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Dynamic Programming

Additional Applications:
Capacity Expansion &
Reservoir Operation
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Capacity Expansion Problem

Consider a municipality that must plan for the future expansion 
of its water supply system or some component of that system, 
such as a reservoir, aqueduct or treatment plant.  

The capacity needed at the end of each period t has been 
estimated to be Dt.  

The cost, Ct(st,xt), of adding capacity xt in each period t is a 
function of that added capacity as well as of the existing 
capacity st at the beginning of the period.  

The planning problem is to find, that time sequence of capacity expansions 
that minimizes the present value of total future costs and meets the projected 
requirements.
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Capacity Expansion Problem
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Capacity Expansion – Cost Function
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Capacity Expansion Problem

The planning problem is to find, that time sequence of capacity expansions 
that minimizes the present value of total future costs and meets the projected 
requirements.

where  αt is the discount factor (1+r)-(t-1).  
This discount factor assumes an interest rate of r in each period 
and that the construction costs are incurred at the beginning of each period.
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Capacity Expansion Problem – Contd.

This may be simply expressed by a series of continuity relationships

The constraints define each period’s final capacity, or equivalently the next 
period’s initial capacity, st+1 as a function of the known existing capacity st
and each expansion xt up to period t.

In this problem, the constraints must also ensure that the actual capacity st+1 at the end 
of each future period t is no less than the capacity required Dt at the end of that period. 
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Capacity Expansion Problem – Contd.

The constrained optimization model stated, can be restructured as a multistage 
decision-making process and solved using either a forward- or a backward-
moving dynamic programming solution procedure. 

There may also be constraints on the possible expansions in each period 
defined by a set  Ωt , of feasible capacity additions in each period t.

Stages of model will be the periods in which capacity expansion decisions are made.

The states will be either the capacity st+1 at the end of stage of period t if a forward-
moving solution procedure is adopted, or the capacity st at the beginning of a stage or 
period t if a backward-moving solution procedure is used. 
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Network of discrete capacity-expansion decisions 
(links) that meet the projected demand
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Solution

Forward-moving solution procedure 

To write the recursive equations required for each stage of the forward-moving 
decision-making process, define the function ft(st+1), as the minimum present 
value of the total cost of capacity expansion from the present up to and 
including period t given a capacity of st+1 at the end of period t.
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Recursive Equations

Since at the beginning of the first period t=1, the accumulated least cost is 0, f0(s1)=0.

For each final discrete state s2 in stage t=1 ranging from D1 to the maximum demand 
DT, define

for D1 ≤ s2 ≤ DT, where DT is the maximum capacity that should be considered.  
Note that the term x1 in the cost function C1(s1, x1) is expressed in terms of the assumed 
known state variable s1 and the specified state variable s2.  
In addition, the final capacity s2 in period 1 must be no less than the required demand 
D1 at the end of period 1.  Thus x1=s2-s1.  

Above equation must be solved for discrete values of s2 ranging from the capacity 
demand D1 in period 1 to the maximum capacity to be considered Dmax or DT.
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Recursive Equations – Contd.

For period t=2 the function f2(s3) is defined as 

Above equation must be solved for discrete values of s3 ranging from the capacity D2 to 
the maximum capacity to be considered DT.

In general for any period t >1, the recursive equation is

This equation must be solved for all Dt ≤ st+1 ≤DT
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Recursive Equations – Contd.

For the last period t=T, should be solved for the value of sT+1 equal to DT
which minimizes the total cost 

A backward moving solution procedure can as well be formulated with similar 
notation
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Capacity Expansion Problem – Example

Consider the five-period 
capacity-expansion problem

A discrete capacity expansion
network showing the
present value of the expansion
costs associated with each
feasible expansion decision.
Finding the best path through
the network can be done using
forward or backward-moving
discrete dynamic programming.
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Solution - Forward-moving Algorithm

Results of a forward-moving
dynamic programming
algorithm. 

The numbers next to
the nodes are the minimum cost
to have reached that particular
state at the end of the particular
time period t.
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Solution - Backward-moving Algorithm

Results of a backward-moving
dynamic programming
algorithm. 

The numbers next to
the nodes are the minimum
remaining cost to have the
particular capacity required at
the end of the planning horizon
given the existing capacity of the
state.
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Reservoir Operation

Reservoir operators need to know how much water to release and 
when.

Reservoirs are designed to meet demands for water supplies, 
recreation, hydropower, the environment and/or flood control. They 
need to be operated in ways that meet those demands in the most 
reliable and effective manner.

Since future inflows or storage volumes are uncertain, the challenge  
is to determine the best reservoir release or discharge for a variety of 
possible inflows and storage conditions.

Reservoir release policies are often defined in the form of what are 
called ‘rule curves’. 
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Reservoir Operation – Rule Curves

An example reservoir rule curve 
specifying the storage targets and 
some of the release constraints, 
given the particular current storage 
volume and time of year. 

The release constraints also 
include the minimum and 
maximum release rates and the 
maximum downstream channel 
rate of flow and depth changes 
that can occur in each month.
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Reservoir Operation Problem

Consider a single reservoir having inflows it and making releases rt in each 
period t.  

In deterministic problems such as this one, the sequence of inflows it is 
assumed known, and the sequence of releases rt is to be determined.

Given a known reservoir storage capacity of K, the reservoir operating 
problem involves finding the sequence of releases rt that maximizes total 
net benefits.  These net benefits may be a function of the storage volume 
as well as of the release.
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Reservoir Operation – Benefit Function

Let st be the initial storage volume in period t.  
Assume that the net benefits in each period t can be defined as functions of 

the initial and final storage volumes (st and st+1) and release (rt), and can 
be denoted by NBt(st, st+1, rt).  

Also assume that these net benefit functions for each period t will be the 
same from one year to the next, at least for the foreseeable future.

Assume that there are T periods in a year.

Benefits associated with storage might stem from hydropower, flood control, 
lake recreation and the protection of various species of wildlife and their 
habitats.  

Release benefits could result from navigation, water supplies (irrigation, 
drinking water, industrial use etc.) and waste water dilution. 
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Reservoir Operation – Optimization

A management objective might be to maximize the total annual benefits.

The constraints include a mass balance of inflows and outflows or releases in each 
period t.  There are many ways to express this mass balance.  
Assuming no significant evaporation or seepage losses, one approach is to equate the 
final storage volume st+1 in period t (which is same as the initial storage volume in 
period t+1) to the initial storage volumes st plus inflow it minus release rt. 

Note that if period t is T, then T + 1 is equal to 1, the initial period in the year.  

The constraints must also include the capacity restriction K on each storage volume st. 
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Sequential Reservoir Operation Process

The stages are the time periods, and the states are the storage volumes.

Again, either a forward- or backward-moving sequence of recursive equations 
can be formulated. 
Backward recursion DP is used here. 
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Sequential Reservoir Operation Process

Proceeding backward, a particular period is selected after which it is assumed the 
reservoir will no longer be operated.  
This can be any period in any year, because the eventual "steady-state" optimal policy 
{rt} derived from the model will be independent of this arbitrary assumption provided 
that both the average inflows it and net benefit functions NBt(.) in each period t do not 
change from one year to the next. 

Let the arbitrary terminal period be period T.  Only one period of operation remains, 
which is the period on the far right of the time shown in Figure.  
Next define a function fT

1(sT) that is the maximum net benefit derived from operating the 
reservoir in the last period of that last year, given an initial storage volume of sT
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Sequential Reservoir Operation Process

The constraints on the release rT limit it to the water available, and force a spill if the 
available water exceeds the reservoir capacity K. 

Above equation must be solved for discrete values of sT from 0 (or some minimum 
allowable storage volume in that period) to the maximum possible storage volume K.

These values of fT
1(sT) will be needed to solve the next recursive equation. 
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Sequential Reservoir Operation Process

Moving backward in time (from right to left in Figure), the next stage is the previous 
period, T-1.  There are now two periods remaining for reservoir operation.
In this case, the function f 2T-1(sT-1) represents the maximum total net benefit with two 
periods to go, given an initial storage of  sT-1 in period T-1.  
Since sT = sT-1+iT-1-rT-1, f 1T(sT) can be expressed in terms of the state variable sT-1, the 
decision variable rT-1, and the known average inflow iT-1. 

Again, this must be solved for all discrete values of sT-1 between 0 and K. 
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Sequential Reservoir Operation Process

Continuing backward in time, the general recursive equation for each period t 
with n (n>1) periods remaining can be written. 

The index n proceeds from 2 and increases at each successive stage and the index t
cycles backward from period T to 1 and then to period T again.  
The relationship between periods t and the index n can be seen in Figure. 
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Sequential Reservoir Operation Process

Now the question remains, how many recursive equations must be solved to obtain the 
optimal release policy rt for each period t associated with each discrete value of the 
initial storage volumes st ?  

Usually after proceeding through only three to four years, the optimal release rt
associated with each initial storage volume st will be the same as the corresponding rt
and st in  the previous year.  
This is called a stationary solution.  

The maximum annual net benefit resulting from this policy will equal 
{ft

n+T (st) - ft
n(st)} for any value of st and t.  

One can recognize that indeed the stationary policy has been identified when the values 
{ft

n+T (st) - ft
n(st)} are independent of st and t.
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Reservoir Operation using DP 
Example-1

Inflows during four seasons to a reservoir with storage capacity of 4 units are, 
respectively, 2, 1, 3, and 2 units. Only discrete values, 0, 1, 2,..., are considered for 
storage and release. Overflows from the reservoir are also included in the release. 
Reservoir storage at the beginning of the year is 0 units. Release from the reservoir 
during a season results in the following benefits which are same for all the four 
seasons. Obtain the release policy using backward recursion.

Release Benefits
0 -100
1 250
2 320
3 480
4 520
5 520
6 410
7 120
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Example-1: Solution
Stage 1: t=4, n=1, Q4=2

*

Release Benefits
0 -100

1 250
2 320
3 480
4 520
5 520
6 410
7 120
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Example-1: Solution Contd.
Stage 2: t=3, n=2, Q3=3

Release Benefits
0 -100

1 250
2 320
3 480
4 520
5 520
6 410
7 120
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Example-1: Solution Contd.
Stage 2: contd.
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Example-1: Solution Contd.
Stage 3: t=2, n=3, Q2=1
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Example-1: Solution Contd.
Stage 4: t=1, n=4, Q1=2

3

3
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Reservoir Operation using DP 
Example-2

Consider a reservoir site at which it is desirable to maintain a constant storage volume 
of 20 and a constant release of 25.  Assume that the capacity K of the reservoir is 30 
and that the inflows it are 10, 50, and 20 in three distinct seasons (t = 1,2,3), 
respectively.  Desired is an operating policy that minimizes the annual sum of squared 
deviations from these desired storage volume and release values or targets. 

Hence NBt(st, st+1, rt) will be equal to [(20 - st)2 + (25 - rt)2].  
In the above form, NB is not net benefits but the squared deviations from the targets. 
Therefore NB should be minimized (modeled losses). 
Or consider negative of sum of squared deviations for maximization. 

Let st take on the discrete values 0, 10, 20, and 30, 
and rt the discrete values of 10, 20, 30, and 40.
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Solution
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Solution Contd.

Stationary Solution
At this stage, not only the releases rt

* are the 
same in each succeeding year but also the 
difference {ft

n+3(st) - ft
n(st)} is a constant, 275 

for all st and t.

This value (275) is the minimum annual sum 
of squared deviations that can be obtained by 
following the derived sequential operating 
policy. 

The corresponding stationary storage volumes are 20, 10 and 30 for periods 1, 2, and 3, respectively. 
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Characteristics of DP Problem
A single n-variable problem is divided into n number of single variable problems. 
This requires that the objective function of the optimization problem be separable 
with respect to stages. For example, the function, R1(X1) + R2(X2) + ... + Rn(Xn) is 
separable, because we can identify exactly one variable in the objective function 
associated with each stage. Similarly the function, X1.X2.X3...Xn is also separable. 
However, the function, X1 X2 + X2 X3 + X3 X4... is not separable and problems with 
such objective functions cannot be formulated as DP problems.

Each stage has a number of possible states associated with it. In the water allocation 
problem, the amount of water available for allocation at a stage defines the state at 
that stage.

The policy decision transforms the current state into a state associated with the next 
stage.

A recursive relationship identifies the optimal decision at a given stage for a specific 
state, given the optimal decision for each state at the previous stage.

A solution moves backward (or forward), stage by stage, till optimal decision for the 
last stage is found. From this solution, the optimal decisions for other stages are 
traced back.
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Characteristics of DP Problem Contd.
It is important to examine a major assumption made in each of the problems 
presented to be solved by DP.  

The net benefits or costs resulting from each decision at each stage of the problem are 
dependent only on the state variables and are otherwise independent of decisions 
made at other stages.  

If the returns at any stage are dependent on the decisions made at other stages in a 
way not captured by the state variables, then dynamic programming is not an 
appropriate solution technique, except perhaps as a rough approximation.  

For example, DP is not suited for determining the optimal capacity of a reservoir or 
the optimal target release or storage volumes along with its operating policy because 
capacity and target decisions affect the constraints on system operation and the net 
benefit function is not just one, but every time period or stage.  For such planning 
problems other  methods, such as linear optimization models, are more successful.
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Thank You


