
















Problem											
 For the following chance constrained optimization problem, formulate the equivalent deterministic optimization problem using the LDR, R_i = S_i − b_i. Storage continuity should be maintained. Neglect losses. Following table gives the F⁻¹() values for the inflows and R_{max} and R_{max} values for different periods. Minimize K subject to P(S_{max} ≤ S_i ≤ K) ≥ 0.9 ∀t P(R_i ≥ B_i) ≥ 0.75 ∀t P(R_i ≥ B_i) ≥ 0.75 ∀t 											
		t	$F^{-l}(0.0)$	$F^{-1}(0.1)$	$F^{-1}(0.25)$	$F^{-1}(0.75)$	$F^{-i}(0.9)$	$F^{-1}(0.95)$	R _{max}	R _{min}	Smin
		1	0	12	33	60	90	93	90	24	2
		2	0	3	20	48	60	80	84	20	2
		3	v	6	21	36	72	85	84	20	2
9	D Nagesh Kumar, IISc						Stochastic Optimization - II				

