

Example-1: Solution Contd.													
Stage 3: $t=2, n=3, Q_2=1$													
$\int_{2} (s_2) = \max \left[B_2(R_2) + \int_{3} (s_2 + Q_2 - R_2) \right]$ $0 \le R_2 \le S_2 + Q_2$ $S_2 + Q_2 - R_2 \le 4$													
	<i>s</i> ₂	R ₂	B ₂ (R ₂)	$S_2 + Q_2 - R_2$	$\frac{2}{f_3^2(S_2 + Q_2 - R_2)}$	(3)+(5)	$f_2^3(S_2)$	R_2^*					
Γ	0	0	-100 250	(4) 1 0	960 800	860 1050	1050	1					
	1	0 1 2	-100 250 320	2	1000 960 800	900 1210 1120	1210	1					
-	2	0 1 2 3	-100 250 320 480	3 2 1 0	1040 1000 960 800	940 1250 1280 1280	1280	2.3					
	3	0 1 2 3	-100 250 320 480	4 3 2 1	1040 1040 1000 960	940 1290 1320 1440	1440	3					
	4	4 1 2 3 4	520 250 320 480 520 520	0 4 3 2 1	800 1040 1040 1000 960 800	1320 1290 1360 1480 1480 1320	1480	3, 4					
31 -				D Nag	esh Kumar, IIS	C	l		DP_2: Additional Applis				

	Solution $f_{1}^{i}(s_{1}) = Minimize = NB_{1}(s_{1}, s_{2}+i_{1}-r_{2}, r_{2})$													
	r _r 2 Initial	$v \ll r_{\gamma \leq s_{\gamma}+t_{\gamma}} \ll r_{\gamma \geq s_{\gamma}+t_{\gamma}-K}$ n=1			n=2	n=3		1						
	Storage, 5	$f_{j}(s_{j})$	r5*	$f_{2}(s_{2})$	r,*	$f_i(s_i)$	r,*							
	0 10 20 30	425 125 25 125	20 20, 30 20, 30 20, 30	450 250 350	30 30 40 a	1075 575 275 375	10 10, 20 20 30							
	$f_{r_{-1}}^{2}(s_{r_{-1}}) = \frac{Minimize}{\sum_{\substack{r_{-1} \geq s_{r_{-1}} \\ r_{-1} < s_{r_{-1}} + r_{r_{-1}} \\ r_{-1} < s_{r_{-1}} + r_{r_{-1}} < s_{r_{-1}} + r_{r_{-1}} - r_{r_{-1}} + r_{r_{-1}} + r_{r_{-1}} - r_{r_{-1}} + r_{r_{-1}} - r_{r_{-1$													
			n=4		n=5	n=6		1						
	5	$f_{j}(s_{j})$	rj*	$f_{2}(s_{2})$	r, *	$f_i(s_i)$	r, *	1						
	0 10 20 30	1200 600 300 400	10 10 20 30	725 525 625	30 30 40	1350 850 550 650	10 10, 20 20 30							
34	D Nagesh Kumar, IISc DP_2: Additional Applis													

