
Satellite Image Processing with MATLAB

D. Nagesh Kumar
Civil Engineering Department

Indian Institute of Science
Bangalore – 560 012, India

E-mail: nagesh@civil.iisc.ernet.in

Introduction

MATLAB (MATrix LABoratory) integrates computation, visualization, and programming in
an easy-to-use environment where problems and solutions are expressed in familiar
mathematical notation. MATLAB features a family of application-specific solutions called
toolboxes. Toolboxes are comprehensive collections of MATLAB functions (M-files) that
extend the MATLAB environment to solve particular classes of problems. Areas in which
toolboxes are available include signal processing, control systems, neural networks, fuzzy
logic, wavelets, simulation, image processing and many others. Image processing tool box
has extensive functions for many operations for image restoration, enhancement and
information extraction. Some of the basic features of the image processing tool box are
explained and demonstrated with the help of a satellite imagery obtained from IRS (Indian
Remote Sensing Satellite) LISS III data of Uttara Kannada district, Karnataka.

Basic operations with matlab image processing tool box

Read and Display an Image:
Clear the MATLAB workspace of any variables and close the open figure windows. To read
an image, use the imread command. Let's read in a JPEG image named image4. JPG, and
store it in an array named I.

I = imread (‘image4. JPG’);
Now call imshow to display I.

 imshow (I)
Image is displayed as shown in Fig 1.
This image is IRS LISS III Band 4
(Near Infrared) data showing a portion
of Uttara Kannada district in
Karnataka. Some features in the image
are (i) Arabian Sea on the left (ii)
Kalinadi in top half (iii) Dense
vegetation. Small white patches in the
image are clouds.

 2

Figure 1. Image displayed using imshow

Figure 2. Histogram of raw image

Check the Image in Memory
Enter the whos command to see how I is stored in memory.

whos
MATLAB responds with
 Name Size Bytes Class
 I 342x342 116964 uint8
Grand total is 116964 elements using 116964 bytes

Histogram Equalization
As can be seen, image4.JPG is in low
contrast i.e., although pixels can be in the intensity range of 0-255 they are distributed in a
narrow range. To see the distribution of intensities in image4.JPG in its current state, a
histogram can be created by calling the imhist function. (Precede the call to imhist with the
figure command so that the histogram does not overwrite the display of the image in the
current figure window.)
 figure, imhist (I) % Display a histogram of I in a new figure (Fig. 2).

 3

Figure 3. Histogram equalized Image

As can be noticed the intensity range
is rather narrow. It does not cover the
potential range of [0, 255], and is
missing the high values that would
result in good contrast. Now call
histeq to spread the intensity values
over the full range, thereby improving
the contrast of I. Store the modified
image in the variable I2.
 I2 = histeq (I);
Display the new equalized image, I2,
in a new figure window (Fig. 3).
 figure, imshow(I2)

Write the Image
Write the newly adjusted image I2
back to disk. If it is to be saved as a
PNG file, use imwrite and specify a
filename that includes the extension
'png'.
 imwrite (I2, 'image4.png')

The contents of the newly written file can be checked using imfinfo function to see what was
written to disk.

imfinfo('image4.png')

Images in MATLAB and the Image Processing Toolbox

The basic data structure in MATLAB is the array of an ordered set of real or complex
elements. This object is naturally suited to the representation of images, real-valued, ordered
sets of color or intensity data. MATLAB stores most images as two-dimensional arrays, in
which each element of the matrix corresponds to a single pixel in the displayed image.
 For example, an image composed of 200 rows and 300 columns of different colored
dots would be stored in MATLAB as a 200-by-300 matrix. Some images, such as RGB,
require a three-dimensional array, where the first plane in the third dimension represents the
red pixel intensities, the second plane represents the red and green pixel intensities, and the
third plane represents the blue pixel intensities.

This convention makes working with images in MATLAB similar to working with
any other type of matrix data, and renders the full power of MATLAB available for image
processing applications. For example, a single pixel can be selected from an image matrix
using normal matrix subscripting.
 I(2,15)
This command returns the value of the pixel at row 2, column 15 of the image

MATLAB supports the following graphics file formats:

 BMP (Microsoft Windows Bitmap)
 HDF (Hierarchical Data Format)
 JPEG (Joint Photographic Experts Group)

 4

Figure 4. Image after adding two images

 PCX (Paintbrush)
 PNG (Portable Network Graphics)
 TIFF (Tagged Image File Format)
 XWD (X Window Dump)

Converting Image Storage Classes
uint8 and uint16 data can be converted to double precision using the MATLAB function,
double. However, converting between storage classes changes the way MATLAB and the
toolbox interpret the image data. If it is desired to interpret the resulting array properly as
image data, the original data should be rescaled or offset to suit the conversion.

For easier conversion of storage classes, use one of these toolbox functions:
im2double, im2uint8, and im2uint16. These functions automatically handle the rescaling and
offsetting of the original data. For example, the following command converts a double-
precision RGB (Red Green Blue) image with data in the range [0,1] to a uint8 RGB image
with data in the range [0,255].

RGB2 = im2uint8(RGB1);

Converting Graphics File Formats
To change the graphics format of an image, use imread to read in the image and then save the
image with imwrite, specifying the appropriate format. For example, to convert an image
from a BMP to a PNG, read the BMP image using imread, convert the storage class if
necessary, and then write the image using imwrite, with 'PNG' specified as your target
format.
 bitmap = imread('image4.BMP','bmp');
 imwrite(bitmap,'image4.png','png');

Image Arithmetic

Image arithmetic is the implementation
of standard arithmetic operations, such
as addition, subtraction, multiplication,
and division, on images. Image
arithmetic has many uses in image
processing both as a preliminary step
and in more complex operations. For
example, image subtraction can be used
to detect differences between two or
more images of the same scene or
object.

Adding Images
To add two images or add a constant
value to an image, use the imadd
function. imadd adds the value of each
pixel in one of the input images with
the corresponding pixel in the other
input image and returns the sum in the

 5

Figure 5. Image multiplied by an integer 3

corresponding pixel of the output image. Image addition has many uses in image processing.
For example, the following code fragment uses addition to superimpose one image on top of
another. The images must be of the same size and class.
 I = imread('image3.JPG');
 J = imread('image4.JPG');
 K = imadd(I,J); imshow(K)

Added image is shown in Figure 4. In this figure LISS III bands 3 and 4 (i.e., Red band and
NIR bands) are added. One can also use addition to brighten an image by adding a constant
value to each pixel. For example, the following code brightens image4.JPG.
 I = imread('image4.JPG');
 J = imadd(I,50);

Subtracting Images
To subtract one image from another, or subtract a constant value from an image, use the
imsubtract function. imsubtract subtracts each pixel value in one of the input images from the
corresponding pixel in the other input image and returns the result in the corresponding pixel
in an output image.
 X= imread('image5.JPG'); J= imread('image4.JPG');
 K= imsubtract(X,J);

Multiplying Images
To multiply two images, use the immultiply function. immultiply does an element-by-element
multiplication of each corresponding pixel in a pair of input images and returns the product of
these multiplications in the corresponding pixel in an output image. Image multiplication by a
constant, referred to as scaling, is a common image processing operation. When used with a
scaling factor greater than one, scaling brightens an image; a factor less than one darkens an
image. Scaling generally produces a
much more natural brightening/
darkening effect than simply adding
an offset to the pixels, since it
preserves the relative contrast of the
image better.

For example, the code below scales
an image by a constant factor.
 I = imread('image4.JPG');
 J = immultiply(I,3.0);
 figure, imshow(J);

Dividing Images
To divide two images, use the
imdivide function. The imdivide
function does an element-by-element
division of each corresponding pixel
in a pair of input images. The
immultiply function returns the result
in the corresponding pixel in an
output image. Image division, like image subtraction, can be used to detect changes in two

 6

Figure 6. Pixel coordinates

Figure 7. Image with color bar

images.
However, instead of giving the absolute change for each pixel, division gives the

fractional change or ratio between corresponding pixel values. Image division is also called
rationing.

Pixel Coordinates
Generally, the most convenient method for
expressing locations in an image is to use pixel
coordinates. In this coordinate system, the image
is treated as a grid of discrete elements, ordered
from top to bottom and left to right, as illustrated
in Figure 6.

For pixel coordinates, the first component r (the
row) increases downward, while the second
component c (the column) increases to the right.

Pixel coordinates are integer values and range
between 1 and the length of the row or column.

Special Display Techniques

In addition to imshow, the toolbox includes functions that perform specialized display
operations, or exercise more direct control over the display format.

Adding a Colorbar
The colorbar function can be
used to add a color bar to an
axes object. If a colorbar is
added to an axes object that
contains an image object, the
colorbar indicates the data
values that the different colors
or intensities in the image
correspond to as shown in
Figure 7.

F=imread('image5.JPG');
imshow(F), colorbar

Image Resizing
To change the size of an
image, use the imresize
function. imresize accepts two

primary arguments viz., (i) The
image to be resized and (ii) The
magnification factor.
The command below decreases the size of the image by 0.5 times.
 F = imread('image5.JPG'); J = imresize(F,0.5);

 7

Figure 8. Image rotated by 35 degrees

Using imresize, one can also specify the actual size of the output image. The command below
creates an output image of size 100-by-150.
 Y = imresize(X,[100 150])

Image Rotation
To rotate an image, the imrotate function can
be used. imrotate accepts two primary
arguments viz., (i) The image to be rotated
and (ii) The rotation angle. The rotation angle
should be specified in degrees. For a positive
value, imrotate rotates the image
counterclockwise; and for a negative value,
imrotate rotates the image clockwise. For
example, these commands rotate an image 35
degrees counterclockwise (Fig. 8).
 F = imread('image5.JPG');
 J = imrotate(I,35,'bilinear');
 figure, imshow(J)

Image Cropping
To extract a rectangular portion of an image,
the imcrop function can be used. imcrop
accepts two primary arguments viz., (i) The
image to be cropped and (ii) The coordinates of a rectangle that defines the crop area.

If imcrop is called without specifying the crop rectangle, the cursor changes to a cross hair
when it is over the image. Click on one corner of the region to be selected and while holding
down the mouse button, drag across the image. imcrop draws a rectangle around the selected
area. When the mouse button is released, imcrop creates a new image from the selected
region.

Analyzing and Enhancing Images

The Image Processing Toolbox supports a range of standard image processing operations for
analyzing and enhancing images. Its functions simplify several categories of tasks, including:

• Obtaining pixel values and statistics, which are numerical summaries of data in an
image.

• Analyzing images to extract information about their essential structure.
• Enhancing images to make certain features easier to see or to reduce noise.

Pixel Selection
The toolbox includes two functions that provide information about the color data values of
image pixels specified. The pixval function interactively displays the data values for pixels as
the cursor is moved over the image. pixval can also display the Euclidean distance between
two pixels. The impixel function returns the data values for a selected pixel or set of pixels.
You can supply the coordinates of the pixels as input arguments, or you can select pixels
using a mouse.

 8

Figure 9. Contour plot of an Image

imshow image4.JPG

 vals = impixel

Summary Statistics
One can compute standard statistics of an image using the mean2, std2, and corr2 functions.
mean2 and std2 compute the mean and standard deviation of the elements of a matrix. corr2
computes the correlation coefficient between two matrices of the same size.

Image Contours
One can use the toolbox
function imcontour to
display a contour plot of the
data in an intensity image.
This function is similar to
the contour function in
MATLAB, but it
automatically sets up the
axes so their orientation and
aspect ratio match the image.
This example displays a
contour plot of the
image5.JPG as shown in
Figure 9.

I = imread('image5.JPG');
figure, imcontour(I)

Image Analysis

Image analysis techniques return information about the structure of an image.

Edge Detection
One can use the edge function to detect edges, which are those places in an image that
correspond to object boundaries. To find edges, this function looks for places in the image
where the intensity changes rapidly, using one of these two criteria:

1. Places where the first derivative of the intensity is larger in magnitude than some
threshold

2. Places where the second derivative of the intensity with a zero crossing edge provides
a number of derivative estimators, each of which implements one of the above
definitions.

For some of these estimators, it can be specified whether the operation should be sensitive to
horizontal or vertical edges, or both. edge returns a binary image containing 1's where edges
are found and 0's elsewhere.

The most powerful edge-detection method that edge provides is the Canny method.
The Canny method differs from the other edge-detection methods in that it uses two different

 9

Figure 10. Edge detection Image

thresholds (to detect strong and weak edges), and includes the weak edges in the output only
if they are connected to strong edges. This method is therefore less likely than the others to
be "fooled" by noise, and more likely to detect true weak edges. The example below
illustrates the power of the Canny
edge detector. It shows the results of
applying the Sobel and Canny edge
detectors to the image4.JPG image
(Figure 10).

F = imread('image5.JPG');
BW1 = edge(F,'sobel');
BW2 = edge(F,'canny');
imshow(BW1);
figure, imshow(BW2)

Image Enhancement

Image enhancement techniques are
used to improve an image, where
"improve" is sometimes defined
objectively (e.g., increase the signal-
to-noise ratio), and sometimes
subjectively (e.g., make certain features easier to see by modifying the colors or intensities).

Intensity Adjustment
Intensity adjustment is a technique for mapping an image's intensity values to a new range.
For example, image4.JPG is a low contrast image. The histogram of image4.JPG, indicates
that there are very few values above 80. If the data values are remapped to fill the entire
intensity range [0,255], one can increase the contrast of the image. This kind of adjustment
can be achieved with the imadjust function in addition to the histeq function already
explained. The general syntax of imadjust is
 J = imadjust(I,[low_in high_in],[low_out high_out])

Where, low_in and high_in are the intensities in the input image, which are mapped to
low_out, and high_out in the output image. For example, the code below performs the
adjustment described above.
 I=imread('image4.JPG');

J = imadjust(I,[0.0 0.3],[0 1]);

The first vector passed to imadjust, [0.0 0.3], specifies the low and high intensity values of
image. The second vector, [0 1], specifies the scale over which you want to map them. Thus,
the example maps the intensity value 0.0 in the input image to 0 in the output image, and 0.3
to 1. Note that one must specify the intensities as values between 0 and 1 regardless of the
class of I. If I is in uint8, the values supplied are multiplied by 255 to determine the actual
values to use.

 10

To use imadjust, one must typically perform two steps:
1. View the histogram of the image to determine the intensity value limits.
2. Specify these limits as a fraction between 0.0 and 1.0 so that you can pass them to

imadjust in the [low_in high_in] vector.

MATLAB image processing tool box has many more capabilities and only a small portion of
them is explained in this article.

Bibliography

MathWorks Inc., Image Processing Tool Box Users Guide, 2001.

