

Remote Sensing for Command Area Management

- > Assessment of water availability in reservoirs for optimal management of water to meet the irrigation demand
- Identifying, inventorying and assessment of irrigated crops
- > Determination of irrigation water demand over space and time
- > Distinguishing lands irrigated by surface water bodies or by ground water withdrawals
- Estimation of crop yield

Remote Sensing for Command Area Management (Contd..)

- > Water logging and salinity problems in irrigated lands
- Irrigation scheduling based on water availability and water demand
- > Evapotranspiration studies
- > Irrigation system performance evaluation

Spectral Signature of Major Crops				
Crop Type	Growth Stage at the time of Satellite Data Acquisition	Possible signature on a Standard FCC		
Paddy Paddy Groundnut Sugarcane Cotton	2 to 3 weeks after transplantation Peak vegetative phase Peak vegetative phase Peak vegetative phase Peak vegetative phase	Greenish black to Reddish black Dark Red Shades ofbright red Light Pink to Pink Pink to Red		
•				

	1
TATATATA	F V I F S S S S S S S C C I I

Parameter	Accuracy	Need for field Dat
Vegetation cover	High	None
Leaf area index	Good	None
Photosynthetically active radiation	Good	None
Surface roughness momentum	High	None
Surface roughness heat	Low	High
Surface albedo	Good	Low
Thermal infrared surface emissivity	Good	None
Surface temperature	Good	Low
Surface resistance	Good	None
Crop coefficients: tabulated	Moderate	None
Crop coefficients: analytical	Moderate	High
Transpiration coefficients	Good	None

Derivation of Crop Parameters useful for Irrigation Management Crop Parameter Process Chorophyll development, soil Purpose Irrigation are legetation cover and canopy fluxes Biomass, minimum canopy Leaf area index Yield, water use, water needs resistance, heat fluxes Photosynthetically Photosynthesis Yield active radiation Surface roughness Surface albedo Aerodynamic resistance Net radiation Water use water needs Water use water needs Thermal infrared Net radiation Water use water needs surface emissivity Net radiation, surface Water use Surface temperature resistance

Soil moisture and salinity

Grass evapotranspiration

Potential soil and crop

evaporation Accumulated biomass Water use

Water needs

Production

Water use water needs

Surface resistance

Crop coefficients

Transpiration coefficients

Crop yield

ĺ
Pa
Pro
Su
Ri
Po
Po
Po
Ac
Ac
Ac
Cr
Cr
Re
To
Ro
So
Sa

Water Management Information that can be Derived from Remote Sensing

Parameter	Accuracy	Need for field Da
Precipitation	Moderate	High
Surface runoff	Low	High
River discharge	Low	High
Potential evapotranspiration	Moderate to good	Low
Potential transpiration	Moderate	Low
Potential evaporation	Moderate	Low
Actual evapotranspiration	High	Low
Actual transpiration	Low	Moderate
Actual evaporation	Low	Moderate
Crop stress indicators	Good	Low
Crop yield	Good	Moderate
Relative yield	Moderate	Low
Topsoil moisture	Moderate	Moderate
Root-zone moisture	Low	High
Soil salinity	Low	High
Salt minerals	low	High

Distributary-wise Crop-group Areas (ha) during Kharif 1992						
Distributary	Authoris	sed areas	s Field reported areas		Satellite assessed areas	
Number	Paddy	LD.	Paddy	LD.	Paddy	LD.
12A	352		340		448	2
13	165		150		227	4
14	393		340		561	2
15	38		38		126	
16A	227		215		449	6
17	552		600		865	73
19	208		138	70	255	
19A	50		35	15	178	4
20	93		96		163	
22	218		212	8	257	8
2.5	873		485	395	791	734
25A	367		482	102	266	50
26A	62		68	6	111	8
26	885		451	292	619	84
27	842		326	332	460	193
27A	37		32		117	6
28	284		105	69	310	1
29		2,243	283	1,194	285	618
29A-F		310	106	65	160	21
30		1,244	20	628	30	1,071

WHAT I	Increase in Crop Area (in Hectares) after NWMP			
EX.	DIVISION	1988	1989	1990
		15,848	32,222	34,205
		12,677	18,868	28,240
		28,525	51,090	62,445

WHW I	Satellite Derived Cropping Pattern for Rabi 1992-93 Season (in Hectares)			
	DIVISION	Paddy	Non Paddy	Total
		9,290 (58%)	7,330 (42%)	17,250
		25,604 (81%)	6,134 (19%)	31,738
2		25,869 (66%)	13,567 (34%)	39,436

Estimatio	n of Yie	ld Contd
• Paddy Yiel	d (quintals/	/ha)
• Malabennu	r Division	61.70 to 62.21
• Davangere	Division	51.66 to 52.14

