

Concavity

- Similarly a function is strictly concave if a line connecting any two points on the function lies completely below the function
A function is strictly concave if its slope is continually decreasing or $\partial^{2} \sigma \partial x^{2}<0$
If $<$ is replaced by $<=$ then it is called concave function (but not strictly concave)

$$
\begin{gathered}
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right]>\alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right) \\
\text { where } 0 \leq \alpha \leq 1 \\
\hline \hline
\end{gathered}
$$

Hessian Matrix

$$
H_{f(x)}=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \cdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\partial \dot{x}_{2} \partial x_{1} & \frac{\partial^{2} f}{\partial x_{2}{ }^{2}} & \cdots & -\cdots \\
\cdot & \cdot & \partial^{2} f \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & & -\cdots \\
\frac{\partial^{2} f}{\partial x_{n}{ }^{2}}
\end{array}\right]
$$

Properties of concave and convex functions

- A local minimum of a convex function is also the global minimum, and a local maximum of a concave function is also the global maximum
- A straight line is both concave and convex
- The sum of (strictly) convex functions is (strictly) convex, and the sum of concave functions is concave
- If $f(X)$ is a convex function and k is a constant, then
- $k f(X)$ is convex if $k>0$ and
- $k f(X)$ is concave if $k<0$

Optimization of a Function of Multiple Variables

- A necessary condition for a stationary point of the function $f(X)$ is that each partial derivative should be equal to zero. In other words, each element of the gradient vector must equal zero where the gradient vector of $f(X)$ is as follows.

- To check the sufficient condition at X_{0} Hessian matrix of $\mathrm{f}(\mathrm{X})$ at X_{0} should be formulated and solved for eigen values. Then stationary point may be classified as per the following rules.
- If all eigen values of the Hessian are negative at X_{0}, then X_{0} is a local maximum. If all eigen values of the Hessian are negative for all possible values of X , then X_{0} is a global maximum
- If all eigen values of the Hessian are positive at X_{0}, then X_{0} is a local minimum. If all eigen values of the Hessian are positive for all possible values of X, then X_{0} is a global minimum
- If some eigen values of the Hessian are positive and some negative or if some zero, the stationary point, X_{0}, is neither local minimum nor local maximum.

Example

The yield of a chemical reaction is the actual production as a percent of that which is theoretically possible. In a large commercial operation, production is found to b a function of two catalysts x_{1} and x_{2}, where the objective is to maximize yield (\%):
$\mathrm{f}(\mathrm{X})=60+8 \mathrm{x}_{1}+2 \mathrm{x}_{2}-\mathrm{x}_{1}{ }^{2}-0.5 \mathrm{x}_{2}{ }^{2}$
$\frac{\partial f}{\partial x_{1}}=8-2 x_{1}=0$
$\frac{\partial f}{\partial x_{2}}=2-x_{2}=0$
Stationary point $\mathrm{X}=[4,2]$. Compute second derivatives
$\frac{\partial^{2} f}{\partial x_{1}{ }^{2}}=-2 \quad \frac{\partial^{2} f}{\partial x_{2}{ }^{2}}=-1 \quad \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}=0$
$\mathbf{H}=\left[\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right] \quad|\varepsilon I-H|=\left|\begin{array}{cc}\varepsilon+2 & 0 \\ 0 & \varepsilon+1\end{array}\right|=(\varepsilon+2)(\varepsilon+1)=0$
The values of e do not depend on X and $e_{1}=-2, e_{2}=-1$.
Since both the eigen values are negative, $f(X)$ is concave and $x_{1}=4 \%, x_{2}=2 \%$ will give the global maximum yield of $\mathrm{f}(\mathrm{X})=78.0 \%$

If $f(X)$ is convex for minimising (concave for maximising), the problem is stated in either of the following formats.			
subject to	$\begin{aligned} & \operatorname{Max} f(X) \\ & g_{1}(X) \leq 0 \\ & g_{2}(X) \leq 0 \end{aligned}$	subject to	$\begin{aligned} & \operatorname{Min} f(X) \\ & g_{1}(X) \geq 0 \end{aligned}$
			$\mathrm{g}_{2}(\mathrm{X}) \geq 0$

	...		\cdots
	...		\cdots
	$\mathrm{g}_{\mathrm{m}}(\mathrm{X}) \leq 0$		$\mathrm{gm}_{\mathrm{m}}(\mathrm{X}) \geq 0$
(all g (are convex)	(all g	are concav

A Lagrangian multiplier approach may be used to investigate the function:

$$
h(X, \lambda)=f(X)-\lambda_{1} g_{1}(X)-\lambda_{2} g_{2}(X)-\ldots-\lambda_{p} g_{p}(X)
$$

(The above conditions ensure a convex feasible region).
If any
If any $\lambda_{\mathrm{i}}<0$, the constraint associated with that λ_{i} is not active
and another solution should be obtained disregarding inactive constraints.

Kuhn-Tucker Conditions

The Kuhn-Tucker Conditions are the necessary conditions for a point to be a local optimumofa function subject to inequality constraints.
This is
This is a precise mathematical statement of the procedure used in the previous section. \square
If we wish to maximise $f(X)$ subject to $g_{1}(X)_{\leq} 0, g_{1}(X)_{\leq} 0, \ldots, g_{p}(X)_{\leq} 0$,
where $X=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$, then
Kuhn-Tucker Conditions for $X^{*}=\left[x_{1}{ }^{*} x_{2}{ }^{*} \ldots x_{n}{ }^{\circ}\right]$ to be a local optimumare \triangle

$$
\begin{array}{lll}
\frac{\partial f(X)}{\partial x_{i}}-\sum_{j=1}^{p} \lambda_{j} \frac{\partial g_{j}(X)}{\partial x_{i}}=0 & \text { for } i=1,2, \ldots, n \text { at } X=X^{*} \\
\text { and } & \lambda_{j} g_{j}(X)=0 & g_{j}(X) \leq 0 \\
\lambda_{j} \geq 0 & \text { for } j=1,2, \ldots, p \text { at } X=X^{*}
\end{array}
$$

These are sufficient conditions for a global maximum if $f(X)$ is concave and the constraints forma convex set

