

Objectives

Objectives

- To discuss the Big-M method
- Discussion on different types of LPP solutions in the context of Simplex method
- Discussion on maximization verses minimization problems

D Nagesh Kumar, IISc
LP_4: Simplex Method-II

Transformation of LPP for Big-M method

1. One 'artificial variable' is added to each of the 'greater-than-equal-to' (\geq) and equality (=) constraints to ensure an initial basic feasible solution
2. Artificial variables are 'penalized' in the objective function by introducing a large negative (positive) coefficient for maximization (minimization) problem.
3. Cost coefficients, which are supposed to be placed in the Zrow in the initial simplex tableau, are transformed by 'pivotal operation' considering the column of artificial variable as pivotal column' and the row of the artificial variable as 'pivotal row'
4. If there are more than one artificial variables, step 3 is repeated for all the artificial variables one by one.

D Nagesh Kumar, IISc
LP_4: Simplex Method-II

Example

- After incorporating the artificial variables

$$
\begin{array}{ll}
\text { Maximize } & Z=3 x_{1}+5 x_{2}-M a_{1}-M a_{2} \\
\text { subject to } & x_{1}+x_{2}-x_{3}+a_{1}=2 \\
& x_{2}+x_{4}=6 \\
& 3 x_{1}+2 x_{2}+a_{2}=18 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

where x_{3} is surplus variable, x_{4} is slack variable and a_{1} and a_{2} are the artificial variables

D Nagesh Kumar, IISc
LP_4: Simplex Method-II

Transformation of cost coefficients

Considering the modified objective function and the third constraint

By the pivotal operation $E_{3}-M \times E_{4}$ the cost coefficients are modified as
$Z-(3+4 M) x_{1}-(5+3 M) x_{2}+M x_{3}+0 a_{1}+0 a_{2}=-20 M$

D Nagesh Kumar, IISc
LP_4: Simplex Method-II

Construction of Simplex
 Tableau

Corresponding simplex tableau

Heration	Basis		Variables						b,	$\frac{b_{r}}{c_{n}}$
				x_{2}	x_{3}	x_{4}	a_{1}	a_{2}		
	z	1	-3-4M	$-5-3 \mathrm{M}$	M	0	0	0	-20.M	-
		0	(1)	1	${ }^{-1}$	0	1	0	2	2
	x_{4}	0		1	0	1	0	0	6	-
		0	(3)	2	0	0	0	1	18	6

Pivotal row, pivotal column and pivotal elements are shown as earlier D Nagesh Kumar, IISc LP_4: Simplex Method-II

Simplex Tableau...contd.

Successive simplex tableaus are as follows:

D Nagesh Kumar, IISc
LP_4: Simplex Method-II

Simplex method: ‘Unbounded’, ‘Multiple' and 'Infeasible’ solutions

Multiple (infinite) solutions

- If in the final tableau, one of the non-basic variables has a coefficient 0 in the Z-row, it indicates that an alternative solution exists.
- This non-basic variable can be incorporated in the basis to obtain another optimal solution.
- Once two such optimal solutions are obtained, infinite number of optimal solutions can be obtained by taking a weighted sum of the two optimal solutions.

D Nagesh Kumar, IISc
LP_4: Simplex Method-II

Minimization versus maximization problems

- Simplex method is described based on the standard form of LP problems, i.e., objective function is of maximization type
- However, if the objective function is of minimization type, simplex method may still be applied with a small modification

D Nagesh Kumar, IISc
LP_4: Simplex Method-II

Minimization versus maximization problems

The required modification can be done in either of following two ways.

1. The objective function is multiplied by -1 so as to keep the problem identical and 'minimization' problem becomes 'maximization'. This is because minimizing a function is equivalent to the maximization of its negative
2. While selecting the entering nonbasic variable, the variable having the maximum coefficient among all the cost coefficients is to be entered. In such cases, optimal solution would be determined from the tableau having all the cost coefficients as non-positive (≤ 0)

Minimization versus maximization problems

- One difficulty, that remains in the minimization problem, is that it consists of the constraints with greater-than-equal-to' (\geq) sign. For example, minimize the price (to compete in the market), however, the profit should cross a minimum threshold. Whenever the goal is to minimize some objective, lower bounded requirements play the leading role. Constraints with 'greater-than-equal-to' (\geq) sign are obvious in practical situations.
- To deal with the constraints with 'greater-than-equal-to' (\geq) and sign, Big-M method is to be followed as explained earlier.

LP: Elementary Transformations

More often than not, the LP model originally constructed does not satisfy the characteristics of a standard form or a canonical form. The following elementary operations enable one to transform an LP model into any desirable form.

1. Maximization of a function $f(x)$ is equal to the minimization of its negative counterpart, that is, $\operatorname{Max} f(x)=\operatorname{Min}[-f(x)]$.
2. Constraints of the \geq type can be converted to the \leq type by multiplying by -1 on both sides of the inequality.
3. An equation can be replaced by two inequalities of the opposite sign. For example, an equation $g(x)=b$ can be substituted by $g(x) \leq b$ and $g(x) \geq b$.
4. An inequality involving an absolute expression can be replaced by two inequalities without an absolute sign. For example, $|g(x)| \leq b$ can be replaced by $g(x) \leq b$ and $g(x) \geq-b$.
5. If a decision variable x is unrestricted-in-sign (i.e., it can be positive, zero, or negative), then it can be replaced by the difference of two nonnegative decision variables; $x=x^{+}-x^{-}$, where $x^{+} \geq 0$ and $x^{-}>0$.
6. To transform an inequality into an equation, a nonnegative variable can be added or subtracted.
4 D Nagesh Kumar, IISc LP 4: Simplex Method II

Assumptions in LP Models

- Proportionality assumption

This implies that the contribution of the j th decision variable to the effectiveness measure, $\mathrm{c}_{i} x_{j}$, and its usage of the various resources, $a_{i j} x_{j}$, are directly proportional to the value of the decision variable.

- Additivity assumption

This assumption means that, at a given level of activity (x_{1}, $\left.x_{2}, \ldots, x_{n}\right)$, the total usage of resources and contribution to the overall measure of effectiveness are equal to the sum of the corresponding quantities generated by each activity conducted by itself.

- Divisibility assumption

Activity units can be divided into any fractional level, so that non integer values for the decision variables are permissible.

- Deterministic assumption

All parameters in the model are known constants without uncertainty.
25 D Nagesh Kumar, IISc LP_4: Simplex Method-II

2. Consider a system composed of a manufacturing factory and a waste treatment plant owned by the manufacturer. The manufacturing plant produces finished goods that sell for a unit price of Rs 10,000 . However, the finished goods cost Rs 3,000 per unit to produce. In the manufacturing process two units of waste are generated for each unit of finished goods produced. In addition to deciding how many units of goods to produce, the plant manager must also decide how much waste will be discharged into a river without treatment so that the total net benefit to the company can be maximised and the water quality requirement of the water course is met. The treatment plant has a maximum capacity of treating ten units of waste with 80% waste removal efficiency at a treatment cost of Rs 600 per unit of waste. There is also an effluent tax imposed on the waste discharged to the receiving water body (Rs 2,000 for each unit of waste discharged). The water pollution control authority has set an upper limit of four units on the amount of waste the company may discharge. Formulate an LP model clearly specifying the decision variables. Objective function and constraints and solve it is using both graphical method as well as simplex method.

