

Objectives

- To introduce linear programming problems (LPP)
- To discuss the standard and canonical form of LPP
- To discuss elementary operation for linear set of equations

2
D Nagesh Kumar, IISc
LP_1: Intro

Canonical form of a set of linear equations
Let us consider the following example of a set of linear equations

$$
\begin{align*}
3 x+2 y+z & =10 \tag{0}\\
x-2 y+3 z & =6 \tag{0}\\
2 x+y-z & =1
\end{align*}
$$

The system of equation will be transformed through 'Elementary Operations'.

Transformation to Canonical form:

 An ExampleSet of equation $\left(\mathrm{A}_{0}, \mathrm{~B}_{0}\right.$ and $\left.\mathrm{C}_{0}\right)$ is transformed through elementary operations (shown inside bracket in the right side)

$$
\begin{array}{llll}
3 x+2 y+z=10 & \longrightarrow & x+\frac{2}{3} y+\frac{1}{3} z=\frac{10}{3} & \left(\mathrm{~A}_{1}=\frac{1}{3} \mathrm{~A}_{0}\right) \\
x-2 y+3 z=6 & \longrightarrow & 0-\frac{8}{3} y+\frac{8}{3} z=\frac{8}{3} & \left(\mathrm{~B}_{1}=\mathrm{B}_{0}-\mathrm{A}_{1}\right) \\
2 x+y-z=1 & \longrightarrow & 0-\frac{1}{3} y-\frac{5}{3} z=-\frac{17}{3} & \left(\mathrm{C}_{1}=\mathrm{C}_{0}-2 \mathrm{~A}_{1}\right)
\end{array}
$$

Note that variable x is eliminated from B_{0} and C_{0} equations to obtain B_{1} and C_{1}. Equation A_{0} is known as pivotal equation.

12 D Nagesh Kumar, IISc

LP_1: Intro
Transformation to Canonical form: Example contd.
Following similar procedure, y is eliminated from equation A_{1} and C_{1} considering B_{1} as pivotal equation:

$$
\begin{array}{ll}
x+0+z=4 & \left(\mathrm{~A}_{2}=\mathrm{A}_{1}-\frac{2}{3} \mathrm{~B}_{2}\right) \\
0+y-z=-1 & \left(\mathrm{~B}_{2}=-\frac{3}{8} \mathrm{~B}_{1}\right) \\
0+0-2 z=-6 & \left(\mathrm{C}_{2}=\mathrm{C}_{1}+\frac{1}{3} \mathrm{~B}_{2}\right)
\end{array}
$$

Transformation to Canonical form:
Example contd.

Finally, z is eliminated form equation A_{2} and B_{2} considering C_{2} as pivotal equation :

$x+0+0=1$	
$0+y+0=2$	$\left(\mathrm{~A}_{3}=\mathrm{A}_{2}-\mathrm{C}_{3}\right)$
$0+0+z=3$	$\left(\mathrm{~B}_{3}=\mathrm{B}_{2}+\mathrm{C}_{3}\right)$
	$\left(\mathrm{C}_{3}=-\frac{1}{2} \mathrm{C}_{2}\right)$

Note: Pivotal equation is transformed first and using the transformed pivotal equation other equations in the system are transformed.

The set of equations ($\mathrm{A}_{3}, \mathrm{~B}_{3}$ and C_{3}) is said to be in Canonical form which is equivalent to the original set of equations $\left(A_{0}, B_{0}\right.$ and $\left.C_{0}\right)$
D Nagesh Kumar, IISc LP 1: Intro

Transformation to Canonical form: Generalized procedure

Consider the following system of n equations with n variables
$a_{11} x_{1}+a_{12} x_{2}+\cdots \cdots \cdots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots \cdots \cdots+a_{2 n} x_{n}=b_{2}$ $\left(E_{2}\right)$
\vdots
\vdots
$a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots \cdots \cdots+a_{n n} x_{n}=b_{n}$
$\left(E_{n}\right)$

16
D Nagesh Kumar, IISc
LP_1: Intro

Transformation to Canonical form:

 Generalized procedureAfter repeating above steps for all the variables in the system of equations, the canonical form will be obtained as follows:

$$
\begin{array}{lc}
1 x_{1}+0 x_{2}+\cdots \cdots \cdots \cdots+0 x_{n}=b_{1}^{\prime \prime} & \left(E_{1}^{c}\right) \\
0 x_{1}+1 x_{2}+\cdots \cdots \cdots \cdot+0 x_{n}=b_{2}^{\prime \prime} & \left(E_{2}^{c}\right) \\
\vdots & \vdots \\
0 & \left(x_{1}+0 x_{2}+\cdots \cdots \cdots+1 x_{n}=b_{n}^{\prime \prime}\right.
\end{array}
$$

It is obvious that solution of above set of equation such as $x_{i}=b_{i}^{\prime \prime}$ is the solution of original set of equations also. D Nagesh Kumar, IISc LP_1: Intro

Transformation to Canonical form:
 More general case

Consider more general case for which the system of equations has m equation with n variables ($n \geq m$)

```
a11 \mp@subsup{x}{1}{}+\mp@subsup{a}{12}{}\mp@subsup{x}{2}{}+\cdots\cdots\cdots.+\mp@subsup{a}{1n}{}\mp@subsup{x}{n}{}=\mp@subsup{b}{1}{}
a21 \mp@subsup{x}{1}{}+\mp@subsup{a}{22}{}\mp@subsup{x}{2}{}+\cdots\cdots\cdots\cdots+\mp@subsup{a}{2n}{}\mp@subsup{x}{n}{}=\mp@subsup{b}{2}{}
am1 利}+\mp@subsup{a}{m2}{}\mp@subsup{x}{2}{}+\cdots\cdots\cdots\cdots+\mp@subsup{a}{mn}{}\mp@subsup{x}{n}{}=\mp@subsup{b}{m}{
Em
```

It is possible to transform the set of equations to an equivalent canonical form from which at least one solution can be easily deduced

Transformation to Canonical form:
More general case

By performing n pivotal operations for any m variables (say, $x_{1}, x_{2}, \cdots x_{m}$, called pivotal variables) the system of equations is reduced to canonical form as follows
$1 x_{1}+0 x_{2}+\cdots \cdots \cdots+0 x_{m}+a_{1, m+1}^{\prime \prime} x_{m+1}+\cdots \cdots \cdots+a_{1 n}^{\prime \prime} x_{n}=b_{1}^{\prime \prime}$
$0 x_{1}+1 x_{2}+\cdots \cdots \cdots+0 x_{m}+a_{2, m+1}^{\prime \prime} x_{m+1}+\cdots \cdots \cdots+a_{2 n}^{\prime \prime} x_{n}=b_{2}^{\prime \prime}$
\vdots
\vdots
$0 x_{1}+0 x_{2}+\cdots \cdots \cdots+1 x_{m}+a_{m m+1}^{\prime \prime} x_{m+1}+\cdots \cdots \cdots+a_{m}^{\prime \prime} x_{n}=b_{m}^{\prime \prime}$
$\left(E_{m}^{c}\right)$
Variables, x_{m+1}, \cdots, x_{n}, of above set of equations is known as nonpivotal variables or independent variables.

Basic variable, Nonbasic variable,
 Basic solution, Basic feasible solution

One solution that can be obtained from the above set of equations is

$$
\begin{array}{lll}
x_{i}=b_{i}^{\prime \prime} & \text { for } & i=1, \cdots, m \\
x_{i}=0 & \text { for } \quad i=(m+1), \cdots, n
\end{array}
$$

This solution is known as basic solution.
Pivotal variables, $x_{1}, x_{2}, \cdots x_{m}$, are also known as basic variables
Nonpivotal variables, x_{m+1}, \cdots, x_{n}, are known as nonbasic variables.
Basic solution is also known as basic feasible solution because it satisfies all the constraints as well as non-negativity criterion for all the variables

