 0.906 0.921 0.939 MIROC 0.395 0.410 0.430
CGCM2 0.796 0.802 0.801 CGCM2 0.961 0.950 0.955 CGCM2 0.429 0.381 0.395
GISS 0.802 0.801 0.801 GISS 0.899 0.905 0.897 GISS 0.381 0.377 0.371

A1B A2 B1 A1B A2 B1 A1B A2 B1
2075–95 MIROC 0.592 0.497 0.601 MIROC 0.944 0.930 0.916 MIROC 0.558 0.650 0.571

CGCM2 0.544 0.447 0.535 CGCM2 0.950 0.988 0.984 CGCM2 0.677 0.800 0.673
GISS 0.599 0.614 0.634 GISS 0.916 0.902 0.894 GISS 0.525 0.501 0.466
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this reliability is not compromised for future scenarios. This is
likely due to projected decreases in inflows at the reservoir. For
current operation, SDP achieves higher irrigation reliability, but
has a lower hydropower reliability than SOP operation. This is
again due to the nature of the objective function chosen for SDP,
where it achieves a tradeoff between multiple reliabilities. The
lower power reliability but higher annual power resulting from
SDP policy indicates that SDP increases power generation in
months such that the annual total is higher than that resulting
from SOP, but it is able to meet firm power demands in fewer
months than SOP.

The impact of climate change on monsoon streamflow in Maha-
nadi river for the majority of future scenarios is a decrease in mid-
level flows and an increase in higher flows (Fig. 4). The 50% and
75% flows show a decrease in most scenarios while the 90% flows
show an increase in most future scenarios. Projected water de-
mand is also likely to increase by a large factor in future, along with
changes in frequencies of flood events. These projected changes
will affect the performance of reservoir systems. For the ‘busi-
ness-as-usual’ case using SOP, this manifests as a decrease in
hydropower generation and reliability and increase in vulnerabil-
ity of the system for the future. Since uncertainty is an inherent
characteristic of water resources systems, it is often inadequate
to opt for deterministic decision models, especially when dealing
with climate change scenarios with inherent uncertainties. Deter-
ministic optimization can produce sub-optimal policies in such
an application since they fail to incorporate adequately the impact
of low-probability events [37]. However, the SDP policy has been
found to give conservative results as compared to other optimiza-
tion models. The performance of SDP is found to be lower than re-
ported performance for some deterministic optimization methods
used for Hirakud reservoir (ant colony optimization, �1600 GWH
[33]).

5.2. Variations to adaptive policy

Hirakud reservoir is an important multipurpose project and
projected decreases for hydropower performance criteria will neg-
atively impact the economy of the region in a significant manner.
Variations in the derived adaptive policy are tested for the reser-
voir for two extreme scenarios showing largest reductions in
hydropower generation for years 2045–65, viz. MIROC B1 scenario
and CGCM2 A1B scenario. In the SDP-1 policy, the benefit function
is modified such that hydropower reliability weightage is 1.5 times
the weightage assigned to irrigation and flood control reliability. In
SDP-2 policy, the weightage for hydropower reliability is further
increased to three times the weightage assigned to irrigation and
flood control reliability in the benefit function. The aim of these
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Fig. 12. Effect of applying adaptive SDP policies on performance measures for years 2045–65 for (a) MIROC B1 scenario and (b) CGCM2 A1B scenario. Adaptive policies 1 and
2 have increasing weightage given to hydropower reliability.
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policies would be to ideally restore hydropower performance mea-
sures to current levels, by achieving a tradeoff with irrigation and
flood control performance. For each of these policies, optimal oper-
ating policies are derived using SDP. It is seen that Hirakud reser-
voir has rather constraining flood control rules which dictate an
empty reservoir at the beginning of August and a full reservoir
on October 1st. Since maximum inflows occur in the monsoon sea-
son, sacrificing flood control performance would be expected to
appreciably impact power generation.

Fig. 12(a) and (b) shows the impact of applying the above three
adaptive SDP policies on performance measures for years 2045–65
for MIROC B1 scenario and CGCM2 A1B scenario, respectively. It is
seen that SDP-1 and SDP-2 show increasingly higher power reli-
ability at the cost of decreasing irrigation reliability. The vulnera-
bility and deficit ratio with respect to power also show a
progressive decrease with increases in the hydropower reliability.
Annual hydropower increases for SDP-1 and SDP-2 as compared
to SOP and SDP, but is unable to be restored to current levels for
these worst-case scenarios. This is due to the combined detrimen-
tal effect of decreases in streamflows and increased irrigation de-
mands as well as lowered flood control monsoon maximum
storages.

Fig. 13 shows mean monthly power generation obtained by
application of adaptive policies for the MIROC B1 scenario and
CGCM2 A1B scenario for years 2045–65. It is seen that SDP adap-
tive policy shows an increase is power generation as compared
to SOP for the monsoon months, when flood control rules govern
storages. SDP-1 and SDP-2 policies show slightly increased mean
power generation as compared to SDP. However, the close overlap
between monthly hydropower for SDP-1 and SDP-2 shows that this
increase is not substantial even with higher weightages for power
reliability. The mean hydropower generation for SDP adaptive pol-
icies appears to be limited by the flood control reliability criterion
which requires lower maximum storage, especially in the monsoon
month of August. Mean hydropower is also limited by available in-
flows. The computed annual water balances show that maximum
current annual demand is 43,626 Mm3 which increases to
�46,750 Mm3 for 2045–65, current minimum demand is
18,557 Mm3 which increases to �21,670 Mm3 for 2045–65, cur-
rent annual average inflow is 34745.8 Mm3, while annual average
projected inflow for MIROC B1 scenario for 2045–65 is
24779.6 Mm3 and for CGCM2 A1B scenario for 2045–65 it is
23151.9 Mm3. Thus, annual average inflows are far less than an-
nual maximum demand, but nearer annual minimum demand.
Hence, the reliability criterion which uses minimum demand is
able to be restored to a larger fraction using adaptive policies;
however maximum hydropower obtained for the current period
is restored to a much smaller fraction for these future reduced in-
flow scenarios.

Fig. 14 shows reservoir operation under the CGCM2 A1B sce-
nario. The current and future projected rule curves are compared
to the mean elevations obtained for adaptive policies for the MIR-
OC B1 scenario. It can be seen that adaptive policies have a higher
reservoir elevation in August than that permitted by the rule curve.
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Fig. 13. Adaptive policies for (a) MIROC B1 scenario and (b) CGCM2 A1B scenario using SDP optimization show recovery of mean monthly power generated.

Fig. 14. Reservoir operation under MIROC B1 scenario: current and projected rule curve versus mean elevations obtained for adaptive policies.
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Progressively increasing weightage for power reliability in policies
SDP-1 and SDP-2 leads to higher elevations, especially in August,
for these policies. Hence, a risk assessment strategy where the risk
of flooding is weighted against the risk of lower hydropower reli-
ability needs to be formulated. This strategy can be used to derive
changes in reservoir operation rules for successful mitigation of cli-
mate change impacts.
6. Concluding remarks

This study quantifies the impact of climate change on multipur-
pose reservoir performance, including annual hydropower and RRV
criteria, under GCM and scenario uncertainty. The study shows
that the hydrologic impact of climate change is likely to result in
decreases in performance criteria and annual hydropower genera-
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tion for Hirakud reservoir. The standard ‘business-as-usual’ opera-
tion using SOP is shown to result in a decrease in annual hydro-
power and reliability with respect to power and irrigation for
future scenarios. Optimized operation using SDP is also shown to
project decreases in these criteria. The study considers uncertainty
in future streamflows by using an ensemble of GCMs and emis-
sions scenarios, and selecting those scenarios showing extreme de-
creases in performance for deriving adaptive policies. Application
of adaptive policies is shown to counteract most of the projected
performance decreases, even though their success is limited by an-
nual water balance deficits. Future performance of the reservoir
depends on the likelihood that adaptive policies will be adopted
in practice. Constraints on water managers which keep them
aligned with the SOP (e.g. disincentives from changing practices)
include the risks involved in changing. Less but smoother hydro-
power production may be better than more but highly variable
production.

A cost analysis which quantifies the economic costs associated
with different modes of failure, viz. reliability with respect to each
purpose of the reservoir, vulnerability and deficit ratio needs to be
performed, which can also estimate tradeoff costs. The implica-
tions of relaxing flood control under adaptive policies need to be
examined. There is an increased probability of larger floods not
being buffered by the reservoir and hence the expected value of
damages due to floods must be smaller than the expected value
of benefits due to hydropower production for the policies to be
economically viable. The final operation rule must be decided
based on a probabilistic weighting of the adaptive policies derived
under uncertainty in hydrologic scenarios, as well as a risk-benefit
analysis for different purposes served by the reservoir. In our ap-
proach, we have derived adaptive policies for extreme hydrologic
scenarios, which represent worst-case performance impacts and
presented suggested mitigation measures. The present work is
indicative of necessary changes required in operating policies,
and does not include a full economic or risk analysis to recommend
a final strategy. For comparison, Fig. 7 presents a sample optimal
SDP policy for a future scenario versus current optimal policy. This
policy represents real-time operation for a particular scenario;
however under uncertainty in hydrologic scenarios a weighted pol-
icy has to be derived. Achieving such a weighting of policies to
serve desired goals is a topic of further research.

In this study, no weightages are assigned to future scenarios.
Streamflow scenarios can be weighted by assigning weights to
each GCM and emissions scenario, as per a measure of performance
[32,42] with respect to the current period. Further sources of
uncertainty such as uncertainty in downscaling can also be consid-
ered in such an exercise. Adaptive policies could then be derived
for a weighted future streamflow scenario. In this study, a
weighted streamflow scenario could not be used because of the
optimization method selected (SDP) which is based on transition
probabilities. Weighting the transition probabilities will lead to
erroneous description of the underlying Markov process, and
weighting the streamflow sequences to derive one streamflow se-
quence will result in loss of variability present in the original se-
quences. Firm power requirement, municipal and industrial
demands are taken as constant in this study, whereas they are al-
most certainly likely to increase in future. If climate change results
in alterations to the fraction of annual precipitation in non-mon-
soon season, the assumption of unchanged non-monsoon stream-
flows used in this study will not be valid.

Adaptive policies for water resources systems will play an impor-
tant role in mitigation of the hydrologic impact of climate change.
Reduction of irrigation demand by measures such as growing crops
with low crop water requirement will have limited utility for power
generation where irrigation demands are low compared to power
demands. However, slight changes to reservoir rules for flood control
in monsoon or rainy season months may positively impact basins
where climate change projects an increasing probability of droughts.
Flood control requires storage to absorb the flood for regulated re-
lease, whereas power generation and irrigation require the reservoir
to be maintained at a higher level. Optimal joint use of the storage
space for non-compatible demands needs to be achieved by judi-
cious selection of a modified rule curve as illustrated in this study,
to minimize future risk. The annual inflow to reservoir capacity ratio
is very high (over five times) for Hirakud reservoir, and spills occur
every year during monsoon months. Hence, an increase in storage
capacity of the reservoir can also be explored as an adaptive mea-
sure. This can help in limiting damage due to floods as well as provide
higher storage for supplying demands.
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