

DP - Water Allocation Problem

First step in DP is to structure the allocation problem as a sequential allocation process or multi-stage decision making procedure

DP - Water Allocation Problem

Allocation to each user is considered a decision stage in a sequence of decisions
When a portion x_{j} of the total water supply Q is allocated at stage j, this results in net benefits as

$$
R_{j}\left(x_{j}\right)=a_{j}\left[1-\exp \left(-b_{j} x_{j}\right)\right]-c_{j} x_{j}^{d j}
$$

A state variable s_{j} is defined as the amount of water available to the remaining (4-j) users or stages.

Finally, a state transformation function $s_{j+1}=s_{j}-x_{j}$ defines the state in the next stage as a function of the current state and the current allocation or decision

6
D Nagesh Kumar, IISc
DP_1: Water Allocation

DP - Recursive Equations

$f_{1}(Q)=\operatorname{maximum}\left[R_{1}\left(x_{1}\right)+f_{2}\left(Q-x_{1}\right)\right]$
$f_{1}(Q)=\operatorname{maximum}\left[R_{1}\left(x_{1}\right)+f_{2}\left(Q-x_{1}\right)\right]$
$f_{2}\left(s_{2}\right)=\operatorname{maximum}\left[R_{2}\left(x_{2}\right)+f_{3}\left(s_{2}-x_{2}\right)\right]$
$f_{2}\left(s_{2}\right)=\operatorname{maximum}\left[R_{2}\left(x_{2}\right)+f_{3}\left(s_{2}-x_{2}\right)\right]$
$f_{3}\left(S_{3}\right)=\operatorname{maximum}_{x, \Delta 0 \leq x_{1} \leq S_{1}} R_{3}\left(x_{3}\right)$
$f_{3}\left(S_{3}\right)=\operatorname{maximum}_{x, \Delta 0 \leq x_{1} \leq S_{1}} R_{3}\left(x_{3}\right)$
$f_{1}(Q)$ is the maximum net benefits achievable with a quantity of water Q to allocate to uses 1,2 and 3 . This cannot be solved without a knowledge of $f_{2}\left(s_{2}\right)$. Similarly, $f_{2}\left(s_{2}\right)$ cannot be solved without a knowledge of $f_{3}\left(s_{3}\right)$. Fortunately, $f_{3}\left(s_{3}\right)$ can be found using above equation without reference to any other maximum net benefit function $f_{i}\left(s_{\mathrm{j}}\right)$.
Once the value of $f_{3}\left(s_{3}\right)$ is determined, the value of $f_{2}\left(s_{2}\right)$ can be computed, which will allow determination of $f_{f_{1}}(Q)$, the quantity of interest.
D Nagesh Kumar, IISc
D. Water Allocation

Discrete Dynamic Programming (DDP)

When the state variables or quantity of water available s_{j} at stage j and the decision variables or allocations x_{j} to use j are allowed to take on only a finite set of discrete values, the problem is a discrete dynamic programming problem (DDP).

The solution will always be a global maximum (or minimum) regardless of the concavity, convexity, or even the continuity of the functions $R_{j}\left(x_{j}\right)$.
Obviously, the smaller the difference or interval between each discrete value of each state and decision variable, the greater will be the mathematical accuracy of the solution when the x_{j} are actually continuous decision variables.
Solving discrete dynamic programming problems to find the value of the objective function, and also the values of the decision variables that maximize or minimize the objective function, is best done through the use of tables, one for each stage of the decision-making process.

DP - Recursive Equations

Since $s_{3}=s_{2}-x_{2}$, equation, $f_{1}(Q)$, can be rewritten in terms of only x_{1}, x_{2}, and s_{2} : $f_{1}(Q)=$ maximum $\left[R_{1}\left(x_{1}\right)+\right.$ maximum $\left[R_{2}\left(x_{2}\right)+f_{3}\left(s_{2}-x_{2}\right)\right]$

$$
x_{1} \& 0_{0} x_{1} \& \Omega
$$

Now let the function $f_{2}\left(s_{2}\right)$ equal the maximum net benefits derived from uses 2 and 3 given a quantity s_{2} to allocate to those uses. Thus for various discrete values of s_{2} between 0 and Q, one can determine the value of $f_{2}\left(s_{2}\right)$ where

$$
f_{2}\left(s_{2}\right)=\operatorname{maximum}_{x_{2} \& 0 \leq x_{0}-s_{0}}\left[R_{2}\left(x_{2}\right)+f_{3}\left(s_{2}-x_{2}\right)\right]
$$

Finally, since $s_{2}=Q-x_{1}$, equation $f_{1}(Q)$, can be written in terms of only x_{1} and
$Q: f_{1}(Q)=\operatorname{maximum}\left[R_{1}\left(x_{1}\right)+f_{2}\left(Q-x_{1}\right)\right]$

8
D Nagesh Kumar, IISc
DP_1: Water Allocation

DP - Recursive Equations

Recursive sets of equations are fundamental to dynamic programming.

It is sometimes easier and quicker to solve numerous single variable problems than a single multivariable problem.

Each recursive equation represents a stage at which a decision is required, hence the term "multistage decision-making procedure".

DP - Water Allocation Problem - Example

For the previous problem, let $Q=5$, and $a_{j}=100,50,100 ; b_{j}=0.1,0.4,0.2$; $c_{j}=10,10,25$; and $d_{j}=0.6,0.8,0.4$ for $j=1,2,3$, respectively.

Values of Net Benefit Function, $R_{j}\left(x_{j}\right)$

x_{i}	$\mathrm{R}_{1}\left(x_{1}\right)$	$\mathrm{R}_{2}\left(x_{2}\right)$	$\mathrm{R}_{3}\left(x_{3}\right)$
0	0	0	0
1	-0.5	6.5	-6.9
2	3.0	10.1	0.0
3	6.6	10.9	6.3
4	10.0	9.6	11.5
5	13.1	7.0	15.6
D Nagesh Kumar, IISc			

DP - Example (contd.)
 Solution

From the Table for stage 2 , the optimal allocation $x z^{*}$, to user 2 given $s_{2}=5$, is 1 . Hence the optimal s_{3}, the quantity available to allocate to user 3 , is $s_{2}-x_{2}=5-1=4$.

From the Table for stage 1, the optimal allocation $x_{3}{ }^{*}$, to user 3, given $s ;=4$, is 4. \mid
The sum of the allocations, in this case, are equal to $\mathrm{Q}=5$.

D Nagesh Kumar, IISc
DP_1: Water Allocation

DP - Example (contd.)
Stage 2: Calculation of $f_{2}\left(s_{2}\right)$
$f_{2}\left(s_{2}\right)=\underset{x_{2} \& 0 x i m u m}{\max }\left[R_{2}\left(x_{2}\right)+f_{3}\left(s_{2}-x_{2}\right)\right]$
$x_{2} \& 0 \leq x_{2} \leq s_{2}$

14
D Nagesh Kumar, IISc
DP_1: Water Allocation

	DP - Example (contd.) Solution
	From the Table for stage 2, the optimal allocation $x_{2}{ }^{*}$, to user 2 given $s_{2}=5$, is 1 . Hence the optimal s_{3}, the quantity available to allocate to user 3 . is $s_{2}-x_{2}=5-1=4$.
	From the Table for stage 1, the optimal allocation $x_{3}{ }^{*}$, to user 3 , given $s ;=4$, is 4 . The sum of the allocations, in this case, are equal to $Q=5$.
16	D Nagesh Kumar, IISc DP_1: Water Allocation

Principle of Optimality

Principle of Optimality

The procedure just described is a process that moves backward through the network from stage 3 to stage 1 to obtain a solution

It is based on the principle that
No matter in what state of what stage one may be, in order for a policy to be optimal, one must proceed from that state and stage in an optimal manner.

Principle of Optimality - Forward recursion

The procedure could just as well begin at stage 1 and proceed forward through the network.
In this case a function $f_{j}^{\prime}\left(s_{j}\right)$ would be defined as the total net benefit from uses 1 to j given s_{j} units of water to allocate to those uses.
$f_{1}^{\prime}\left(s_{1}\right)=\operatorname{Maximum}\left[R_{1}\left(x_{1}\right)\right]$
Since the optimal ${ }_{1} s_{1}$ is unknown, equation 1 must be solved for various discrete values of s_{1} between 0 and Q. Next
$f_{2}^{\prime}\left(s_{2}\right)=\operatorname{Maximum}\left[R_{2}\left(x_{2}\right)+f_{1}^{\prime}\left(s_{2}-x_{2}\right)\right]$
$x_{2}=x_{2}$
where $f_{2}^{\prime}\left(s_{2}\right)$ is maximum net benefits from uses 1 and 2 with s_{2} units of water available to allocate. Once again, this equation must be solved for various values of s_{2} between 0 and Q. \qquad DP_1: Water Allocation

Bellman's Principle of Optimality (1957)

Backward recursion:
No matter in what state of what stage one may be, in order for a policy to be optimal, one must proceed from that state and stage in an optimal manner. Forward recursion:
No matter in what state of what stage one may be, in order for a policy to be optimal, one had to get to that state and stage in an optimal manner.
While some problems can be solved equally well by either backward or forward-moving procedures, other problems may be solved by only one approach, but not both. In either case, there must be a starting or ending point that does not depend on other stages in order to be able to define the first of the recursive equations.
Unlike other constrained optimization procedures, DDP methods are often simplified by the addition of constraints. For example, addition of lower and upper limits on each of the allocations x_{j}, could narrow the number of discrete values of x_{j} to be considered. D Nagesh Kumar, IISc DP_1: Water Allocation

DP - Multiple State Variables - Contd.

Unlike the original problem, there are now two allocations to make at each stage water and land.
Hence an additional state variable r_{j} is required to indicate the amount of land available for allocation to the remaining $4-j$ crops.

The general recursive relation becomes.

$$
f_{j}\left(s_{j}, r_{j}\right)=\underset{0_{\leq} x_{j} s s_{j} \& x_{j} s r_{j},}{\operatorname{maximum}}\left[R_{j}\left(x_{j}\right)+f_{j+1}\left(s_{j}-x_{j}, r_{j}-\frac{x_{j}}{u_{j}}\right)\right]
$$

which must be solved for various discrete values of both state variables s_{j} and r_{j} $\left(0 \leq s_{j} \leq Q\right.$ and $\left.0 \leq r_{j} \leq A\right)$.

DP - Curse of Dimensionality

Although the addition of a second state variable causes no conceptual difficulties, it does increase the required computational effort.

The larger the number of state variables, the more combinations of discrete states that must be examined at each stage. If done on a computer, this added dimensionality requires more computer time and storage capacity.

The existence of more than three state variables can exceed the computational capacity of a computer if many discrete values of each state variable are required.

This occurs because of the exponential increase in the total number of discrete states that have to be considered as the number of state variables increases.

This phenomenon is termed the Curse of Dimensionality of
multiple-state-variable dynamic programming problems.
25 D Nagesh Kumar, IISc

DP_1: Water Allocation

DP - Additional Applications

Three common DP applications in water resources planning are

- Water allocation
- Capacity expansion and
- Reservoir operation

The previous three-user water allocation problem illustrates the first type of application.

Other two applications will be discussed next.

