

Revised Simplex method: Notations

Notations for subsequent discussions:

\mathbf{C}_{s} is the row vector of cost coefficients corresponding to \mathbf{X}_{s}, and
\mathbf{S} is the basis matrix corresponding to \mathbf{X}_{s}
6
D Nagesh Kumar, IISc LP_5: Revised Simplex, Dual etc

Revised Simplex method: Iterative steps

2. Selection of departing variable
a) A new column vector \mathbf{U} is calculated as $\mathbf{U}=\mathbf{S}^{-1} \mathbf{B}$
b) Corresponding to the entering variable, another vector \mathbf{V} is calculated as $\mathbf{V}=\mathbf{S}^{-1} \mathbf{P}$, where \mathbf{P} is the column vector corresponding to entering variable.
c) It may be noted that length of both \mathbf{U} and \mathbf{V} is same $(=m)$. For $i=1, \ldots, m$, the ratios, $\mathbf{U}(i) / \mathbf{V}(i)$, are calculated provided $\mathbf{V}(i)>0$ $i=r$, for which the ratio is least, is noted. The $r^{\text {th }}$ basic variable of the current basis is the departing variable. If it is found that $\mathbf{V}(i)<0$ for all i, then further calculation is stopped concluding that bounded solution does not exist for the LP problem a hand.

Revised Simplex method:
 Iterative steps

Revised Simplex method:
Iterative steps
\mathbf{S} is replaced by $\mathbf{S}_{\text {new }}$ and steps 1 through 3 are repeated.
If all the coefficients calculated in step 1, i.e., \mathbf{C}_{s} is positive
(negative) in case of maximization (minimization) problem, then optimum solution is reached

The optimal solution is
$X_{s}=S^{-1} B$ and $z=C X_{s}$

10
D Nagesh Kumar, IISc LP_5: Revised Simplex, Dual etc

Finding Dual of a LP problem

Primal	Dual
Maximization	Minimization
Minimization	Maximization
$\mathrm{i}^{\text {th }}$ variable	$\mathrm{i}^{\text {th }}$ constraint
$\mathrm{j}^{\text {th }}$ constraint	$\mathrm{j}^{\text {th }}$ variable
$x_{i}>0$	Inequality sign of $\mathrm{i}^{\text {th }}$ Constraint: if dual is maximization \geq if dual is minimization
D Nagesh Kumar, IISc contd. to next slide	

Finding Dual of a LP problem...contd.
Note:
Before finding its dual, all the constraints should be transformed to 'less-than-equal-to' or 'equal-to' type for maximization problem and to 'greater-than-equal-to' or 'equal-to' type for minimization problem.

It can be done by multiplying with -1 both sides of the constraints, so that inequality sign gets reversed.

15
D Nagesh Kumar, IISc
LP_5: Revised Simplex, Dual etc

Finding Dual of a LP problem:
An example

Primal-Dual relationships

- If one problem (either primal or dual) has an optimal feasible solution, other problem also has an optimal feasible solution. The optimal objective function value is same for both primal and dual.
- If one problem has no solution (infeasible), the other problem is either infeasible or unbounded.
- If one problem is unbounded the other problem is infeasible.

Finding Dual of a LP problem: An example

Primal	Dual
Maximize $Z=4 x_{1}+3 x_{2}$	Minimize $Z^{\prime}=6000 y_{1}-2000 y_{2}+4000 y_{3}$
Subject to	Subject to
$x_{1}+\frac{2}{3} x_{2} \leq 6000$	$y_{1}-y_{2}+y_{3}=4$
$x_{1}-x_{2} \geq 2000$	$\frac{2}{3} y_{1}+y_{2} \leq 3$
$x_{1} \leq 4000$	$y_{1} \geq 0$
x_{1} unrestricted	$y_{2} \geq 0$
$x_{2} \geq 0$	$y_{3} \geq 0$

$$
\begin{aligned}
& \text { Simplex Method verses Dual Simplex Method } \\
& \text { 1. Simplex method starts with a nonoptimal but } \\
& \text { feasible solution where as dual simplex method } \\
& \text { starts with an optimal but infeasible solution. } \\
& \text { 2. Simplex method maintains the feasibility during } \\
& \text { successive iterations where as dual simplex } \\
& \text { method maintains the optimality. } \\
& \text { D Nagesh Kumar, IISc }
\end{aligned}
$$

Dual Simplex Method: Iterative steps

 modified to 'less-than-equal-to' sign. Constraints with greater-than-equal-to' sign are multiplied by -1 through out so that inequality sign gets reversed. Finally, all these constraints are transformed to equality sign by introducing required slack variables.2. Modified problem, as in step one, is expressed in the form of a simplex tableau. If all the cost coefficients are positive (i.e., optimality condition is satisfied) and one or more basic variables have negative values (i.e., non-feasible solution), then dual simplex method is applicable.

LP_5: Revised Simplex, Dual etc

	Dual Simplex Method: Iterative steps...contd.
	3. Selection of exiting variable: The basic variable with the highest negative value is the exiting variable. If there are two candidates for exiting variable, any one is selected. The row of the selected exiting variable is marked as pivotal row. 4. Selection of entering variable: Cost coefficients, corresponding to all the negative elements of the pivotal row, are identified. Their ratios are calculated i.e., $\text { ratio }=\left(\frac{\text { Cost Coefficients }}{\text { Elements of pivotal row }}\right)$ The column corresponding to minimum ratio is identified as the pivotal column and associated decision variable is the entering variable.
21	D Nagesh Kumar, IISc LP_5: Revised Simplex, Dual etc

Dual Simplex Method: Iterative
steps...contd.
5. Pivotal operation: Pivotal operation is exactly same as in the case of simplex method, considering the pivotal element as the element at the intersection of pivotal row and pivotal column.
6. Check for optimality: If all the basic variables have nonnegative values then the optimum solution is reached. Otherwise, Steps 3 to 5 are repeated until the optimum is reached.

Dual Simplex Method: An Example...contd.

After converting them to 'less than or equal to' type constraints and introducing the slack variables the problem is reformulated with equality constraints as follows:

Minimize $\quad Z=2 x_{1}+x_{2}$
subject to $\quad-x_{1} \quad+x_{3}=-2$
$3 x_{1}+4 x_{2} \quad+x_{4}=24$
$-4 x_{1} \quad-3 x_{2} \quad+x_{5}=-12$
$x_{1} \quad-2 x_{2} \quad+x_{6}=-1$

24
Dual Simplex Method:
An Example...contd.
Expressing the problem in the tableau form:

\qquad

Dual Simplex Method: An Example...contd.

Dual Simplex Method: An Example...contd.

Sensitivity or post optimality analysis

- Changes that can affect only Optimality
- Change in coefficients of the objective function, $\mathrm{C}_{1}, \mathrm{C}_{2}$,..
- Re-solve the problem to obtain the solution
- Changes that can affect only Feasibility
- Change in right hand side values, b_{1}, b_{2},..
- Apply dual simplex method or study the dual variable values
- Changes that can affect both Optimality and Feasibility
- Simultaneous change in $\mathrm{C}_{1}, \mathrm{C}_{2}, .$. and $\mathrm{b}_{1}, \mathrm{~b}_{2}$,
- Use both primal simplex and dual simplex or re-solve
31

$$
\begin{aligned}
& \text { A dual variable, associated with a constraint, indicates } \\
& \text { a change in } Z \text { value (optimum) for a small change in } \\
& \text { RHS of that constraint. } \\
& \qquad \Delta Z=y_{j} \Delta b_{i} \\
& \text { where } \quad y_{j} \text { is the dual variable associated with the } i^{\text {th }} \text { constraint, } \\
& \Delta \mathrm{b}_{i} \text { is the small change in the RHS of } i^{\text {h }} \text { constraint, } \\
& \Delta \mathrm{Z} \text { is the change in objective function owing to } \Delta \mathrm{b}_{i} \text {. } \\
& \text { D Nagesh Kumar, IISc } \quad \text { LP_5: Revised Simplex, Dual etc }
\end{aligned}
$$

Sensitivity or post optimality analysis: An Example

Let, for a LP problem, ith constraint be
$2 x_{1}+x_{2} \leq 50$
and the optimum value of the objective function be 250 .
RHS of the $i^{\text {th }}$ constraint changes to 55 , i.e., $i^{\text {th }}$ constraint changes to

$$
2 x_{1}+x_{2} \leq 55
$$

Let, dual variable associated with the $i^{\text {ih }}$ constraint is y_{j}, optimum value of which is 2.5 (say). Thus, $\Delta \mathrm{b}_{i}=55-50=5$ and $\mathrm{y}_{j}=2.5$

So, $\Delta \mathrm{Z}=\mathrm{y}_{j} \Delta \mathrm{~b}_{i}=2.5 \times 5=12.5$ and revised optimum value of the objective function is $250+12.5=262.5$.
32

Other Algorithms

Few other methods, for solving LP problems, use an entirely different algorithmic philosophy.

- Khatchian's ellipsoid method
- Karmarkar's projective scaling method

34
D Nagesh Kumar, IISc
LP_5: Revised Simplex, Dual etc

Comparative discussion between new

 methods and Simplex method1. Both Khatchian's ellipsoid method and Karmarkar's projective scaling method have been shown to be polynomial time algorithms.
Time required for an LP problem of size n is at most $a n^{b}$, where a and b are two positive numbers.
2. Simplex algorithm is an exponential time algorithm in solving LP problems.
Time required for an LP problem of size n is at most $c 2^{n}$, where c is a positive number

36
D Nagesh Kumar, IISc LP_5: Revised Simplex, Dual etc

Karmarkar's projective scaling method

- Also known as Karmarkar's interior point LP algorithm
- Starts with a trial solution and shoots it towards the optimum solution
- LP problems should be expressed in a particular form

LP_5: Revised Simplex, Dual etc

LP formulation problem

Two types of crops can be grown in a particular irrigation area each year. Each unit quantity of yield of crop A produced can be sold for a price P_{A} and requires W_{A} units of water, L_{A} units of land, F_{A} units of fertilizer and H_{A} units of labour. Similarly, yield from crop B can be sold at a unit price of P_{B} and requires W_{B}, L_{B}, F_{B}, and H_{B} yield from crop B can be sold at a unit price of P_{B} and requires W_{B}, L_{B}, F_{B}, and H_{B}
units of water, land, fertilizer and labour respectively per unit of crop. Assume that the available quantity of water, land, fertilizer and labour are known and equal W, L F, H respectively. Structure a LP model for estimating the quantities of each of the two crops that should be produced in order to maximize total income

Decision variables: X_{A} and X_{B} - Quantity of yield from crops A and B respectively
Objective Function: $P_{A} X_{A}+P_{B} X_{B}$
Subject to:

Water availability constraint	$W_{A} X_{A}+W_{B} X_{B} \leq W$
Land availability constraint	$L_{A} X_{A}+L_{B} X_{B} \leq L$
Fertilizer availability constraint	$F_{A} X_{A}+F_{B} X_{B} \leq F$
Labour availability constraint	$H_{A} X_{A}+H_{B} X_{B} \leq H$
Non-negativity constraints	$X_{A} \geq 0$ and $X_{B} \geq 0$
L Nagesh Kumar, IISc 5	Revised Simplex, Dual etc

