

 $= b_1$

 $= b_{\gamma}$

 $= b_{n}$

	Finding Dual of a L	P problemcontd.					
	Primal	Dual					
	ith variable unrestricted	ith constraint with = sign					
	jth constraint with = sign	jth variable unrestricted					
	RHS of jth constraint	Cost coefficient associated with j th variable in the objective function					
	Cost coefficient associated with i th variable in the objective function	RHS of i th constraint					
13	D Nagesh Kumar, IISc	LP_5: Revised Simplex, Dual etc					

	Di st	ual Simplex Method: Iterative epscontd.						
1	5. Pivotal operation: Pivotal operation is exactly same as in the case of simplex method, considering the pivotal element as the element at the intersection of pivotal row and pivotal column.							
	6.	Check for optimality: If all the basic variables have nonnegative values then the optimum solution is reached. Otherwise, Steps 3 to 5 are repeated until the optimum is reached.						
22		D Nagesh Kumar, IISc LP_5: Revised Simplex, Dual etc						

	Dual Simplex Method: An Example
C	Consider the following problem:
	Minimize $Z = 2x_1 + x_2$ subject to $x_1 \ge 2$ $3x_1 + 4x_2 \le 24$ $4x_1 + 3x_2 \ge 12$
23	D Nagesh Kumar, IISc LP_5: Revised Simplex, Dual etc

	Dual S An Ex	Simj amj	plex ple.	а Ме сс	ethc ontd	od:				
	Successive iterations:									
	Iteration	Basis	z	<i>X</i> ,	<i>X</i> ,	Vari x,	ables		Xe	- b,
		z	1	0	0	-2/3	0	-1/3	0	16/3
		<i>x</i> ₁	0	1	0	-1	0	0	0	2
	3	X_4	0	0	0	-7/3	1	4/3	0	38/3
		<i>x</i> ₂	0	0	ı	4/3	0	-1/3	0	4/3
		X ₆	0	0	0	11/3	0	(-2/3)	1	-1/3
		Ra	tios →					0.5		
7	D Nagesh Kumar, IISc LP_5: Revised Simpl						plex, Dual etc			

	Dua An	al Sir Exar	npl npl	ex e	Me .co	thc ntd	od: I.				
	Successive iterations:										
		Iteration	Basis	Z	X ₁	.X.1	Varia X1	ables Xa	Xs	Na	<i>b</i> ,
			Z	1	0	0	2.5	0	0	-0.5	5.5
			x_1	0	I	0	-1	0	0	0	2
		4	X_4	0	0	0	5	I.	θ	2	12
			X_2	0	0	I	-0.5	0	0	-0.5	1.5
			x_{5}	0	0	0	-5.5	0	ı	-1.5	0.5
			Ra	tios →							
	As all the <i>b</i> , are positive, optimum solution is reached. Thus, the optimal solution is $Z = 5.5$ with $x_1 = 2$ and $x_2 = 1.5$										
28			D Na	igesh I	Kumar,	IISc			LP_5:	Revised	d Simplex, Dual etc

Problems				
Write the d	ual for the following	LP problems		
Problem 1 Maximize $f = 5x - 2x$	Problem 2 Minimize $f = x - 4y$	Problem 3		
Maximizer 20	$\frac{1}{1}$	Maximize $f = x - 4y$		
$3x + 2y \ge 6$ $x - y \le 6$	$\begin{array}{l} x - y \ge -4 \\ 4x + 5y \le 45 \end{array}$	$\begin{array}{rcl} x - y \ge -4 \\ 4x + 5y \le 45 \end{array}$		
$9x + 7y \le 108$ $3x + 7y \le 70$	$5x - 2y \le 20$ $5x + 2y \le 10$	$5x - 2y \le 20$ $5x + 2y \ge 10$ x > 0, y is unrestricted in sign		
$2x - 5y \ge -35$ $x \ge 0, y \ge 0$	$x \ge 0, y \ge 0$			
39	D Nagesh Kumar, IISc	LP_5: Revised Simplex, Dual etc		

	LP formulation problem								
Two quar units yield units the a F, H	Two types of crops can be grown in a particular irrigation area each year. Each unit quantity of yield of crop A produced can be sold for a price P_A and requires W_A units of water, L_A units of land, F_A units of fertilizer and H_A units of labour. Similarly, yield from crop B can be sold at a unit price of P_B and requires W_B , L_B , F_B , and H_B units of water, land, fertilizer and labour respectively per unit of crop. Assume that the available quantity of water, land, fertilizer and labour respectively per unit of soft as of each of the burgers but should be produced in order to resuming total income.								
	Decision variables: X _A and X _B - Quantity of yield from crops A and B respectively								
	Objective Function: $P_A X_A + P_B X_B$								
	Subject to:								
	Water availability constraint	$W_A X_A + W_B X_B \leq W$							
	Land availability constraint	$L_A \hspace{0.1in} X_A \hspace{0.1in} + \hspace{0.1in} L_B \hspace{0.1in} X_B \hspace{0.1in} \leq L$							
	$\label{eq:Fertilizer} \mbox{Fertilizer availability constraint} \qquad \mbox{F}_A \ \ X_A + \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $								
	Labour availability constraint	$H_A X_A + H_B X_B \leq H$							
	Non-negativity constraints	$X_A \ge 0$ and $X_B \ge 0$							
40	D Nagesh Kumar, IISc	LP_5: Revised Simplex, Dual etc							

