
Digital Image Processing for Image Enhancement 
and Information Extraction

Summary

Digital image processing plays a vital role in the analysis and interpretation of Remotely sensed data. Especially data
o b t a i ned from Satellite Remote Sensing, which is in the digital form, can  best be utilised with the help of digital
i mage processing. Image enhancement and information extraction are two important components of digital image
p ro ces s i ng. Image enhancement techniques help in improving the visibility of any portion or feature of the image
s u p p res sing the information in other portions or features. Information extraction techniques help in obtaining the
statistical information about any particular feature or portion of the image. These techniques are discussed in detail
and illustrated in this article.

1. IMAGE-PROCESSING OVERVIEW

Digital Image Processing (DIP) involves the modification of digital data for improving the image qualities with the
a i d   of computer.  The processing helps in maximising clarity, sharpness and details of features of interest towards
i n fo rmat i o n  ext raction and further analysis.  This form of remote sensing actually began in 1960s with a limited
n u mber of researchers analysing airborne multispectral scanner data and digitised aerial photographs.  However, it
w as  n o t  u n t i l  the launch of Landsat-1, in 1972, that digital image data became widely available for land remote
sensing applications.  At that time not only the theory and practice of digital image processing was in its infancy but
a l s o  t h e  cost of digital computers was very high and their computational efficiency was far below by present
s t andards.  Today, access to low cost and efficient computer hardware and software is commonplace and the source
o f d i g i t a l  i mag e  data are many and varied.  The digital image sources range from commercial earth resources
s a tellites, airborne scanner, airborne solid-state camera, scanning micro-densitometer to high-resolution video
camera.

D i g i t a l  i mag e processing is a broad subject and often involves procedures which can be mathematically
complex, but central idea behind digital image processing is quite simple.  The digital image is fed into a computer
an d  computer is programmed to manipulate these data using an equation, or series of equations and then store the
results of the computation for each pixel (picture element).  These results form a new digital image that may be
displayed or recorded in pictorial format or may itself be further manipulated by additional computer programs.  The
p o s s i b l e  fo rms  o f the digital image manipulation are literally infinite. The raw digital data when viewed on the
display will make it difficult to distinguish fine features.  To selectively enhance certain fine features in the data and
to remove certain noise, the digital data is subjected to various image processing operations. Image-processing
met h o d s  may  b e  grouped into three functional categories: these are defined below together with lists of typical
processing techniques.

1 I m a g e  Restoration compensates for data errors, noise and geometric distortions introduced during the
scanning, recording, and playback operations.

a. Restoring periodic line dropouts
b. Restoring periodic line striping
c. Filtering of random noise
d. Correcting for atmospheric scattering
e. correcting geometric distortions

2 I m a g e  Enhancement alters the visual impact that the image has on the interpreter in a fashion that improves
the information content.

a. Contrast enhancement
b. Intensity, hue, and saturation transformations
c. Density slicing 
d. Edge enhancement
e. Making digital mosaics
f. Producing synthetic stereo images

3 Information Extraction utilizes the decision-making capability of the computer to recognize and classify pixels
on the basis of their digital signatures,

a. Producing principal-component images
b. Producing ratio images
c. Multispectral classification
d. Producing change-detection images

Image enhancement and information extraction methods are described and illustrated in the following sections. 



2. IMAGE ENHANCEMENT

E n h an cemen t  is the modification of an image to alter impact on the viewer.  Generally enhancement distorts  the
original digital values; therefore enhancement is not done until the restoration processes are completed.

2.1 Contrast Enhancement

There is a strong influence of contrast ratio on resolving power and detection capability of images.  Techniques for
improving image contrast are among the most widely used enhancement processes. The sensitivity range of any
remote sensing detector is designed to record a wide range of terrain brightness from black basalt plateaus to white
sea beds under a wide range of lighting conditions.  Few individual scenes have a brightness range that utilizes the
fu l l  s en s i tivity range of these detectors.  To produce an image with the optimum contrast ratio, it is important to
u t ilize the entire brightness range of the display medium, which is generally film.  Figure 1 shows the typical
h i s togram of the number of pixels that
co r res p ond to each DN of an image with no
mo d i fi cations of original DNs.  The central 92
p ercen t  of the histogram has a range of DNs
fro m 49 to 106, which utilizes only 23 percent
of the available brightness range [(106 - 49)/256
= 2 2 .3%].  This limited range of brightness
values accounts for the low contrast ratio of the
o r iginal image.  Three of the most useful
methods of contrast enhancement are described
in the following sections.

2 .1 .1 Linear Contrast Stretch:  The simplest
co ntrast enhancement is called a linear contrast
s t re t ch .  A DN value in the low end of the
o r iginal histogram is assigned to extreme black
an d  a value at the high end is assigned to
ext reme white.  In this example the lower 4
p ercent of the pixels (DN < 49) are assigned to
b l ack, or DN = 0, and the upper 4 percent (DN
> 106) are assigned to white, or DN = 255.  The
remaining pixel values are distributed linearly
b e t w een these extremes, as shown in the
en h anced histogram of Figure 2.  The improved
co n t rast ratio of the image with linear contrast
s t retch will enhance different features on the
map . Most of the image processing software
display an image only after linear stretching by
default. For colour images, the individual bands were stretched before being combined in colour. 

Th e linear contrast stretch greatly improves the contrast of most of the original brightness values, but there is
a loss of contrast at the extreme high and low end of DN values. In comparison to the overall contrast improvement,
t h es e contrast losses at brightness extremes are acceptable unless one is   critically interested in these elements of
the scene.

Becau se of the flexibility of digital methods an investigator could, for example, cause all DNs less the 106 to
become black (0) and then linearly stretch the remaining high DNs greater than 105 through a range from 1 through
2 5 5 .  Th i s  ext reme stretch would enhance the contrast differences within the bright pixels at the expense of the
remainder of the scene.

2 .1 .2  N onlinear Contrast Stretch: Nonlinear contrast enhancement is made in different ways. Figure 3 illustrates
a uniform distribution stretch (or histogram equalization) in which the original histogram has been redistributed
t o  p roduce a uniform population density of pixels along the horizontal DN axis.  This stretch applies the greatest
contrast enhancement to the most populated range or brightness values in the original image.  In Figure 3, the middle
range of brightness values are preferentially stretched, which results in maximum contrast.  The uniform distribution
stretch strongly saturates brightness values at the sparsely populated light and dark tails of the original histogram.
The resulting loss of contrast in the light and dark ranges is similar to that in the linear contrast stretch but not as
severe.

A  Gaussian stretch  (Fig. 3a) is a nonlinear stretch that enhances contrast within the tails of the histogram.  This
s t re t ch  fi t s  t he original histogram to a normal distribution curve between the 0 and 255 limits, which improves
contrast in the light and dark ranges of the image.  This enhancement occurs at the expense of contrast in the middle
grey range.
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A n  important step in the process of contrast enhancement is for the user to inspect the original histogram and
d et e rmine the elements of the scene that are of greatest interest.  The user then chooses the optimum stretch for his
n eed s .  Experienced operators of image processing systems bypass the histogram examination stage and adjust the
brightness and contrast of images that are displayed on a screen.  For some scenes a variety of stretched images are
required to display fully the original data.  It should be noted that contrast enhancement should not be done until
other processing is completed, because the stretching distorts the original values of the pixels.

2.2 Intensity, Hue and Saturation Transformations

Th e ad d itive system of primary colours (red, green, and blue, or RGB
s y stem) is well established.  An alternate approach to colour is the
i n t ensity, hue and saturation system (IHS), which is useful because it
p res ents colours more nearly as the human observer perceives them.
Th e IHS system is based on the colour sphere (Figure 4) in which the
v ertical axis represents intensity, the radius is saturation, and the
c i rcu mference is hue.  the intensity (I) axis represents brightness
variations and ranges from black (0) to white (255): no colour is
associated with this axis.  Hue (H) represents the dominant wavelength
o f co l o u r.  Hue values commence with 0 at the midpoint of red tones
an d  i n crease counterclockwise around the circumference of the sphere
to conclude with 255 adjacent to 0.  Saturation (S) represents the purity
of colour and ranges from 0 at the centre of the colour sphere to 255 at
t h e  circumference.  A saturation of 0 represents a completely impure
colour, in which all wavelengths are equally represented and which the
ey e  w i l l  perceive a shade of grey that ranges from white to black
depending on intensity.  Intermediate values of saturation represent
pastel shades, whereas high values represent purer and more intense
colours.  The range from 0 to 255 is used here for consistency with
the eight-bit scale; any range of values (0 to 100, for example) could as well be used as IHS coordinates.  Buchanan
(1979) describes the IHS system in detail.

When any three spectral bands of  a sensor data are combined in the RGB system, the resulting colour images
typically lack saturation, even though the bands have been contrast-stretched.  The under-saturation is due to the high
d eg ree  o f correlation between spectral bands.  High reflectance values in the green band, for example, are
accompanied by high values in the blue and red bands, so pure colours are not produced.  To correct this problem,
a method of enhancing saturation was developed that consists of the following steps:

1 Tran s fo rm an y  t h ree bands of data from the RGB system into the IHS system in which the three component
images represent intensity, hue, and saturation.  The equations for making this transformation are described
below. 

2 Th e   i ntensity image is dominated by albedo and topography.  Sunlit slopes will have high intensity values
(bright tones), Water has low values, Vegetation has intermediate intensity values, as do most of the rocks.  In
the hue image, the low DNs are used to identify red hues in the sphere (Figure 4), Vegetation has intermediate
t o  light grey values assigned to the green hue.  The lack of blue hues is shown by the absence of very bright
tones.  The original saturation image will be very dark because of
the lack of saturation in the original data.  Only the shadows and
rivers are bright, indicating high saturation for these features.

3 Apply a linear contrast stretch to the original saturation image.
Note the overall increased brightness of the enhanced image. Also
note the improved discrimination between terrain types.

4 Transform the intensity, hue, and enhanced saturation images from
t h e  IHS system back into three images of the RGB system.  These
en h an ced  RGB images were used to prepare the new colour
co mposite image of, which will be a significant improvement over
t h e original image.  In the IHS version, note the wide range of
colours and improved discrimination between colours. 

Th e  fo llowing description of the IHS transformation is a summary
of the work of R. Hayden (Short and Staurt, 1982).  Figure 5 shows



g rap h i cally the relationship between the RGB and IHS systems.  Numerical values may be extracted from this
d i ag ram fo r  expressing either system in terms of the other.  In Figure 5 the circle represents a horizontal section
through the equatorial plane of the IHS sphere (Figure 4), with the intensity axis passing vertically through the plane
o f t h e  diagram.  The corners of the equilateral triangle are located at the position of the red, green, and blue hues.
H u e  changes in a counterclockwise direction around the triangle, from red (H = 0), to green (H = 1), to blue (H =
2 ) , an d  again to red (H = 3),  Values of saturation are 0 at the centre of the triangle and increase to a maximum of
1  a t  t h e corners.  Any perceived colour is described by a unique set of IHS values; in the RGB system, however,
different combinations of additive primaries can produce the same colour.  The IHS values  can be derived from
RG B  values through the transformation equations explained above for the interval 0 < H < 1, extended to I < H <
 
. After enhancing the saturation image, the IHS value are converted back into RGB images by inverse equations.

Th e  IH S t ran s fo rmation and its inverse are also useful for combining images of different types.  For example
a digital radar image could be geometrically registered IRS optical data.  After the optical bands are transformed into
IH S values, the radar image data may be substituted for the intensity image.  The new combination (radar, hue, and
enhanced saturation) can then be transformed back into a RGB image that incorporates both radar and optical data.

2.3 Density Slicing

D en s i t y  slicing converts the continuous grey tone of an image into a series of density intervals, or each
co r res p o n d i n g to a specified digital range D.  Slices may be displayed as areas bounded by contour lines.  This
technique emphasizes subtle grey-scale differences that may be imperceptible to the viewer.  

2.4 Edge Enhancement

Mo s t  i n t e rp reters are concerned with recognizing linear features in images such as joints and lineaments.
Geographers map manmade linear features such as highways and canals.  Some linear features occur as narrow lines
against a background of contrasting brightness; others are the linear contact between adjacent areas of different
b r i g h t n es s .  In  a ll cases, linear features are formed by edges.  Some edges are marked by pronounced differences
t h a t  may be difficult to recognize.  Contrast enhancement may emphasize brightness differences associated with
s o me l i n ear features.  This procedure, however, is not specific for linear features because all elements of the scene
are enhanced equally, not just the linear elements.  Digital f ilters have been developed specifically to enhance edges
in images and fall into two categories:  directional and nondirectional.

2.4.1 Nondirectional Filters: Laplacian f ilters are nondirectional filters as they enhance linear features having
a l most any orientation in an image.  The exception applies to linear features oriented parallel with the direction of
fi l t e r  mo v ement; these features are not enhanced.  A typical Laplacian filter (Figure 6 A) is a kernel with a high
cen t ra l  v alue, 0 at each corner, and -1 at the centre of each edge.  The Laplacian kernel is placed over a three-by-
three array of original pixels (Figure 6 A) and each pixel is multiplied by the corresponding value in the kernel.  The
n i n e  resulting values (four of which are 0 and four are negative numbers) are summed.  The resulting value for the
fi l t e r  k ernel is combined with the central pixel of the three-by three data array, and this new number replaces the
original DN of the central pixel.  For example, the Laplacian kernel is placed over the array of three-by three original
pixels indicated by the box in Figure 6 A.  When the multiplication and summation are performed, the value for the
filter kernel is 5.  The central pixel in the original array (DN = 40) is combined with the filter value to produce the
n ew value of 45, which is used in the filtered data set (Figure 6 B).  The kernel moves one column of pixels to the
right, and the process repeats until the kernel reaches the right margin of the pixel array.  The kernel then shifts back
t o  t h e  l e ft  marg i n , drops down one line of pixels, and continues the same process.  The result is the data set of
filtered pixels shown in Figure 6 B.  In this filter data set, the outermost column and line of pixels are blank because
they cannot form central pixels in an array.
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Figure 6. Nondirectional Edge Enhancement using a Laplacian Filter

Th e  e ffec t  of the edge-enhancement operation can be evaluated by comparing profiles A-B of the original and the
filtered data (Figure 6 C,D).  The original data  has a regional background value of 40 that is intersect by a darker,
n o r t h - t en d i n g  l i n eament and background, with a contrast ratio of  40/35  or 1.14.  In the enhanced profile  the
co n t ras t  ratio is 45/30 or 1.50, which is a marked  enhancement.  In addition the image of the original lineament,
w h i ch  w as  t h ree pixels wide, has been widened to five pixels in the filtered version, which further enhances its
appearance.

In the eastern portion of the original data set (Figure 6 A), the background values (40) change to values of 45 along
a  n o r t h - t ending linear contact.  In an image this contact would be a subtle tonal lineament between brighter and
darker surfaces.  The original contrast    (45/40 = 1.13) is enhanced by 27 percent in the filter image (50/35 = 1.43).
A ft e r  the value of the filter  has been calculated and prior to combining it with the original central data pixel, the
ca l cu lated value may multiplied by a weighting factor.  The  weight factor can be less than 1 or greater than 1 in
order to diminish or to accentuate the effect of the filter.  The weighted filter value is then combined with the central
original pixel to produce the enhanced image.  



2 .4.2 Directional Filters:  Directional filters are used to enhance specific linear trends in an image.  A typical
directional filter (Figure 7 A) consists of two kernels, each of which is an array of three by three pixels.  
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Figure 7. Edge Enhancement using a Directional Filter

Th e  l e ft  k ern e l  i s  mu ltiplied by the cos A, where A is the angle, relative to north, of the linear direction to be
enhanced.  The right kernel is multiplied by sin A.  Angles in the northeast quadrant are considered negative; angles
i n  the northwest quadrant are positive.  The filter can be demonstrated by applying it to a data set (Figure 7 B) in
which a brighter area (DN = 40) is separated from a darker area (DN = 35) along a total lineament that trends
northeast (A = -45 ).  The profile A-B shows the brightness difference (DN = 5) across the lineament.o

Th e  fi l t e r  i s demonstrated by applying it to the array of nine pixels shown by the box over the original data set
(Figure 7 B).  The sequence of operations is as follows:

1 Place the right filter kernel over the array of original pixels and multiply each pixel by the corresponding filter
value.  When these nine resulting values are summed, the filter result is 10.

2 D et ermine the sine of the angle (sin - 45  = -0.71) and multiply this by the filter result (-0.71 x 10) to give ao

filter value of -7.



3 Place the left filter kernel over the pixel array and repeat the process; the resulting value is -7.
4 Su m the two filtered values (-14); This value replaces the central pixel in the array of the original data.  when

steps 1 through 4 are applied to the entire pixel array, the resulting filtered values are those shown in the array
and profile of Figure 7 C.

5 Th e  fi l t e red values for each pixel are then combined with the original value of the pixel to produce the array
and profile of Figure 7 D.

The contrast ratio of the lineament in the original data set (40/35 = 1.14) is increased in the final data set to (40/21
= 1 .9 0 ) , w h i ch is a contrast enhancement of 67 percent.  As shown in profile A-B, the original lineament occurs
across an interface only one pixel wide; the enhanced lineament has an image four pixels wide.

An alternate way to express this operation is to say that the filter has passed through the data in a direction normal
to the specified lineament direction.  In this example the filter passing through direction is N45 W.  In addition too

en h ancing features oriented normal to this direction of movement, the filter also enhances linear features that trend
o b l i q u e l y  t o the direction of filter movement.  As a result, many additional edges of diverse orientations are
enhanced. The directionality of the filter may also be demonstrated by passing the filter in a direction parallel with
a linear trend.  As a result these fractures appear subdued, whereas north and northeast-tending features are strongly
enhanced.

2.5 Making Digital Mosaics

Mo s ai cs  o f images may be prepared by matching and splicing together individual images. Differences in contrast
an d  t one between adjacent images cause the checkerboard pattern that is common on many mosaics.  This problem
can  b e  l argely eliminated by preparing mosaics directly from the digital CCTs, as described by Bernstein and
Fern ey h ough (1975). Adjacent images are geometrically registered to each other by recognizing ground control
points (GCPs) in the regions of overlap.  P ixels are then geometrically adjusted to match the desired map projection.
The next step is to eliminate from the digital file the duplicate pixels within the areas of overlap.  Optimum contrast
stretching is then applied to all the pixels, producing a uniform appearance throughout the mosaic.

2.6 Producing Synthetic Stereo Images 

Ground-control points may be used to register image pixel arrays to other digitized data sets, such as topographic
maps.  This registration causes an elevation value to be associated with each image pixel.  With this information the
computer can then displace each pixel in a scan line relative to the central pixel of that scan line.  P ixels to the west
of the central pixel are displaced westward by an amount that is determined by the elevation of the pixels.  The same
p ro ced u re  determines eastward displacement of pixels east of the central pixel.  The resulting image simulates the
p ara l l ax o f an  aerial photograph.  The principal point is then shifted, and a second image is generated with the
parallax characteristics of the overlapping image of a stereo pair.

A  synthetic stereo model is superior to a model from side-lapping portions of adjacent Landsat images because (1)
Th e  vertical exaggeration can be increased and (2) The entire image may be viewed stereoscopically.  Two
d i s ad v antages of computer synthesised stereo images are that they are expensive and that a digitized topographic
map must be available for elevation control.

S i mp s o n  et al. (1980) employed a version of this method to combine Landsat images with aero-magnetic maps (in
which the contour values represent the magnetic properties of rocks).  The digitized magnetic data are registered to
t h e  Landsat band so that each Landsat pixel has an associated magnetic value.  The stereoscopic transformation is
t h en  u sed to produce a stereo pair of Landsat images in which magnetic values determine the vertical relief in the
s t e reo model.  Elevated areas represent high magnetic values and depressions represent low magnetic values.  The
stereo model enables the interpreter to compare directly the magnetic and visual signatures of the rocks.

3. INFORMATION EXTRACTION

Image restoration and enhancement processes utilize computers to provide corrected and improved images for study
by human interpreters.  The computer makes no decisions in these procedures.  However, processes that identify and
ext rac t  i n fo rmation do utilize the computer's decision-making capability to identify and extract specific pieces of
i n fo rmation.  A human operator must instruct the computer and must evaluate the significance of the extracted
information.
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Th e  P incipal-components transformation was used to
generate a new Coordinate System (Y , Y )1 2

3.1 Principal-Component Images 

Fo r  an y  pixel in a multispectral image, the DN values are
commonly highly correlated from band to band.  This
co r re l ation is illustrated schematically in Figure 8, which
plots digital numbers for pixels in TM bands 1 and 2.  The
elongate distribution pattern of the data points indicates that
as brightness in band 1 increases, brightness in band 2 also
increases.  A three-dimensional plot (not illustrated) of three
bands, such as 1,2 and 3, would show the data points in an
elongate ellipsoid, indicating correlation of the three bands.
This correlation means that if the reflectance of a pixel in
one band (IRS band 2, for example) is known, one can
p red ict the reflectance in adjacent bands (IRS bands 1 and
3 ) .  The correlation also means that there is much
red u ndancy in a multispectral data set.  If this redundancy
could be reduced, the amount of data required to describe a
multispectral image
could be compressed.

Th e  p r i n c ipal-components transformation, originally known as the Karhunen-Loeve transformation (loeve, 1955),
i s  u s ed to compress multispectral data sets by calculating a new coordinate system.  For the two bands of data in
Figure8, the transformation defines a new axis (y ) oriented in the long dimension of the distribution and a second1

axis (y ) perpendicular to y .  The Mathematical operation makes a linear combination of pixel values in the original2 1
coordinate system that results in pixel values in the new coordinate system:

where (x  x ) are the pixel coordinates in the original system; (y , y ) are the coordinates in the new system;  and α ,1, 2 1 2 11
α ,  α  and α  are constants.  In Figure 8, note that the range of pixel values for y  is greater than the ranges for1 2 2 1 22 1
either of the original coordinates, x  or x  and that the range of values for y  is relatively small. The same principal-1 2 2

co mp o n en t s  t ransformation may be carried out for multispectral data sets consisting of any number of bands.
Additional coordinate directions are defined sequentially.  Each new coordinate is oriented perpendicular to all the
previously defined directions and in the direction of the remaining maximum density of pixel data points.  For each
p i xe l ,  n ew DNs are determined relative to each of the new coordinate axes.  A set of DN values is determined for
each pixel relative to the first principal component.  These DNs are then used to generate an image of the first
p r i n cipal component.  The same procedure is used to produce images for the remaining principal components.  The
p receding description of the principal-components transformation is summarized from Swain and Davis (1978) and
additional information is given in Moik (1980).

A n y  t h ree principal-component images can be combined to create a colour image by assigning the data that make
u p  each  i mage to a separate primary colour.  In summary, the principal-components transformation has several
advantages: 
1 Most of the variation is a multispectral data set is compressed into one or two PC images
2 Noise may be relegated to the lesson related PC images, and 
3 Spectral differences between materials may be more apparent in PC images than in individual bands.

3.2 Ratio Images

Ratio images are prepared by dividing the DN in one band by the corresponding DN in another band for each pixel,
s t re t ching the resulting value, and plotting the new values as an image.  A total of 15 ratio images plus an equal
number of inverse ratios (reciprocals of the first 15 ratios) may be prepared from six original bands.  In a ratio image
t h e  b l ack and white extremes of the grey scale represent pixels with the greatest difference in reflectivity between
t h e  t w o  s p ec t ra l  b ands.  The darkest signatures are areas where the denominator of the ratio is greater than the
n u mera t o r .  Conversely the numerator is greater than the denominator for the brightest signatures. Where
d en o mi n a t o r  an d numerator are the same, there is no difference between the two bands. For example, the spectral
reflectance curve shows that the maximum reflectance of vegetation occurs in IRS band 4 (reflected IR) and that
reflectance is considerably lower in band 2 (green).  The ratio image 4/2, results when the DNs in band 4 are divided
by the DNs in band 2.  The brightest signatures in this image correlate with the vegetation. 

L i k e  P C i mages, any three ratio images may be combined to produce a colour images by assigning each image to
a  s ep ara t e primary colour.  The colour variations of the ratio colour image express more geologic information and
h av e  g rea t er contrast between units than do the conventional colour images.  Ratio images emphasize differences
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i n  slopes of spectral reflectance curves between the two bands of the ratio.  In the visible and reflected IR regions,
the major spectral differences of materials are expressed in the slopes of the curves; therefore individual ratio images
an d  ra t i o  co l our images enable one to extract reflectance variations.  A disadvantage of ratio images is that they
s u p p ress differences in albedo; materials that have different albedos but similar slopes of their spectral curves may
be indistinguishable in ratio images. Ratio images also minimize differences in illumination conditions, thus
suppressing the expression of topography.

In  ad d i tion to ratios of individual bands, a number of other ratios may be computed.  An individual band may be
divided by the average for all the bands, resulting in normalized ratios.  Another combination is to divide the
d i fference between two bands by their sum; for example, (band 4 - band 3)/(band 4 + band 3) of IRS. Ratios of this
type are used to  study the crop condition and crop yield estimation.

3.3 Multispectral Classif ication

Fo r  each pixel in IRS or Landsat TM image, the spectral brightness is recorded for four or seven different
wavelength bands respectively.  A pixel may be characterized by its spectral signature, which is determined by the
re l a t i v e  reflectance in the different wavelength bands.  Multispectral classification is an information-extraction
process that analyzes these spectral signatures and then assigns pixels to categories based on similar signatures.

By plotting the data points of each band at the centre of the spectral range of each muti spectral band, we can
g en era t e  c l u s t er diagram. The reflectance ranges of each band form the axes of a three-dimensional coordinate
s y s t em.  P lotting additional pixels of the different terrain types produces three-dimensional clusters or ellipsoids.
The surface of the ellipsoid forms a decision boundary, which encloses all pixels for that terrain category.  The
volume inside the decision boundary is called the decision space.  Classification programs differ in their criteria for
defining the decision boundaries.  In many programs the analyst is able to modify the boundaries to achieve optimum
res u l t s .   Fo r  t h e  sake of simplicity the cluster diagram is explained with only three axes.  In actual practice the
computer employs a separate axis for each spectral band of data: four for IRS and six or seven for Landsat TM.

O n ce  t h e  b o u n daries for each cluster, or spectral class, are defined, the computer retrieves the spectral values for
each  pixel and determines its position in the classification space.  Should the pixel fall within one of the clusters,
i t  i s  c l as s ified  accordingly.  P ixels that do not fall within a cluster are considered unclassified.  In practice, the
co mp u t er  ca l culates the mathematical probability that a pixel belongs to a class; if the probability exceeds a
designated threshold (represented spatially by the decision boundary), the pixel is assigned to that class. There are
two major approaches to multispectral classification viz., Supervised classification and unsupervised classification.
In Supervised classif ication, the analyst defines on the image a small area, called a training site, which is
rep resentative of each terrain category, or class.  spectral values for each pixel in a training site are  used to define
t h e  d ec i s ion space for that class.  After the clusters for each training site are defined, the computer then classifies
all the remaining pixels in the scene. In Unsupervised classif ication , the computer separates the pixels into classes
with no direction from the analyst.

3.3.1 Classif ication Algorithms

Var i o u s  c l as s i fi ca tion methods may be used to assign an unknown pixel to one of the classes.  The choice of a
p ar t i cu l a r classifier or decision rule depends on the nature of the input data and desired output.  PARAMETRIC
cl as s ification algorithm assumes that the observed measurement vectors X  obtained for each class in each spectralc
band during the training phase of the supervised classification is Gaussian in nature.  Nonparametric classification
a l g o r i t h m mak es no such assumption.  It is instructive to review the logic of several of the classifiers.  The
Parallelepiped, Minimum distance and Maximum likelihood decision rules are the most frequently used
classification algorithms.

(a) The parallelepiped classif ication algorithm:

This is a widely used decision rule.  It is based on simple Boolean and/or logic.  Training data in n spectral bands
are  u s ed  i n performing the classification.  Brightness values from each pixel of the multispectral imagery are used
to produce an n-dimensional mean vector,

w i th µ  being the mean value of the training data obtained for class c in band k out of m possible classes asck
p rev i o u s ly defined.  S  is the standard deviation of the training data class c in band k out of m possible classes.ck

Using a one standard deviation threshold a parallelepiped algorithm assigns the pixel in class c if, and only if



LOWck = µck - Sck & HIGHck = µck + Sck

LOWck <= Xi,j,k <= HIGHck

EUCDDist. = (Xi,j,k - µck)
2 RTBDDist. = | (Xi ,j,k - µck) |

Pc = [- 0.5Loge (Det(Vc))] - [0.5(X - Mc)
T (V -1

v )(X - Mc)]

where c = 1,2,3 .....m, number of classes and 
   k = 1,2,3,......n,  number of bands

Therefore, the low and high decision boundaries are defined as

 Thus, the parallelepiped algorithm becomes

The decision boundaries form an n-dimensional parallelepiped in feature space.  Unknown pixel that does not satisfy
an y  o f t h e  Boolean logic criteria is assigned to an unclassified category. The parallelepiped algorithm is
co mp u t a t i o n ally efficient method of classifying remote sensing data.  Unfortunately, in some cases parallelopipes
overlap with each other and hence unknown candidate pixel might satisfy the criteria of being in more than one class
leading to ambiguity.

(b) The minimum distance to means classif ication algorithm:

Th i s  decision rule is computationally simple and commonly used.  It can result in classification accuracies
co mp arab l e  to other more computationally intensive algorithms like maximum likelihood classifier.  For minimum
d i s t an ce  classification one has to calculate distance to each mean vector for each unknown pixel.  There are many
formulae available to calculate these distances.  Among them, most commonly used formulae are Euclidian distance
(EUCD) and Round the block distance (RTBD) given by 

W h e re  µ  rep resent the mean vectors for class c measured in band k.  Unknown pixel is assigned to one of thec k
training class which has got least distance.  Thus none of the pixels will be left unclassified.

(c) Maximum likelihood classif ication algorithm: 
This decision rule assigns each pixel having features X to the class c whose units are most probable or likely to have
given rise to feature vector X.  It assumes that training data statistics for each class in each band are normally
d i s t r i b u t ed . Maximum likelihood classification makes use of mean measurement vector, M , for each class and co-c
v ar i an ce matrix V  of class c and band k.  The decision rule applied to unknown measurement vector X is decidedc

in a given class if, and only if,
P    P  where i = 1, 2, 3, ...., m classes.c i

The pixel will be assigned to class c only if the probability to class c is higher than for any other class, and 

3.4 Change-Detection Images 

Ch an g e-d e t ec t ion images provide information about seasonal or other changes.  The information is extracted  by
co mp ar i n g  t w o  o r  more images of an area that were acquired at different times.  The first step is to register   the
i mag es  using corresponding ground-control points. Following registration, the digital numbers of one image  are
s u b t rac t ed  fro m those of an image acquired earlier or later.  The resulting values for each pixel will be positive,
negative, or zero; the latter indicates no change.  The next step is to plot these values as an image in which  neutral
g rey  t one represents zero.  Black and white tones represent the maximum negative and positive differences
res p ec tively.  Contrast stretching is employed to emphasize the differences. The agricultural practice of seasonally
a l ternating between cultivated and fallow fields can be clearly shown by the light and dark tones in the difference
i mag e .  Ch ange-detection processing is also useful for producing difference images for other remote sensing data,
such as between nighttime and daytime thermal IR images.
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