

	SDI Find	P _ B _k	- E: _{ilt} va	xaı alue	mp es f	ole - or al	- ;	Solu k, i, l,	tio an	n d t					
$\begin{array}{c cccc} k & S_k^{i} \\ \hline 1 & 30 \\ 1 & 30 \\ 1 & 30 \\ 1 & 30 \\ 2 & 40 \\ 2 & 40 \\ 2 & 40 \\ 2 & 40 \\ 2 & 40 \end{array}$	i Q'i 1 15 1 15 2 25 2 25 1 15 2 25 1 15 2 25 2 2 2 5 2 5	1 1 2 1 2 1 2 1 2	S[*1 20 30 20 30 20 30 20 30 20 30	E _{itr} 0 0 0 0 0 0 0 0 0	R _{kil} 25 15 35 25 35 25 45 35	$(S_k^l - T_l) = 0$ 0 0 0 100 100 100 100 100	, <i>)</i> ²	$(R_{kiir} - T_r)^2$ 25 225 0 25 0 25 0 25 0 0 0	B _{kii} 25 225 0 25 100 125 100 100	ſ	Fo	r per	iod 2		
						k S'_k 1 20 1 20 1 20 2 30 2 30 2 30 2 30 2 30 2 30		i Qi 1 35 1 35 2 45 2 45 1 35 1 35 2 45 1 35 1 35 2 45 2 45 2 45 2 45	/ 1 2 1 2 1 2 1 2 1 2 1 2	S ₁ ¹⁺¹ 30 40 30 40 30 40 30 40 30 40	E _{kit} 0 0 0 0 0 0 0	R _{kib} 25 15 35 25 35 25 45 35	$\frac{(S_k^i - T_k)^2}{100}$ 100 100 100 100 0 0 0 0 0 0 0	$\frac{(R_{kklt} - T_{p})^{2}}{25}$ 225 0 25 0 25 0 25 0 0 0	B _{kilt} 125 325 100 125 0 25 0 0
20				D١	lages	h Kuma	r, II:	Sc			Sto	chastic	c Optimizati	ion - III	

	SDF <i>n</i> =1,	Р — Ех t=2	ample –	Solution	– Contd.	
		f_1^2 (k, i) = Min {feasit	$[B_{kil2}] \forall$. k, i	
	k	i	$\frac{B_l}{l=1}$	l = 2	$f_1^2(k,i)$	1*
	1 1 2 2	1 2 1 2	125.00 100.00 0.00 0.00	325.00 125.00 25.00 0.00	125.00 100.00 0.00 0.00	1 1 1 1, 2
21			D Nagesh Kumar, I	ISc	Stochastic Optir	nization - III

	$SDP - Exam$ $n=2, t=1$ $f_2^1(k,i) = Min[B_{ki1} + \sum_{j} P_{ij}]$ (feasible l)	ple – f [*] (l, j)]	Solu ∀ k, i	ition –	Contd		
k = 1; i k = 1, i = k = 1, i = 2	$\begin{aligned} &= 1 \ l = 1; \ B_{kil1} + \sum P_{ij}^{l} \ f_{1}^{2} \ (\\ &= 1, \ l = 2; \ B_{kil1} + \sum P_{ij}^{l} \ f_{1}^{2} \ (\\ &= 1, \ l = 2; \ B_{kil1} + \sum P_{ij}^{l} \ f_{1}^{2} \ (l, j) = 0.0 \\ &= 10 \end{aligned}$	l, j) = 25.0 = 137. l, j) = 225.0 = 225.0 0 + 0.30*125.0	+ 0.50* 5) + 0.50*) 0 + 0.70*10	125.0 + 0.50* 0.0 + 0.50*0. 0.0	•100.0 0		
k = 1, i = 1 k = 2, i = 1	2, $l = 2$; $B_{kil1} + \sum P_{ij}^{1} f_{1}^{2}$ $(l, j) = 25.$ = 25. 1, $l = 1$; $B_{kil1} + \sum P_{ij}^{1} f_{1}^{2}$ (l, j) = 100.00 +	00 + 0.30*0.0 0 0.50*125.00 -	+ 0.70*0.0 + 0.50*100.	00			
	= 212.5			$B_{kill} + \sum$	$P_{ij}^{1}f_{1}^{2}(l,j)$	f_2^1 (k, i)	
		K	i	l = l	l = 2		<i>l</i> *
		1	1	137.50	225.00	137.50	1
		1	2	107.50	25.00	25.00	2
		2	1	212.50	125.00	125.00	2
00		2	2	207.50	100.00	100.00	2
-22	D Nag	jesh Kumar,	llSc		Stochastic Op	timization - III	

SDP – <i>n</i> =4, <i>t</i> =1	Exam	nple – S	olution	– Cont	d.
f ₄ ¹ (k,	i) = Min [{feasible	$\frac{B_{kill} + \sum_{j} P_{ij}^2}{B_{l} + \sum_{j} R_{lj}}$	$f_3^2(l,j) \forall l$	<i>k</i> i	
k	i	$\frac{D_{kill} + Z}{l = l}$	$\frac{1}{1=2}$	J4 (N))	1*
1	1	230.00	317.50	230.00	1
1	2	209.00	126.50	126.50	2
2	1	305.00	217.50	217.50	2
2	2	309.00	201.50	2 01.50	2
	D Na	gesh Kumar, IISc		Stochastic	Optimization - III

	SDP	– Exa	mple –	Solutio	n – Cor	ntd.	
	n=3, l=1	=Z 	1.1	1.2	6 ² (h a)	/*	
	$\frac{1}{1}$	1	292.90	532.90	202.00	1	
		2	309.30	339.30	309.30	1	
	2	1	167.90	232.90	167.90	1	
	2	2	209.30	214.30	209.30	1	
	n=6, t=	=1					
	k	i	1:1	1:2	f_6^1 (k, i)		
	. 1.	- 1	326.10	413.60	326.10	1	
	1	2	304.38	221.88	221.88	2	
	2	1	401.10	313.60	313.00	2	
	2	2	404.38	296.88	290.88	2	
25		D	Nagesh Kumar,	llSc	Stochas	tic Optimizat	ion - II

	SDP	– Exa	mple –	Solutio	n – Cor	ntd.	
	n=7, t=	=2					
	k	i	1:1	1:2	f_7^2 (k, i)	<i>l</i> *	
	1	1	388.57	628.57	388.57	1	
	1	2	405.26	435.26	405.26	1	
	2	. 1	263.57	328.57	263.57	1	
	2	2	305.26	310.26	305.26	1	
	n=8, t=	1					
	k	i	l:1	1:2	$f_{8}^{1}(k,i)$	1*	
	1	1	421.91	509.41	421.91	1.	
	1	2	400.25	317.75	317.75	2	
	2	1	496.91	409.41	409.41	2	
	2	2	500.25	392.75	392.75	2	
	L						
26		D	Nagesh Kumar, I	ISc	Stochast	ic Optimization - I	11

