Remote Sensing – Introduction EMR Spectrum

Prof. D. Nagesh Kumar Dept. of Civil Engg. IISc, Bangalore - 560 012, India URL: http://www.civil.iisc.ernet.in/~nagesh

CE 259: Remote Sensing and GIS in Water Resources and Environmental Engg(3:0)

Syllabus: Basic concepts of remote sensing; Airborne and space borne sensors; Digital image Processing; Geographic Information System; Applications to rainfall-runoff modeling, Watershed management, Irrigation management, all moisture estimation, Drought and Flood monitoring, Environment and ecology; Introduction to Microwave remote sensing and Global Positioning System (GPS); Digital Elevation Modeling; Use of relevant software for Remote sensing and GIS applications.

References:

- T.M. Lillesand and R.W. Kiefer, John Wiley & Sons, 2002.
- F.F. Sabins Jr, W.H. Freeman & Co., New York, 1986.
- I. Heywood, S. Cornelius and S. Carver, Pearson Education, 1998.
- Bastiaanssen, W.G.M., International Water Management Institute, Colombo, Sri Lanka, 1998.
- http://www.civil.iisc.ernet.in/~nagesh/rs_gis.htm

Evaluation

- Assignments (10%)
- Surprise Tests (15%)
- Class Test (15%)
- Seminar (20%)
- Final Test (40%)

EMR Energy

• Energy of a quantum

- E = hf
 - E in Joules (J)
 - h Planck's constant, 6.626 x 10⁻³⁴ J sec
 - f-Frequency

$E = h c / \lambda$

- Energy of a quantum is inversely proportional to its wavelength
- Longer the wavelength, the lower its energy content The low energy content of long wavelength means that,

EMR Source Sun is the primary source All matter at temperature above absolute zero $W = \sigma T^{2}$

- (0°K or -273° C) continuously emit EMR Energy emitted is, among other things, a function of surface temperature.
- Stefan-Boltzmann Law (Black body)
 - W-Total radiant emittance in W m⁻²
 - σ-Stefan-Boltzmann constant, 5.6697 x 10-8 Wm-20K-4
 - T Absolute temperature (0°K) of the emitting material
- Energy from an object varies as T^4 .

Increases rapidly with increase in Temperature

Energy Interactions (Contd..)

- Scattering & Absorption
- Scattering
 - Scattering is unpredictable distribution of radiation by particles in the atmosphere
 - Rayleigh scatter is common when radiation interacts with particles which are smaller in diameter than the wavelength.
 - · Inversely proportional to fourth power of wavelength
 - · Short wavelengths get scattered more
 - A blue sky is a manifestation of Rayleigh scatter
 - *Rayleigh scatter* is primary cause for 'haze' in imagery (results in bluish-gray photos) (Blue Filter)

Scattering (Contd..)

Mie Scatter is common when radiation interacts with atmospheric particles diameters which are essentially equal to the wavelength.

- · Water vapour and dust are major causes of Mie scatter
- · Influences longer wavelengths when compared to Rayleigh scatter
- · Mie scatter is significant in overcast conditions

Nonselective scatter is common when radiation interacts with particles which are much larger in diameter than the wavelength

- Water droplets (5-100 μm) cause such scatter
- · Scatter all visible and reflected IR wavelengths
- · Fog and Clouds appear white

Absorption

• In contrast to scatter, atmospheric absorption results in effective loss of energy to atmospheric constituents.

- Most efficient absorbers are water vapour, cadbon dioxide and ozone.
- As absorption occurs in specific wavelengths, they strongly influence "where we look" spectrally with any sensor.
- Wavelength ranges in which the atmosphere is particularly transmissive of energy are called Atmospheric Windows

Spectral Characteristics ...

- Spectral sensitivity range of eye coincides with an atmospheric window and peak level of energy from the sun
- Emitted heat energy from the earth, is sensed through the windows at 3 5µm and 8 11µm using Thermal scanners
 - Multi Spectral Sensors sense simultaneously through multiple, narrow wavelength ranges that can be located at various points in visible through the thermal spectral regions
- Radar and Passive microwave systems operate through a window in the 1 mm to 1 m region

• Manner in which the energy interacts with the features under investigation