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Abstract 

Land surface temperature (LST) is an important variable in climate, hydrologic, ecological, biophysical and biochemical studies 
(Mildrexler et al., 2011). The most effective way to obtain LST measurements is through satellites. Presently, LST from 
moderate resolution imaging spectroradiometer (MODIS) sensor is applied in various fields due to its high spatial and temporal 
availability over the globe, but quite difficult to provide observations in cloudy conditions. This study evolves of prediction of 
LST under clear and cloudy conditions using microwave vegetation indices (MVIs), elevation, latitude, longitude and Julian day 
as inputs employing an artificial neural network (ANN) model. MVIs can be obtained even under cloudy condition, since 
microwave radiation has an ability to penetrate through clouds. In this study LST and MVIs data of the year 2010 for the Cauvery 
basin on a daily basis were obtained from MODIS and advanced microwave scanning radiometer (AMSR-E) sensors of aqua 
satellite respectively.  Separate ANN models were trained and tested for the grid cells for which both LST and MVI were 
available. The performance of the models was evaluated based on standard evaluation measures. The best performing model was 
used to predict LST where MVIs were available. Results revealed that predictions of LST using ANN are in good agreement with 
the observed values. The ANN approach presented in this study promises to be useful for predicting LST using satellite 
observations even in cloudy conditions. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of organizing committee of ICWRCOE 2015. 
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1. Introduction 

Land Surface Temperature (LST) is the thermodynamic temperature of the uppermost layer of the Earth’s surface 
commonly measured using the thermal radiance obtained from the thermal infrared sensors over clear sky conditions 
(Holmes et al., 2009).  It is one of the key parameters in the field of climate research, weather forecast, land-surface 
interaction studies and it is a crucial parameter in global and regional models. The most commonly used infrared 
sensors available for the LST measurement are advanced very high radiometric resolution (AVHRR), moderate 
resolution imaging spectroradiometer (MODIS) which provide good spatial and temporal resolutions. Usually, LST 
obtained from the infrared measurements are derived using generalized split window algorithm, day and night 
algorithm or three channel LST algorithm (Li et al., 2013). Nevertheless, there are many factors which affect the 
derivation of LST from the infrared sensors such as atmospheric absorption due to clouds and water vapor, which 
results in unavailability of LST data from the infrared sensors. This creates a lot of gaps in the LST data, which 
hinders their application in many fields. Many researchers have worked to overcome the effect of cloud in the 
measured radiance to reduce uncertainty of infrared thermal determinations (Rossow and Gardner 1993, Prigent et 
al., 2003). However, due to cloud cover lots of missing values can be noticed in the currently available LST data. 

LST can also be measured from the microwave radiometers, which can be used as complement to the available 
infrared LST measurements. These microwave measurements can penetrate through non precipitating clouds and are 
less affected by the atmospheric absorption, due to which LST can also be derived over nearly all sky conditions 
which is an advantage over infrared measurements. But the LST obtained from the microwave measurements are of 
coarse resolutions, resulting in more uncertainty than the infrared LST. Many researchers had successfully derived 
LST from the microwave measurements over clear and cloudy conditions. Basist et al. 1997 developed a 
methodology to estimate LST from the brightness temperatures of seven channels of SSM/I satellite. Aries et al. 
2004 proposed methodology to reconstruct daily surface skin temperature diurnal cycle over the globe from 
moderate LST inferences for both clear and cloudy conditions based on principle component analysis (PCA) 
/iterative approach. L. Lu et al. 2011 suggested a methodology to rebuild the diurnal cycle of LST obtained from 
MSG/SEVIRI by temporal neighboring-pixel approach. Homles et al. 2009 estimated LST from 37GHz passive 
microwave observations using simple linear relationship. All these methods were tested either continentally or 
globally, but very few studies are available at a regional scale. 

Vegetation is one of the most influencing interferences, which effects a proper LST estimation by satellite 
sensors.  LST measurements of the non vegetated surfaces generally represent the temperature of the bare soil, 
whereas for the vegetated surfaces, the measurements represent the canopy temperature (Goward et al., 2002). 
Thermal response of vegetation depends on the biophysical properties of  the vegetation itself (Quattrochi and Ridd, 
1998). Hong et al. 2007 analyzed the relationship between LST and biophysical properties of the vegetation for 
three different regions and found a negative relationship between NVegWC (normalized vegetation water content) 
and Normalized difference vegetation index (NDVI) and between LST and NDVI. The negative exponential 
relationship between NVegWC and NDVI was found based on regression between them, which explains the 
dependency of vegetation on the water condition. Many researchers have used the relationship between LST and 
NDVI, an optical vegetation index which is mainly dependent on the chlorophyll content of the vegetation cover in 
the estimation of evapotranspiration, air temperature, disaggregation of LST etc. (Jiang and Islam, 2001; Prihodko 
and Goward, 1997; Kustas et al., 2003). Since NDVI is sensitive to clouds, it will be unable to get data under cloudy 
conditions. A major limitation of the NDVI is that, it represents uppermost part of the canopy and cannot provide 
information on woody biomass, while vegetation indices derived from the microwave measurements are sensitive to 
vegetation properties of relatively thick layer and these data available for day and night under all sky conditions (J. 
Shi et al., 2008). To cover this lacuna, we used the relationship between MVIs and LST to predict LST under all sky 
conditions. The objective of this study, is to propose a methodology to derive LST under clear and cloudy conditions 
using the microwave vegetation indices along with the digital topographical and geographical data using an artificial 
neural network model over Cauvery basin in India. 
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2. Study area and Data 

2.1. Study area  

Cauvery River basin selected as the study area is displayed in Fig. 1. The basin lies between latitudes 100 05’ N 
and 130 30’ N and longitudes 750 30’ E and 790 45’ E. The total length of the river from source to its outfall into the 
Bay of Bengal is about 800 km. The Cauvery basin extends over an area of 81,155 km2. The basin lies in the States 
of Karnataka, Kerala, Tamil Nadu and Pondicherry of India. Cauvery basin experiences a tropical climate. The 
recorded maximum and minimum temperatures are 44°C and 18°C respectively. It is bounded on the west by the 
Western Ghats, on the east and south by the Eastern Ghats and on the north by the ridges separating it from the 
Tungabhadra (Krishna) and Pennar basins. Physiographically, the basin can be divided into three parts: the Western 
Ghat area, the Plateau of Mysore and the Delta. The delta area is the most fertile tract in the basin. 

 

 

Fig. 1. Description of the study area. 

2.2. Data Set 

The data required for the analysis, obtained for the year 2010 are summarized in Table 1. MODIS and  AMSR-E 
are sensors of Aqua satellite, which passes from south to north at about 1:30 pm and 1:30 am local solar time  each 
day in sun synchronous orbit. The land use land cover (LULC) and elevation maps are shown in Fig. 2. MODIS 
LULC product has five classification schemes, out of which we have used the International Geosphere Biosphere 
Program (IGBP) classification scheme. 

  
Fig. 2. (a) Elevation; (b) Land Use Land Cover. 

Table 1. Details of the data set used. 

Sensor/Satellite Parameter Product Name Spatial Resolution Purpose 

MODIS/Aqua LST MYD11A1 1km As target variable in ANN model and for 
prediction of LST  

AMSR-E/Aqua Tb at 18.7V, H and AE-L2A 25km Derivation of  MVI_A and MVI_B 

a b
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36.5V, H GHz 

MODIS/Aqua LULC MCD12Q1 500m Input variable in ANN model 

SRTM Elevation  90m Input variable in ANN model 

Where, V = vertical polarization, H = horizontal polarization, LULC = land use land cover  
 

3. Methodology 

3.1. Data Preprocessing 

The LST and LULC data acquired from the MODIS sensor were in sinusoidal projection with the spatial 
resolution of 1km, while Tb of AMSR-E sensor data were at 25km and were in different projections. To make all the 
data to be consistent with each other sinusoidal projection of MODIS datasets were changed to AMSR-E 
geographical projection using the MODIS reprojection tool (provided by NASA) by a nearest neighbor method. For 
the analysis all MODIS datasets were aggregated to 25km spatial resolution. LULC and elevation data were also 
upscaled to 25km.  

3.2.  Prediction of LST over clear and cloudy conditions 

 LST can be derived from the microwave brightness temperature of vertical polarization at 37GHz channel 
(Tb37V), because of the strong and linear relationship between them. But for the low vegetated surfaces, Holmes et 
al.2009 found that small variations in the soil water content may result in high bias. So In this context, we used 
microwave vegetation indices along with digital topographical and geographical data in the ANN model to predict 
LST under clear as well as cloudy conditions, because microwave vegetation indices used here are sensitive to short 
vegetated surfaces. J. Shi et al. 2008 developed a new set of MVIs using AMSR-E observations. The concept behind 
is that bare surface emission signals of two adjacent AMSR-E frequencies are highly correlated and coefficients of 
the linear function are dependent only on the frequency pair and are polarization independent. This leads to the 
assumption that two adjacent frequencies of microwave sensors in vegetated surfaces can be described as a linear 
function by minimizing soil emission signals and other atmospheric effects. The intercept (MVI_A) and slope 
(MVI_B) in the linear function are called microwave vegetation indices. MVI_A parameter is effected by vegetation 
parameters and as well as the surface temperature, whereas, MVI_B is effected only by vegetation parameters.  
Expressions for MVI_A and MVI_B are given as 

 
                          (1)  

           
                          (2)  

 
where, f1  = lower frequency channel (18.65 GHz) 
             f2  = higher frequency channel (36.7 GHz) 
            Tbv = brightness temperature of vertical polarization 
            Tbh = brightness temperature of horizontal polarization 
 
In this study, we have used MVI_A, MVI_B, elevation, LULC, latitude, longitude and Julian day as input 

variables to get a nonlinear relationship with the LST, which is the target variable incorporated in the ANN model, 
which is given as 

 
              (3) 

 
where, LST_uij  = LST at 25km resolution of the pixel i on the day j. Inputs required for the model were selected 
based on the availability of the corresponding LST_u. For training the network, data was selected in such a way that, 
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LST data used in this process should contain all ranges of LST_u. To achieve this we used stratified random 
sampling method to choose LST_u. Firstly, we arranged the LST_u in ascending order and then divided the data 
arranged into 10 bins. After this, from each bin 70% of the data were selected for training the network and 
remaining 30% for validation. Later, using 70% data from each bin we have employed Feed-forward neural 
networks with five algorithms, namely, sequence of Levenberg Marquardt, resilient back propagation, scaled 
conjugate gradient algorithm, bfgs quasi neuton algorithm and conjugate gradient algorithm with fletcher reeve 
restarts. Trial and error process was applied to select optimized architecture. Best network was selected based on the 
correlation coefficient, root mean squared error and Nash Sutcliffe evaluation measures. Furthermore, to predict 
LST under cloudy conditions, all seven inputs (present in the cloudy conditions) were applied in the selected best 
network with the assumption that the selected network obtained from the relationship between LST and seven inputs 
for clear pixels would also be valid for the cloudy pixels.     

3.3. Evaluation of predicted LST 

Pearson correlation coefficient (r), Nash Sutcliffe (NSE) and Root mean squared error (RMSE) evaluation 
measures were selected to evaluate the predicted LST with the available LST_u images over clear sky conditions  
 

 

 

 

 

 

 
where, xi = observed values 
            = mean of the observed values 
            yi = predicted values 
            n = number of observations 

4. Results and Discussions 

The best trained network was used to predict LST under clear as well as cloudy conditions. Since MODIS LST 
data are available only under clear sky conditions, these were used to evaluate the predicted LST. The statistical 
analysis was done separately for the four seasons, i.e. winter, summer, rainy and post monsoon seasons. Since most 
of the data for rainy were missing, it is desired to know for which seasons the model performs better. Results for 
different seasons are given in the Fig. 3.1. For the winter and summer seasons, the model has performed better than 
for the other two seasons, because most of the data were taken from these two seasons to get the relationship 
between LST_u and another seven inputs. The relationship between MODIS LST and Tb of vertical polarization at 
37 GHz channel were checked  for all the seasons shown in Fig. 3.2. For the winter seasons, strong correlation was 
found between them compared to other seasons. Due to this less linear relationship between Tb37V and MODIS 
LST we used microwave vegetation indices in the prediction of LST and also we checked the results by adding 
Tb37V values in the ANN modeling which slight improvements were achieved for all the seasons. 

Further, to check the potentiality of an ANN model we removed the 2nd Feb, 7th March,  4th June and 20th 

November of the year 2010 datasets one after the other for the respective winter, summer, rainy and post monsoon 
seasons and repeated the procedure to predict LST as mentioned in section 3.2. Then these were evaluated with the 
available corresponding  MODIS LST. Spatial distribution of  MODIS LST, predicted LST and filled LST 
(combining MODIS LST over clear sky conditions and predicted LST over cloudy conditions) for these selected 
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days are shown in Fig. 4. The initial visual interpretation revealed that the spatial distributions of predicted LST are 
similar to the corresponding MODIS LST for all the seasons, Furthermore, the results of the statistical analysis for 
the considered days revealed that during the 7th of march the ANN model has performed better than other days with 
the correlation coefficient of 0.846, RMSE of 2.6 K and NSE of 0.69. The scatter plots between predicted LST and 
MODIS LST for the same days of the year 2010 are displayed in Fig. 4. The most part of the Cauvery basin is 
covered by the croplands. In the rainy season these were usually filled up with the water, this may affect the 
microwave measurements because these measurements are very sensitive to water content. 

 

Fig. 3. (1) Scatter plots between MODIS LST (K) and predicted LST (K); (2) Scatter plots between MODIS LST (K) and Tb37V (K) for (a) 
winter (b) summer (c) rainy (d) post monsoon seasons. 
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Fig. 4. Spatial distribution of MODIS LST, Predicted LST, Filled LST and scatter plot between MODIS LST(K) and Predicted LST (K) for the  
days (a) Feb 2nd; (b) March 7th; (c) June 4th; (d) November 20th of the year 2010. 

 
The variability of the predicted LST for different land use covers is also checked. For the forest region, as 

expected, the model performed well with the correlation coefficient of 0.859, NSE of 0.73 and RMSE of 3.06K . 
Even for Croplands and Grasslands the errors are within the limits displayed in Fig. 5. Microwave vegetation indices 
can improve the results in the prediction of LST because, these indices are sensitive to vegetation parameters, with 
less soil background and atmospheric  effect when compared to traditional NDVI optical vegetation index. 

 

 

Fig.5. Scatter plots between MODIS LST (K) and predicted LST (K) for (a) Forest ; (b) Croplands ; (c) Grasslands. 

4. Conclusions 

In this study, we used microwave vegetation indices (MVI_A and MVI_B) with digital topographical, 
geographical data and Julian day to predict LST under cloudy as well as clear sky conditions. Availability of 
MODIS LST for the clear sky pixels enabled us to evaluate the predicted LST. Results revealed that microwave 
vegetation indices can be applied for all the seasons  to predict LST under cloudy conditions using an ANN model. 
Nevertheless, predicted LST from the microwave vegetation indices has its limitation of coarse spatial resolution.  
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