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Abstract

This paper analyzes partial slip contact problems in the theory of linear viscoelasticity under
a wide variety of loading conditions, including cyclic (fretting) loads, using a semi-analytical
method. Such problems arise in applications like metal-polymer contacts in orthopedic implants.
By using viscoelastic analogues of Green’s functions, the governing equations for viscoelastic
partial-slip contact are formulated as a pair of coupled Singular Integral Equations (SIEs) for a
conforming (pin-plate) geometry. The formulation is entirely in the time-domain, avoiding Laplace
transforms. Both Coulomb and hysteretic effects are considered, and arbitrary load histories, in-
cluding bidirectional pin loads and remote plate stresses, are allowed. Moreover, the contact patch
is allowed to advance and recede with no restrictions. Viscoelasticity necessitates the application
of the stick-zone boundary condition in convolved form, and also introduces additional convolved
gap terms in the governing equations, which are not present in the elastic case. Transient as well
as steady-state contact tractions are studied under monotonic ramp-hold, unload-reload, cyclic
bidirectional (fretting) and remote plate loading for a three-element solid. The contact size, stick-
zone size, indenter approach, Coulomb energy dissipation and surface hoop stresses are tracked
during fretting.

Viscoelastic fretting contacts differ from their elastic counterparts in notable ways. While they
shakedown just like their elastic counterparts, the number of cycles to attain shakedown states is
strongly dependent on the ratio of the load cycle time to the relaxation time. Steady-state cyclic
bulk hysteretic energy dissipation typically dominates the cyclic Coulomb dissipation, with a more
pronounced difference at slower load cycling. However, despite this, it is essential to include
Coulomb friction to obtain accurate contact stresses. Moreover, while viscoelastic steady-state
tractions agree very well with the elastic tractions using the steady-state shear modulus in load-
hold analyses, viscoelastic fretting tractions in shakedown differ considerably from their elastic
counterparts. Additionally, an approximate elastic analysis misidentifies the edge of contact by as
many as 7 degrees in fretting, showing the importance of viscoelastic contact analysis. The SIE
method is not restricted to simple viscoelastic networks and is tested on a 12-element solid with
very long time scales. In such cases, the material is effectively always in a transient state, with no
steady edge-of-contact. This has implications for fretting crack nucleation.

Keywords: Contact, Viscoelasticity, Friction, Integral Equation, Metal-polymer contact,
Pin-loaded connection, Dissipation
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1. Introduction

The contact of a viscoelastic polymer with a counterbody made of a much stiffer material has
drawn considerable attention because of its importance in applications like rubber tires. There is
a significant body of work focused on the frictional characteristics of soft elastomers like rubber
(Grosch, 1963; Persson, 2001; Carbone and Putignano, 2013). Friction in such materials is at-
tributed to bulk hysteretic losses, and typically investigated under conditions of rolling or sliding.

Early analytical work in viscoelastic contacts includes the solution of the Hertz-type prob-
lem with a monotonically increasing contact area (Lee and Radok, 1960), its extensions to non-
monotonic cases (Hunter, 1960; Ting, 1966; Graham, 1967), and viscoelastic rolling contacts
(Hunter, 1961; Morland, 1968). In plane-strain viscoelastic contacts, an extension of the Kolosov-
Muskhelishvili method of linear elasticity has been used to solve both frictionless (Golden and
Graham, 1988) and Coulomb limiting-friction problems (Goryacheva, 2008). More recent analyt-
ical / semi-analytical work has addressed such problems as adhesion in viscoelasticity (Hui et al.,
1998) and the contact of viscoelastic bodies with hard, rough surfaces (Persson et al., 2004; Chen
et al., 2011). However, the Coulomb partial slip regime in viscoelastic contacts has received much
less attention. In partial slip contact, global relative tangential motion (sliding) does not occur.
Instead, the contact consists of slip zones, where local relative tangential motion does occur, and
stick zones, where no relative tangential motion occurs (Johnson, 1987).

Partial slip viscoelastic contacts arise in applications like orthopedic implants, which involve
contact between a metal and a polymer (Duisabeau et al., 2004). The metal is typically austenitic
stainless-steel or a titanium alloy like Ti6-Al-4V, while the polymer is usually Polymethyl Methacry-
late (PMMA) or an Ultra-high Molecular Weight Polyethylene (UHMWPE) (Geringer et al.,
2005). The failure of these implants is understood to be driven by a complex, contact-driven
process known as fretting corrosion (Tritschler et al., 1999; Geringer et al., 2005), in which the
deleterious effect of a corrosive environment enhances fretting (Higham et al., 1978). Cyclic
loading of such contacts occurs during routine use of the limbs, e.g. while walking (Kim et al.,
2013). Either the metal or the polymer may undergo damage, with wear debris from both ma-
terials reported in experiments (Tritschler et al., 1999). In metal-on-metal fretting, it is known
that high-fidelity analysis of the edge-of-contact stress is an essential ingredient of fretting crack
nucleation models (Fellows et al., 1995; McVeigh et al., 1999). This involves accurate modeling
of partial slip contacts and tracking of the contact stress history during cyclic loading. Accurate
contact stress analysis might be expected to provide similar insights into metal-polymer fretting.

The introduction of partial slip complicates contact problems in elasticity as well as in vis-
coelasticity. This is because of the history dependent nature of partial slip contacts, which makes
their analysis inherently incremental, and coupling between pressure and shear tractions in the
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governing equations. An early partial slip solution in linear viscoelasticity was obtained by Gory-
acheva (1973) for rolling of a viscoelastic cylinder on a halfspace of a similarly viscoelastic ma-
terial1. Other Coulomb frictional viscoelastic solutions include the rolling contact of layered
cylinders (Kalker, 1991) and a cylinder rolling on a viscoelastic layer atop an elastic halfspace
(Goryacheva and Sadeghi, 1995). The assumption of material similarity in Goryacheva (1973) or
the Goodman approximation (Goodman, 1962) in Goryacheva and Sadeghi (1995) is analytically
helpful because it eliminates coupling between the pressure and shear tractions. However, these
assumptions are inapplicable to metal-polymer contacts, where the counterbody is much stiffer.
Moreover, partial slip fretting contacts may be subject to very complex load histories. Under such
conditions, it is almost impossible to obtain closed-form solutions. However, formulating the gov-
erning equations of contact as Singular Integral Equations (SIEs) leads to a fast, semi-analytical
method to solve these problems.

The present work builds an accurate SIE-based model for partial slip viscoelastic contacts in
monotonic and cyclic loading, thereby accounting for both Coulomb and hysteretic effects. The
starting point is a viscoelastic analogue of the elastic Green’s functions. Since metals are typically
much stiffer than polymers, it is a good assumption to treat the metal as a rigid body.

The conforming (pin-plate) geometry is chosen for our work because it has the advantage of
allowing calculation of indenter approach, and thus various energy dissipation estimates, in plane
strain viscoelasticity. Furthermore, the implant contact geometry is typically of a conforming type.
Conforming contacts also have the advantage of including halfspace contacts as a limiting case.
Conforming elastic contacts have been studied extensively in both receding and advancing con-
tact regimes (Gladwell, 1980; To and He, 2008). Two frictionless conforming contact solutions
are known in linear viscoelasticity, both in the receding (rather than advancing) contact regime.
Margetson and Morland (1970) considered the problem of separation of an inclusion from a vis-
coelastic plate in uniaxial loading. Subsequently, Golden and Graham (2001) considered the same
problem with biaxial loading.

2. Formulation

2.1. Creep and relaxation functions of a linear viscoelastic solid
The shear relaxation modulus of a linear viscoelastic solid is represented by (Golden and Gra-

ham, 1988) (Fig. 1)

G(t) = G∞ +
n∑
i=1

Gi exp(− t

τi
) = G0 −

n∑
i=1

Gi(1− exp(− t

τi
)) (2.1)

where G0 is the instantaneous modulus, Gi the shear moduli of the network spring elements, τr
are relaxation time constants and G∞ is the modulus at t = ∞. Similarly, the creep response is

1This is the viscoelastic analogue of Carter’s problem (Barber, 2010)
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Figure 1: (a) Three-element delayed elastic solid and (b) generalized Maxwell model

characterized by

J(t) = J∞ −
n∑
r=1

Jr exp(− t

λr
) = J0 +

n∑
r=1

Jr(1− exp(− t

λr
)) (2.2)

where Jr and λr represent, respectively, the compliances of the springs and retardation time con-
stants.
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Figure 2: Schematic of a rigid pin in partial-slip contact with a viscoelastic plate. RD < R and the contact may
advance as well as recede during loading.

2.2. Governing equations of the contact problem

A general way to formulate contact problems for linear media is to use appropriate Green’s
functions. These are typically surface displacements produced by point normal and tangential
loads acting on the boundary of the domain. We first derive a viscoelastic analogue of the elastic
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Green’s functions for the plate, by using an extension of the Kolosov-Muskhelishivili formulation
for viscoelastic materials (see Appendix A).

Then, let RD < R be the radius of the rigid pin. In the reference state, the pin rests on the plate
as shown in Fig. 2. If the pin is rotated by a small amount Cω, and pressed into the viscoelastic
plate by a rigid displacement V = (C0x,−∆), the gap function hd(θ, t) is

hd(θ, t) = (R−RD)(1 + sin(θ))− C0x(t) cos(θ) + ∆(t) sin(θ) (2.3)

The overclosures thus produced must be relieved at every point by displacements in the viscoelastic
plate so that the new gap equation is

h(θ, t) + (RD −R)(1 + sin(θ)) + C0x cos(θ)−∆ sin(θ)− ṽ∞r = ṽpr + ṽqr (2.4)

Here ṽpr and ṽqr are, respectively, the radial surface displacements of the plate due to normal and
shear tractions, and ṽ∞r is the radial surface displacement caused by remote stresses applied to the
plate. Clearly, the gap function h(θ, t) = 0 inside the contact. Similarly, the slip function s(θ, t) is
related to the traction-induced tangential surface displacements ṽpθ , ṽ

q
θ of the plate

−s(θ, t) + Cω(t)R−∆(t) cos(θ)− C0x(t) sin(θ)− ṽ∞θ = ṽpθ + ṽqθ (2.5)

Using the Boltzmann Superposition Principle and the linearity of the medium (Golden and Gra-
ham, 1988; Sternberg and Al-Khozaie, 1964), contributions to the surface displacement from in-
dividual point loads N, T (Eqs. (A.9a), (A.9b)) may be distributed to arrive at the overall surface
displacement due to the contact tractions. For instance, using Eq. (A.9a), ṽpr , the radial surface
displacement due to the pressure tractions is (see Appendix A for definitions)

ṽpr (θ, t) =
R

4π

∫ β

α

(κ′′S(θ, ξ)A(θ, ξ)− κ′C(θ, ξ)L(θ, ξ))

(∫ t+

0−
γg(t− τ)N(ξ, τ)dτ

)
dξ (2.6)

In an analogous manner to the elastic problem (Sundaram and Farris, 2010a), the L ≡ log(2 −
2 cos(θ − ξ)) kernel in the displacements in Eq. (2.6) causes analytical difficulties if one attempts
to use terms like ṽpr (θ, t) unmodified. It is possible to overcome this issue as in the elastic case
(Sundaram and Farris, 2010b), by applying a suitable (linear) matrix differential operator [∂θ] to
the displacements produced by point loads prior to distributing the loads, i.e. one considers

[∂θ]

{
ṽpr (θ, t) + ṽqr(θ, t)

ṽpθ(θ, t) + ṽqθ(θ, t)

}
= R

∫ β

α

 1
∂

∂θ

− ∂

∂θ
1



ṽNr (ξ, θ, t) + ṽTr (ξ, θ, t)

ṽNθ (ξ, θ, t) + ṽTθ (ξ, θ, t)

 dξ (2.7)

It is easily seen that this procedure eliminates the problematic logarithmic cosine terms in Eq. (2.6).

5



Similarly, when the operator [∂θ] is applied to the surface displacements expressed in terms of gap
and slip inside the contact (Eqs. (2.4),(2.5)), it eliminates the approach terms ∆(t) and C0x(t).2

Thus, we have

[∂θ]

{
ṽpr (θ, t) + ṽqr(θ, t)

ṽpθ(θ, t) + ṽqθ(θ, t)

}
=

{
h(θ, t) + (RD −R)(1 + sin(θ))− s′(θ, t)−G∗s(θ, t)
−h′(θ, t) + CωR− s(θ, t) + (R−RD) cos(θ)−G∗p(θ, t)

}
(2.8)

where the remote stress dependent functions G∗p(θ, t) and G∗s(θ, t) are defined as

ṽ∞r + ṽ
′∞
θ ≡ G∗s(θ, t) =

Rκ
′

2

[
A ∗

2
−D∗ cos(2θ)

]
(2.9a)

ṽ∞θ − ṽ
′∞
r ≡ G∗p(θ, t) =

Rκ
′

2
D∗ sin(2θ) (2.9b)

and the surface displacements produced by the remote stresses are given by Eq. (A.10). Equating
the right-hand sides of Eqs. (2.7), (2.8) and simplifying, one obtains the following pair of govern-
ing SIEs for the rigid on viscoelastic contact problem, with the tractions appearing in γg-convolved
form as N∗ ≡ γg ∗N(θ, t) and T ∗ ≡ γg ∗ T (θ, t)

h(θ, t) + (RD −R)(1 + sin θ)− s′(θ, t)−G∗s(θ, t) =
R

4π

[
κ′
∫ β

α

cot

(
θ − ξ

2

)
T ∗(ξ, t)dξ

−πκ′′N∗(θ, t)− κ
∫ β

α

sin(θ − ξ)T ∗(ξ, t)dξ + κ′
∫ β

α

N∗(ξ, t)dξ + κ

∫ β

α

cos(θ − ξ)N∗(ξ, t)dξ
]

(2.10)Cω(t)R− s(θ, t)− h′(θ, t) + (R−RD) cos θ −G∗p(θ, t) =
R

4π

[
−κ
∫ β

α

cos(θ − ξ)T ∗(ξ, t)dξ

−κ′
∫ β

α

T ∗(ξ, t)dξ + πκ′′T ∗(θ, t) + κ′
∫ β

α

cot

(
θ − ξ

2

)
N∗(ξ, t)dξ − κ

∫ β

α

sin(θ − ξ)N∗(ξ, t)dξ
]

(2.11)

Here h(θ, t), h′(θ, t) vanish inside the contact, which extends from θ = α to θ = β. It is easy to

check that when the plate is elastic, γg(t− τ) =
1

G
δ(t− τ), N∗ = N/G, T ∗ = T/G, A ∗ = A /G,

D∗ = D /G and the equations reduce to the SIE governing the rigid on elastic contact in Sundaram
and Farris (2010a). Additionally, no relative tangential motion occurs in the stick zone, i.e.

s(θ, t) = s(θ, t−∆t) ∀θ ∈ stick, ∆t > 0 (2.12)

2It is not sufficient for the linear operator to eliminate L; it must also eliminate the approach terms. [∂θ] is the
simplest linear operator that has this property
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In the slip zones, the shear traction is obtained by applying the local version of Coulomb’s law

T (θ, t) = sign (s(θ, t)− s(θ, t−∆t))µN(θ, t) ∀θ ∈ slip (2.13)

It should be noted that Eqs. (2.10),(2.11) are exact in the present framework (plane-strain, linear
viscoelastic material with constant κ, rigid pin).

3. Inversion and Solution

It is difficult to solve the coupled system of SIEs (2.10), (2.11) if the convolved pressure and
shear, N∗ and T ∗, are treated as the primary unknowns. This is becauseN∗ and T ∗ are analytically
very different from N(θ) and T (θ). For instance, while N(θ) = 0 at the ends of contact, this is
not necessarily true for N∗. Similarly, while T (θ) can be expressed as a sum of functions, one of
which vanishes at the ends of contact, and the other at the ends of the stick-zone, i.e.,

T (θ) = µf(θ)N(θ)− Tq(θ) (3.1)

the convolved function T ∗ cannot be decomposed in this way. The non-vanishing of N∗ and T ∗ at
the ends of contact is problematic from the point of view of the theory of SIE, which demands that
solutions bounded at the ends of the contact domain must also go to zero there (Muskhelishvili,
1992). To circumvent this problem, and use standard SIE techniques, one works with unconvolved
tractions by applying the inverse operator µg to Eqs. (2.10), (2.11), giving

h∗(θ, t) + (RD −R)(1 + sin θ)G(t)− s′∗(θ, t)−Gs(θ, t) =
R

4π

[
κ′
∫ β

α

cot

(
θ − ξ

2

)
T (ξ, t)dξ

−πκ′′N(θ, t)− κ
∫ β

α

sin(θ − ξ)T (ξ, t)dξ + κ′
∫ β

α

N(ξ, t)dξ + κ

∫ β

α

cos(θ − ξ)N(ξ, t)dξ

]
(3.2)Cω∗(t)R−s∗(θ, t)−h′∗(θ, t)+(R−RD) cos θ G(t)−Gp(θ, t) =

R

4π

[
−κ
∫ β

α

cos(θ − ξ)T (ξ, t)dξ

−κ′
∫ β

α

T (ξ, t)dξ + πκ′′T (θ, t) + κ′
∫ β

α

cot

(
θ − ξ

2

)
N(ξ, t)dξ − κ

∫ β

α

sin(θ − ξ)N(ξ, t)dξ

]
(3.3)

The asterisks in subscripts in Eqs. (3.2), (3.3) denotes quantities convolved withµg. Notice that the
slip function s(θ, t) and its spatial derivative s′(θ, t) now appear in convolved form. Importantly,
the convolved forms of the gap h∗ and gap-gradient h′∗ appear in these equations, and are non-
zero, even though h = 0 inside the contact at any time. This also shows why it is essential to retain
h, h′ in Eqs. (2.10),(2.11).
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In convolved form, the stick zone boundary condition Eq. (2.12) is written as∫ t

0

γg(t− τ)s∗(θ, τ)dτ =

∫ t−∆t

0

γg(t−∆t− τ)s∗(θ, τ)dτ ∀θ ∈ stick (3.4)

Eq. (3.4) shows that the stick-zone kinematic boundary condition (2.12) does not, in general,
imply that s∗(θ, t) = s∗(θ, t − ∆t). The unknown tractions must also integrate to the applied
vertical and horizontal loads P (t), Q(t)∫ β

α

(T (θ, t) cos θ −N(θ, t) sin θ) dθ =
P (t)

R
(3.5a)∫ β

α

(T (θ, t) sin θ +N(θ, t) cos θ) dθ =
Q(t)

R
(3.5b)

Eqs. (3.2), (3.3), (3.4), (3.5) and (2.13) are then of a form that allow one to solve for N(θ), T (θ)

using the numerical method in Sundaram and Farris (2010a). Details of the method may be found
there, but the procedure involves reduction of the equations to Cauchy form (kernel 1/(x−s)) with
a change of variables, and additive decomposition of the unknown tractions into a bounded term
and singular terms of a suitable form. These equations are then solved using Newton-Raphson
iteration for a set of contact and stick-zone ends α, β, αs, βs, subject to satisfaction of the global
equilibrium conditions Eqs. (3.5) and vanishing of the coefficients of the added singular terms.

The history effects necessitate calculation and storage of s∗, s′∗, h∗ and h′∗ on an arc which is
a super-set of all potential contact regions. For example, inside the contact, h∗(θ, t) is calculated
from

h∗(θ, t) =

∫ t+

0−
µg(t− τ)h(θ, τ)dτ = G(0)h(θ, t)−

∫ t

0

(
d

dτ
G(t− τ)

)
h(θ, τ)dτ (3.6)

and the gap history h(θ, t). Outside the contact, one solves for h∗(θ) using the known N(θ), T (θ)

h∗+h
′′
∗ = G(t)(R−RD)+

Rκ′

2

[
A

2
− 3D cos(2θ)

]
+
R

4π

[
κ′
∫ β

α

N(ξ)dξ + 2κ

∫ β

α

cos(θ − ξ)N(ξ)dξ

−κ′
∫ β

α

cot

(
θ − ξ

2

)
N ′(ξ)dξ + κ′

∫ β

α

cot

(
θ − ξ

2

)
T (ξ)dξ − 2κ

∫ β

α

sin(θ − ξ)T (ξ)dξ

]
(3.7)

4. Results

The formulation and solution scheme discussed above are valid for any linear viscoelastic ma-
terial with constant κ. Most of the results in this paper are for a three-element delayed-elastic solid
(with one characteristic τ , see Fig. 1a). Results for a more representative generalized Maxwell

8



network with multiple characteristic times (Fig. 1b), are shown in a later section. For the three-
element solid, G1 = G2 = 1.37785 × 105 psi giving G0/G∞ = 2.0; κ = 1.4 and relaxation time
τ = 5s.

For the purpose of simplicity, we consider partial slip problems with the pin prevented from
rotating, i.e. Cw = 0. It is helpful to introduce a non-dimensionalized loading parameter Lp =

(R−RD)/(Pβ∗) where β∗ is defined in terms of the instantaneous modulus as β∗ = (κ+1)/2G0.
A smaller value of Lp represents a geometrically more conforming contact.3
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Figure 3: Pressure (a) and shear (b) tractions for ramp-hold P loading at different loading rates. The dashed lines are
tractions at Lp = 0.1, and the solid lines at Lp = 1. The tractions become steady after holding P beyond t = 10τ .
The steady-state tractions agree very well with the elastic traction using G = G∞ (green dotted line). The coefficient
of friction µ = 0.40 in all cases. Note that the contact tractions are symmetric in P-only analysis, and the tractions
are shown over half the contact only. The mid-point of such contacts is at θ = −90◦ in the non-symmetrized (global)
coordinate system in Fig.2

4.1. Monotonic load-hold analysis in partial slip

The simplest load path consists of two steps: A monotonically increasing ramp vertical (P)
load applied over a time tP in the first step, followed by a second step in which P is held constant.
Fig. 3(a) shows partial-slip pressure tractions for a ramp-hold P load for two representative values
of Lp, 0.1 and 1.0. Four different values of tP are chosen, namely 0.01τ, 0.1τ, 1τ, 2τ . A smaller
value of tP indicates a higher loading rate. The Coulomb friction coefficient µ = 0.40 in all cases.

3It is also possible to use the steady state modulus G∞ to define a slightly different parameter, L∗p, so that L∗p =
LpG∞/G0.
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Consider the solid lines in the figure, corresponding to Lp = 1.0. Very rapid loading (tP =

0.01τ ) produces the stiffest response at the end of the P ramp, resulting in the highest peak pressure
traction (Nmax) and the smallest contact half-angle ε0. Intermediate loading rates result in larger
ε0 and lower Nmax. After the P ramp, the P-load is held constant for a time t = 10τ . Irrespective
of the loading rate, the steady-state N(θ) is the same (indicated by the solid black line in 3(a)).

At a smaller value of Lp = 0.1, representing geometrically more conforming contacts, wider
contact half-angles (ε0 = 65◦ − 72◦) and lower N(θ) are observed at the end of the P-ramp,
indicated by the dashed lines in 3(a). Again, the steady-state N(θ) is the same in all cases, and
corresponds to the lowest Nmax and widest ε0. Corresponding shear tractions for these analyses
are shown in Fig. 3(b). Interestingly, at Lp = 1, the largest shear traction Tmax occurs for the
slowest loading rate (corresponding to the largest tP ) and decreases at lower tP . There is a sharp
change in gradient in all the T (θ) curves, demarcating the boundary between the (inner) stick and
(outer) slip zones. The steady state T (θ) has the largest stick zone half-angle ρ0. At lower values
of Lp, the difference between the various T (θ) is not as significant as at the higher Lp. In this case,
the corresponding ρ0 are all in a narrow band of 12◦ − 15◦. Notably, the steady-state tractions
agree very well with the elastic tractions using G = G∞.

On using a lower value of µ = 0.15, it is seen that N(θ) does not change very much at high
Lp = 1.0, but results in peak pressures that are about 20 percent higher at Lp = 0.1. On the
other hand, the shear tractions for µ = 0.15 are markedly lower at all values of tP , Lp than when
µ = 0.40. In addition, the stick-zone sizes ρ0 are much smaller; In particular, for Lp = 0.1, the
size is no more than < 5◦, indicating that most of the contact is in slip.

4.2. Unloading and reloading in partial slip

It is illustrative to study the effect of history on unloading and reloading a partial slip vis-
coelastic contact. Figs. 4(a),4(b) show the pressure and shear tractions obtained on unloading and
reloading from a steady state, in a three step analysis. In the first step, a ramp load P, corresponding
to an initial Lp = 0.25 is applied and the contact allowed to attain near steady state by holding the
load unchanged for t = 10τ . In the second step, the contact is unloaded to a value of 0.2P over a
step time 2.0τ . In the third step, the contact is immediately re-loaded back to P at the same rate.

The pressure tractions N(θ) show a clear difference during the unloading and the re-loading
steps at the same applied load, with somewhat higher tractions and smaller ε0 during re-loading.
It should be noted that the traction at the end of the unloading step is roughly independent of
the rate of unloading because of the receding nature of the contact. In fact, the convolved gap
function h∗(θ) is unchanged inside each instantaneous contact patch (α(t), β(t)) during unloading.
However, during the reloading phase, the contact advances. The h∗(θ) during reloading is different
from what it was during unloading, resulting in different tractions.

In contrast, Fig. 4(b) shows that the shear tractions are considerably different during unloading
than during reloading, at identical load values. There is an initial reversal in the sign of T (θ) in
the slip-zone at the beginning of the unloading step, subsequent to which the slip-zone grows at
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Figure 4: Pressure (a) and shear (b) tractions for unloading (solid red lines) and reloading (dashed-lines) from an
initially steady state (t = 0) (solid black line) with vertical load P corresponding to Lp = 0.25. The tractions are
depicted at times t = 0.5τ, 1.0τ, 1.5τ and 2.0τ on unloading and at times t = 2.5τ, 3.0τ, 3.5τ and 4.0τ on reloading.
The unloading and reloading rates have the same magnitude, 0.4P/τ . The Coulomb friction coefficient µ = 0.65

the expense of a receding stick-zone. The contact also recedes during unloading. Thus, neither
the Coulomb nor the viscous history effect influences the contact solution significantly during
unloading. However, both history effects do influence the solution on reloading, producing very
different T (θ).

4.3. Fretting-type (cyclic) loading in partial slip

The simplest fretting type load consists of ramp-hold application of a vertical P load, following
by the cycling of the horizontal load Q as +Q,−Q,+Q . . . while keeping P constant. In addition
to the normalized magnitude of Q, namely η = Q/µP , µ and Lp, the Q-load cycle-time ratio tQ/τ
is an important parameter in cyclic loading of viscoelastic contacts. The inverse of this parameter,
is a measure of normalized loading frequency, since the characteristic frequency of the material
ω ∝ 1/τ , i.e., tQ/τ = ω/ωQ where ωQ is the Q-load cycling frequency. Lower tQ/τ correspond
to high-frequency Q-load cycling, and vice-versa.

Fig. 5(a) shows the pressures N(θ) obtained for η = 1, µ = 0.40, Lp = 0.15 and tQ =

4.0τ with 8 Q reversals. This value of tQ represents slow cycling. There is marked asymmetry
in the N(θ) curves in the presence of the Q-loads. The most important observation is that the
tractions N(θ) shakedown after a sufficient number of cycles, and subsequently oscillate between
two different steady-states, one corresponding to the largest positive +Q and the other to the most
negative horizontal load −Q. Unlike elastic contacts, the number of cycles required to shakedown
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Figure 5: Pressure(left) and shear(right) tractions in fretting type (cyclic) loading. The dotted lines indicate transient
contact tractions at times obtained at times t = 7τ, 9τ, . . . when the Q-load is maximum or minimum. The contact
tractions are symmetric about θ = −90◦ at the end of the P load-hold step. The Q-cycle time, tQ = 4.0τ , Lp = 0.15,
µ = 0.4

is not constant, but strongly influenced by tQ. In this particular case, the tractions are almost
indistinguishable after a period of 6 tQ. Note that there is considerable difference between the
N(θ) after the application of the first +Q, and the corresponding steady-state N(θ) at applied
+Q. The significant shift in contact from the P only position, indicated by the black lines, is
due to the conforming geometry. Some transient tractions, obtained at times t = 7τ, 9τ, 11τ . . .

corresponding to intermediate horizontal load-extrema, are depicted in the figure using dotted
lines. It is seen that the highest peak pressure Nmax is obtained in the steady-state(s).

The corresponding shear tractions T (θ) are shown in Fig. 5(b). Certain features of the T (θ)

resemble elastic halfspace fretting tractions (Hills and Nowell, 1994); for example, there is a
central stick-zone with slip zones on either side, and the sign of T (θ) in the two slip-zones is
completely reversed in going from +Q to −Q. Similarly, there is a shift in the mid-point of
the contact as in elastic conforming contacts. Just like N(θ), the T (θ) also shakes down. The
numerous cycles required to attain shakedown are, however, a result of the viscoelasticity. The
intermediate T (θ) at t = 7τ, 9τ, 11τ . . . are shown with dotted lines in the plot. It must be noted
that if the Q-loading cycling sequence is −Q,+Q,−Q, . . ., the obtained tractions would be a
mirror-image of the tractions in Figs. 5(a),5(b).

Fig. 6(a) shows the evolution of contact half-angle ε0 and stick-zone size ρ0 during this analy-
sis. ε0 rises rapidly on applying the P-load4 and increases again during the hold period as a result

4The slope dε0/dP is higher for smaller Lp and becomes infinite in the limiting case of Lp = 0.0
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of the relaxation of G(t). The Q-cycling changes the ε0 only by about 0.6◦ even though, as noted
earlier, there is considerable shift in the position of the contact patch itself (∼ 13◦).

The time-evolution of the stick-zone size, ρ0, is more interesting. Unlike ε0, which is continu-
ous, ρ0 is a discontinuous function with numerous jumps, as indicated by the vertical line segments
with arrows. Each jump corresponds to a reversal in the sign of T (θ) in one or both slip zones, ei-
ther because of the change in sign of the applied dQ/dt (indicated by time markersA1, B1, A2 . . .),
or at the beginning of application of the first +Q load after applying P (time marker X). Notice
that at each Q load reversal, the stick-zone size ρ0 becomes almost equal to the contact size ε0. On
account of the dissimilarity of the materials, these values are theoretically never quite equal, just
as in linear elasticity (Dundurs and Comninou, 1979). As the cycling is continued, the values of
ε0 and ρ0 attain their ‘shakedown’ steady state values fairly quickly.

As noted earlier, the choice of conforming contact geometry allows determination of the ap-
proaches ∆ and C0x, shown in Fig. 6(b). The vertical approach ∆ behaves like ε0, initially increas-
ing with time during the P ramp-hold step and eventually becoming nearly steady, with a small
oscillation about a mean value as Q is cycled. In contrast, the horizontal approach C0x changes
dramatically during theQ cycling, with its largest positive values coinciding with timesA1, A2, . . .

and the most negative values coinciding with times B1, B2, . . .. Like all other contact quantities,
C0x also eventually oscillates between two steady-state values.

The fretting analysis was repeated for different values of the load cycling time tQ. Figs. 7(a),7(b)
depict N(θ) and T (θ) for more rapid cycling using tQ = 1τ . The steady-state tractions are seen
to be independent of the cycling time tQ. However, the transient tractions for different values of
tQ can differ considerably. For instance, T (θ) at time A1, corresponding to the end of application
of +Q, has a much higher leading peak when tQ = 1τ (Fig. 7(b)) than when tQ = 4τ (Fig. 5(b)).
Clearly, it requires more cycles to achieve shakedown at smaller values of tQ/τ .

4.4. Surface hoop stress for fretting-type loads

Once the surface tractions N(θ) and T (θ) are obtained, the subsurface stress field can be
calculated in a post-processing step by solving a pure traction b.v.p. This is done by calculating
the stresses at any plate location (r, θ) resulting from point-loads N and T acting at arbitrary
locations ξ = ζ on the edge of the hole (r = R), distributing these stress contributions over the
entire contact and adding any remote stress contribution.

The hoop stress component σ̃θθ at the edge of the hole is of particular interest as it ‘opens’ any
edge crack nucleated on the surface. It is easy to show that the surface hoop stresses at location θ,
caused by tractions N(θ) and T (θ) are given by the following integrals5

σ̃θθ(θ)|N(θ) =

∫ β

α

N(ζ)

π

[
1 +

2κ

κ+ 1
cos(ζ − θ)

]
dζ −N(θ) (4.1)

5The integral containing the cot term must, of course, be understood as a Cauchy principal value
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Figure 6: (a) Evolution of contact and stick-zone half-angles and (b) Indenter vertical and horizontal approaches ∆,
C0x in fretting analysis for tQ = 4τ (Normalized load frequency ωQ/ω = 0.25). Lp = 0.15, η = 1.0 and µ = 0.4.
The stick-zone evolves in a discontinuous fashion (vertical segments in (a)), with the discontinuities representing
changes in the sign of shear in the slip zone upon reversing the Q load. Time-markers A1, A2, . . . and B1, B2, . . .
correspond to extremal +Q and −Q loads, respectively.
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Figure 7: Pressure(left) and shear(right) for fretting type (cyclic) loading with a more rapid Q-cycle time, tQ = 1.0τ
(ωQ/ω = 1.0). Lp = 0.15, µ = 0.4
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σ̃θθ(θ)|T (θ) =

∫ β

α

T (ζ)

π

[
2κ

κ+ 1
sin(ζ − θ)− cot

(
ζ − θ

2

)]
dζ (4.2)

In the presence of remote stresses, there is an additional term

σ̃θθ(θ)|σ = σ∞xx + σ∞yy − 2(σ∞xx − σ∞yy) cos 2θ = A − 2D cos 2θ (4.3)

Notably, these equations are valid for both elastic and viscoelastic plates, since the stresses do not
depend onG, but only on κ. Clearly, the total σ̃θθ(θ) = σ̃θθ(θ)|N(θ) + σ̃θθ(θ)|T (θ) + σ̃θθ(θ)|σ.

Fig. 8(a) shows a plot of representative σ̃θθ(θ) for fretting type loads with Lp = 0.15, η = 1,
µ = 0.4 and tQ = 2τ . After a sufficient number of Q-cycles, the stresses shakedown, and oscillate
between two steady distributions, indicated by the solid blue line (-Q steady state) and the solid
red line (+Q steady state). At the +Q steady state, the peak tensile stress occurs at the trailing edge
of contact (θ = −146◦ and at the -Q steady state the peak tensile stress occurs at the edge on the
other side of the contact (θ = −33◦). The two peak hoop stress values are the same because no
remote plate stresses are present. Note that the steady state stresses are independent of the tQ used.
However, transient stress distributions, like the tractions, do depend on tQ.

Fig. 8(b) shows the σ̃θθ(θ) for fretting-type loads with additional cyclic remote plate-stresses
σ∞yy with tQ = 4τ . Both the Q-load and σ∞yy are cycled in phase, with σ∞yy varied from 0 to 0.2P/R

in tension. The presence of the remote tension causes an asymmetry in the steady-state hoop
stresses. The peak steady-state forward tensile hoop stress magnitude rises to 1.28P/R when
compared to Fig. 8(a), while the peak steady-state reverse tensile hoop stress magnitude is slightly
lower, at 0.85P/R.

4.5. Coulomb and viscous energy dissipation in fretting

Two dissipative mechanisms operate in the viscoelastic contacts considered here: The Coulomb
mechanism, which is entirely interfacial and restricted to the slip zones, and the hysteretic (bulk)
dissipation due to viscoelasticity. In the absence of remote stresses, the external work input to the
system Wext is through the vertical load P(t) and horizontal load Q(t) only. The work input up to
time t is given by

Wext =

∫
P d∆ +

∫
Q dC0x ≈

M∑
i=1

(Pi δ∆i +QiδC0x,i) (4.4)

where the integral is replaced by a summation over all M increments in the analysis. Note that the
integrands in Eq. (4.4) are always positive.

The Coulomb frictional energy Wc dissipated up to a given time t depends on the slip velocity
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Figure 8: Hoop stress σ̃θθ at the surface (r=R) for fretting type loads. (a) Fretting Q-load cycling only, tQ = 2τ . (b)
In-phase cycling of fretting Q-load and a remote plate stress σ∞yy of magnitude varying from 0 to 0.2P/R. tQ = 4τ .

ṡ in the slip-zones and the tangential tractions, as6

Wc = R

∫ t

0

(∫
SL(t)

T (t, θ)ṡ(t, θ)dθ

)
dt = R

M∑
i=1

(∫
SL(t)

Ti(θ)
δs(θ)

δti
dθ

)
δti (4.5)

The inner integral is taken over the instantaneous slip region, SL(t). Since the tractions, ap-
proaches and slip histories are known from the analysis, both Wext and Wc can be calculated using
Eqs.(4.4) and (4.5).

Fig. 9(a) shows the Coulomb dissipation Wc, inputs from the loads WP , WQ and the total
external work input, Wext for the fretting analysis with tQ = 4τ described in an earlier section.
The dissipative nature of the system accounts for the fact thatWext increases with time, on average.

The local decreases in WQ (and Wext) can be explained by the fact that the applied Q load
decreases in magnitude during half of a load cycle, and increases in another half. In particular, it
takes a value of 0 midway between times like t = Ai and t = Bi. At these local minima, the power
input due to Q (slope of the WQ curve) is 0. While WQ keeps increasing on average, the work
input from the vertical load WP is seen to become almost constant, with a slightly positive slope.
This indicates that at steady state, most of the input power is supplied by theQ load. The Coulomb
componentWc has a more gentle slope at large t, indicating that viscous losses eventually consume
the largest share of input power.

6Because of the way the sign of T (θ) is chosen in Eq. (2.13), this integrand is always positive
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Figure 9: (a) Work input and Coulomb frictional energy dissipation and (b) Evolution of C0x with Q in cyclic loading
with tQ = 4τ (ωQ/ω = 0.25). The closed blue curve AsBs in (b) is the steady-state hysteresis curve. η = 1.0,
Lp = 0.15 and µ = 0.4.

Fig. 9(b) is a plot of the evolution of horizontal approach C0x as Q is cycled. In the first few Q

cycles, the value of C0x is large, but it decreases with additional cycling. Eventually, the system
evolves into a closed, repeating loop, indicated by the blue curve As − Bs in the figure. This is
the steady-state hysteresis curve of the system. The area enclosed by this curve is a measure of the
total amount of energy dissipated in a cycle because, as mentioned above, the contribution from
the P load is relatively small. However, the enclosed area represents both viscous (pure hysteretic)
and Coulomb losses.

In order to determine the viscous loss Wh, one utilizes the fact that in every load increment
dWext = dWc + dWh + dWr, and the change in the recoverable energy Wr over a steady-state
cycle is 0. Thus,

W cycle
h = W cycle

ext −W cycle
c (4.6)

Since W cycle
ext and W cycle

c can be evaluated independently, this allows one to calculate W cycle
h . Hys-

teresis curves for four different fretting analyses, with tQ = 0.2τ, 1τ, 2τ and 4τ are shown in
Fig. 10(a). It is clear that slower Q cycling rates (larger tQ) correspond to larger energy losses
per cycle. Fig. 10(b) shows that the viscous loss per cycle is the major component rather than the
Coulomb loss, with a ratio of Wh/Wc of 1.9 at tQ = 0.2τ . This ratio increases to about 8.25 for
tQ = 4τ .
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Figure 10: (a) Hysteresis curves for fretting type loads for different Q-load cycle times tQ and (b) The corresponding
Coulomb and viscous losses per cycle. µ = 0.4, η = 1.0, Lp = 0.15 in all cases. These load cycle times correspond
to normalized loading frequencies ωQ/ω = 5, 1, 0.5 and 0.25 respectively.The curves in (a) include contributions from
both viscous and Coulomb losses, but, as shown in (b), the viscous losses are always larger than the Coulomb losses.

4.6. Slowly relaxing materials with multiple characteristic times

The SIE technique was also tested on an experimentally well-characterized polymer, Poly-
methyl methacrylate (PMMA), using a more representative 12-element viscoelastic network (Fig. 1b)
with material data taken from Park and Schapery (1999). The relaxation functionG(t) of this ma-
terial is shown in Fig. 11(a). In contrast to the other two viscoelastic solids used in this paper, the
PMMA has a very large ratio G0/G∞ ∼ 1000.

Pressure and shear tractions for the 12-element PMMA for a ramp load-hold analysis are shown
in Fig. 11(b). The P load is applied over 5s and then held constant. It is interesting to note that
while the N(θ) relaxes with time just as for the three-element solid in Fig. 3(a), the tractions are
far from steady even after a 150 sec hold. In fact, the rate at which N(θ) approaches the expected
steady-state limit (indicated by the dashed blue line, corresponding to the elastic curve with G∞)
becomes exceedingly slow. This slow relaxation is due to the presence of very long time scales in
this material, so that ‘near-steady’ conditions are not likely to be attained until t ∼ 107 sec. In fact,
even at t=400s (Fig. 11(a)), G(t) ∼ 0.1G0, whereas G∞ ∼ 0.001G0. This means that in fretting
or other cyclic analyses, the material is effectively always in a transient state.
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Figure 11: (a) Relaxation functionsG(t) for the two materials used in this paper. (b) Tractions in a P ramp load-hold
analysis for a 12-element generalized Maxwell model for PMMA (Park and Schapery, 1999), with limiting (G0, G∞)
elastic tractions superimposed. This material has very long time scales, and G0/G∞ ∼ 1000, and would take a very
long time to reach steady-state (blue dashed line).

5. Discussion

5.1. Correspondence principle in viscoelastic contact formulation

It is important to note that while the derivation of the viscoelastic Green’s functions in Ap-
pendix A is equivalent to the use of a correspondence principle, the formulation of the contact
problem itself (Sec. 2.2) does not use correspondence of any kind. In fact, despite the apparent
algebraic similarity (see Sundaram and Farris (2010a)), the presence of the additional gap history
terms in Eqs. (3.2), (3.3) renders the governing viscoelastic equations qualitatively different from
their elastic counterparts. Thus, the viscoelastic contact problem is not reduced to an equivalent
elastic one to solve it.

In addition, it is difficult to use integral transform techniques to solve fully-coupled partial slip
problems because of the complicated nature of the boundary conditions and interaction between
coulomb and viscous history effects; the ‘direct’ approach used in the present work seems to be
the only feasible way.

5.2. Shakedown and steady state

As seen in section 4.6, materials with multiple, long relaxation time scales like the 12-element
PMMA effectively never attain steady-state for reasonable testing times. This has several inter-
esting implications. For instance, one has ever shifting edge-of-contact locations in the transient
regime, and the concomitant edge-of-contact stresses occur at different locations over time. There
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is no such issue for the three-element solid in Fig. 8, where the transients disappear fairly quickly;
but it is significant for materials with long time scales. The lack of a steady ‘edge-of-contact’
and accompanying contact-shift probably results in ‘smearing’ of damage during load cycling. In
addition, for such materials, the evolution of the Q − Cox curves in cyclic / fretting-type loading
occurs very slowly (i.e. over a very large number of load cycles), rather than at the more rapid
rate shown in Fig. 9(b) for a material with shorter time-scales. In this case, the calculation of a
steady-state ‘per-cycle’ viscous loss using Eq. (4.6) is not possible.

Lastly, there is likely to be a qualitative change in the nature of the contact when one con-
siders materials with very large values of G0/G∞. This is because the Coulomb model assumes
incomplete (asperity) type contact, but with the relaxation of G(t) into the range associated with
long-term elastomer moduli (≤1 MPa), the contact is likely to become complete under loading
(Persson et al., 2004), and thus cease to behave in a Coulombian manner.

5.3. Viscoelastic, elastic and FEA fretting tractions

In P-load hold analyses, the steady-state viscoelastic tractions agree very well with the elastic
tractions using G = G∞, as seen in Figs. 3(a),3(b). This is because the contact patch increases in
sizes monotonically. However, for cyclic / fretting loads, this is not true for typical Q-load cycling
frequencies : It is then important to perform a viscoelastic analysis, rather than an approximate,
elastic one. This can be seen in Figs. 12(a),12(b), where steady-state viscoelastic and elastic
fretting tractions are compared for the three-element solid. The elastic analysis uses G = G∞.
While the peakN(θ) are not very different in Fig. 12(a), there is a visible difference in the location
of the ends of contact in steady-state, the difference being about 6◦ − 7◦. A more significant
difference is observed in the shear tractions T (θ), as seen in Fig. 12(b). The implication is that
a pure elastic analyses would identify the edge-of-contact incorrectly, by several degrees, which
is quite significant. Further, the considerable difference in T (θ) leads to quite different edge-of-
contact stresses. Of course, these effects would be accentuated for materials with long time-scales.
For the same set of parameters, SIE fretting tractions were compared with tractions obtained using
the ABAQUS / Standard FEA solver. A custom meshmaker was used to generate a mesh of 4-
noded plane-strain elements with reduced integration, with ∼125 elements in contact. The FEA
tractions are shown using markers in Figs. 12(a) and 12(b). There is good agreement between
the FEA and SIE contact sizes and tractions. Surface stresses from the SIE technique are more
accurate because one can directly calculate σ̃θθ(θ) using Eqs. (4.2). In FEA, these stresses are
calculated at the nearest element Gauss quadrature point, which is sub-surface, and considerable
mesh-refinement is required to obtain converged stresses.

It is also instructive to consider viscoelastic shakedown for non-typical Q-load cycle times, i.e.,
extremely low and high values of the normalized loading frequency ωQ/ω. Intuitively, one might
expect the shakedown tractions attained for small ωQ/ω to be similar to those for an elastic material
with long-term modulus G∞. One might also expect the viscoelastic large ωQ/ω and elastic G0

cases to be similar. Fig. 13(a) shows the viscoelastic shakedown shear tractions obtained for
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Figure 12: (a) Pressure and (b) shear tractions for a fretting analysis comparing viscoelastic SIE (solid lines), elastic
SIE (dashed lines) and viscoelastic FEA (circles) with identical parameters η = 1.0, µ = 0.4, tQ/τ = 2 (ωQ/ω = 0.5).
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Figure 13: (a) Shakedown shear tractions in fretting with high frequency (ωQ/ω = 10, tQ/τ = 0.1) and low frequency
(ωQ/ω = 0.03125, tQ/τ =32) load cycling in viscoelasticity, and limiting moduli (G0, G∞) in elasticity. (b) Hysteresis
curves for these four analyses. Note that for elastic analyses, dissipation is entirely on account of coulomb friction. In
all cases, η = 1.0, Lp = 0.15 and µ = 0.4.

21



very low frequency loading (ωQ/ω = 0.03125), high frequency loading (ωQ/ω = 10), and elastic
shakedown tractions using moduli G0 and G∞. It is clear that low frequency tractions agree quite
well with the elastic G∞ tractions. However, when ωQ/ω = 10 (tQ/τ = 0.1), the elastic (G0)
and viscoelastic tractions are quite different. This difference should, of course, diminish at even
higher values of ωQ/ω. Unfortunately, since the number of cycles to reach shakedown increases
with increasing ωQ/ω, probing even higher frequencies (e.g. ωQ/ω = 50) seems to be currently
infeasible by the SIE method, or indeed even by FEM, where the number of required analysis
steps is similarly very large. Notably, Fig. 13(b) shows that the energy dissipated per cycle in
slow cycling (ωQ/ω = 0.03125) is significantly different from the elastic G∞ case, even though
the tractions are similar. From these results and our discussion above, one may conclude that for a
fairly wide range of cyclic loading frequencies, it is essential to perform a viscoelastic analysis to
obtain an accurate solution.

5.4. Coulomb and viscous history effects

Although both Coulomb friction and viscoelasticity contribute to the history effect, there are
important differences between them. Viscoelastic material history transmission has an in-built
‘fading memory effect’, with recent times influencing the instantaneous solution more strongly
than earlier times. This is because the relaxation function G(t) is a monotonically decreasing
function, as seen in Fig. 11(a). In Coulomb friction, the transmission of history occurs in the stick-
zone through Eq. (2.12). It is seen that slip history is transmitted exactly, with no ‘fading’ effect
at all. However, unlike viscous history, there is a history erasure mechanism: The advance of slip
zones into regions that were previously in stick.

Similarly, it is clear that in cyclic loading, viscous energy dissipation W cycle
h typically dom-

inates the Coulomb dissipation, as shown in Fig. 10(b). Possible offsetting factors, such as the
use of higher values of µ do not change this result qualitatively. Moreover, recent experimental
estimates of µ in stainless steel-PMMA contacts suggest that µ does not exceed ∼ 0.65 even after
numerous fretting cycles (Kim et al., 2013).

There are two possible explanations for the dominant role of viscous dissipation in viscoelastic
partial slip contacts: The fact that material hysteresis is a bulk effect rather than a purely interfacial
effect like Coulomb friction, and the generally limited slip amplitudes in geometrically conforming
contacts. However, it is important to note that accurate stress field calculations require both effects
to be considered; µ cannot be neglected.

6. Conclusion

This paper examines partial-slip fretting contacts in linear viscoelasticity. The governing equa-
tions were formulated as a pair of coupled Singular Integral Equations (SIEs) for a conforming
(pin-plate) geometry, allowing Coulomb and hysteretic effects, general load histories and remote
plate stresses. Viscoelasticity makes it necessary to apply the stick-zone boundary condition
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in convolved form, and contributes additional convolved gap terms to the governing equations.
Steady-state and transient tractions, as well as contact parameters, were studied under monotonic
ramp-hold, unload-reload and cyclic bidirectional (fretting) loads for a three-element solid. While
viscoelastic fretting contacts shakedown like elastic contacts, the number of cycles to do so is
dependent on the ratio of the load cycle time to the relaxation time. Steady-state cyclic viscous
dissipation typically dominates the cyclic Coulomb dissipation, with a more pronounced differ-
ence at slower load cycling. However, it is essential to include Coulomb friction for accurate
contact stress analysis. Viscoelastic shakedown fretting tractions differ considerably from their
(approximate) elastic counterparts for typical load cycling frequencies, highlighting the impor-
tance of viscoelastic analyses in cases where the contact patch is not monotonically increasing. In
materials with very long time-scales, the material is effectively always in a transient state, with no
steady edge-of-contact. This has implications for accumulated damage during fretting. Tractions
obtained using SIE and FEA showed good agreement.
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APPENDIX : Green’s functions

The Kolosov-Mushkelishvili formulation for a viscoelastic solid with time-independent Kolosov
constant κ is (Golden and Graham, 1988)

σrr + σθθ = 2
(

Ω′(z; t) + Ω′(z; t)
)

(A.1a)

σrr + iσrθ = Ω′(z; t) + Ω′(z; t)−
(
z̄ Ω′′(z; t) +

z

z
ω′(z; t)

)
(A.1b)

2

∫ t+

0−
(vr + ivθ)µ

g(t− τ)dτ = e−iθ
{
κΩ(z; t)− z Ω′(z; t)− ω(z; t)

}
(A.1c)

µg (and its inverse, γg) are defined in terms ofG, J and the Heaviside step functionH as follows

µg(t− τ) = − d

dτ
[H(t− τ)G(t− τ)] (A.2a)

γg(t− τ) = − d

dτ
[H(t− τ)J(t− τ)] (A.2b)
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For a traction b.v.p, a single-valued F (ρ) is used to specify the boundary condition

Ω(ρ; t) + ρ Ω′(ρ; t) + ω(ρ; t) = iF (ρ; t) (A.3)

Consider the elastic problem for a point normal load N applied at an angular location ξ = 0 on
the edge of a hole of radius R in an infinite plate. The following Kolosov potentials (Sundaram
and Farris, 2010a; Rothman, 1950) solve this problem:

Ω(z) =
N

2π

(
− log(z −R) +

κ log(z)

(κ+ 1)

)
(A.4a)

ω(z) =
N

2π

(
log(z −R) +

z

z −R
− log(z)

κ+ 1
− R

z
− κR2

(κ+ 1)

1

z2

)
(A.4b)

Now consider the analogous viscoelastic problem. It is clear from Eqs. (A.1a), (A.1b) and (A.3)
that in this case, the viscoelastic potentials have no dependence onµg and are of the form Ω(z; t) =

N(t)g(z), where g(z) is identical to the bracketed terms in the elastic case Eqs. (A.4a), (A.4b).
The left hand side of Eq. (A.1c) contains convolved displacements µg ∗ (vr + ivθ). However,

the right-hand side of Eq. (A.1c) has the same form as its elastic counterpart (England, 1971).
Thus, the convolved surface displacements caused by point loads on the boundary of the vis-
coelastic plate are identical in form to the elastic surface displacements in Sundaram and Farris
(2010a), with convolution replacing the elastic shear modulus G. For a compressive normal point
load N(t) applied at an angular location ξ, the radial and tangential surface displacements ṽNr , ṽ

N
θ

are ∫ t+

0−

{
ṽNr ṽNθ

}
µg(t− τ)dτ =

N(t)

4π

{
κ′′SA− κ′CL κ′SL+ κ′′CA

}
(A.5)

where κ′ = (κ + 1)/2, κ′′ = (κ − 1), and the following spatial functions are introduced for the
sake of brevity:

C ≡ C(θ, ξ) ≡ cos(θ − ξ) A ≡ A(θ, ξ) ≡ θ − ξ
2
− π

2
sign(θ − ξ) (A.6)

S ≡ S(θ, ξ) ≡ sin(θ − ξ) L ≡ L(θ, ξ) ≡ log(2− 2 cos(θ − ξ)) (A.7)

Similarly, for a tangential point load T (t) acting at an angular location ξ on the edge of the hole,∫ t+

0−

{
ṽTr ṽTθ

}
µg(t− τ)dτ =

T (t)

4π

{
κ′′CA+ κ′SL κ′CL− κ′′SA

}
(A.8)

To obtain the surface displacements, one convolves both sides of Eqs. (A.5),(A.8) with the linear
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operator γg, the inverse of µg. Since γg ∗ µg = δ(t) by definition,

{
ṽNr ṽNθ

}
=

(γg ∗N)(t)

4π

{
κ′′SA− κ′CL κ′SL+ κ′′CA

}
(A.9a)

{
ṽTr ṽTθ

}
=

(γg ∗ T )(t)

4π

{
κ′′CA+ κ′SL κ′CL− κ′′SA

}
(A.9b)

It is useful to introduce the notation N∗ and T ∗ respectively for the γg-convolved N and T , e.g.
N∗ ≡ γg ∗N . For remote stresses applied to the viscoelastic plate, the surface displacements are
given by {

ṽ∞r ṽ∞θ
}

=
Rκ

′

2

{
A ∗

2
+ D∗ cos(2θ) −D∗ sin(2θ)

}
(A.10)

where A ∗ ≡ γg ∗A (t) = γg ∗ (σ∞xx(t) + σ∞yy(t)), D∗ ≡ γg ∗D(t) = γg ∗ (σ∞xx(t)− σ∞yy(t)).
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