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ABSTRACT:  Optimal reservoir operating policy should consider the uncertainty  associated with
the uncontrolled inflow to the reservoir. In the present study, Stochastic Linear Programming (SLP)
 model  is developed  to obtain optimal operating  policy for the existing multipurpose  reservoir. The
objective of the model is to maximise the expected value of the system performance which is the sum
of the all performance value  times the respective joint probabilities. The decision variables are the
probabilities of reservoir release, PRk,i,l,t, which  are the joint probabilities of the reservoir release,
Rk,i,l,t, with an initial reservoir storage volume of  Sk,t, inflow  of  Qi,t and the final storage volume of
 Sl,t+1 for a given time period t. The joint probabilities are influenced by the target  reservoir storages,
releases and the stochastic nature of inflows. This objective is subject to a set of stochastic constraints
to maintain  continuity. Historic inflow  data  is used to consider the stochastic nature of  inflows  in
the form  of  inflow  transition probability matrices. A computer program is developed  in LINGO
(Language for INteractive General  Optimisation) to perform stochastic optimisation. The model
gives the steady state probabilities of reservoir  storage and inflow as output. The model is applied
to Hirakud reservoir in Mahanadi river basin of orissa state, India, for development of an optimal
reservoir  operating policy. The steady state optimal  operating policy and  its  implications are
discussed  in this  paper.

Key Words: Stochastic optimisation, Stochastic linear programming, Steady state probabilities,
Reservoir  operating  policy.

1.          INTRODUCTION

The problem of determination of best allocation and utilisation of available limited resources
is as old as man himself. The uncertainty of resources about the future water availability adds more
complexity to the problem of optimum allocation. This allocation problem is being studied by
economists, engineers and mathematicians for over last four decades under the perview of stochastic
optimisation, which can be basically classified into Implicit Stochastic optimisation (ISO) and Explicit
Stochastic Optimisation (ESO). A comprehensive state-of-the-art review of the mathematical models
developed for reservoir operation was made by Yeh [8]. The approach for inclusion of uncertainty
in Linear Programming (LP) formulation was first given by Dantzig. Manne [4] has demonstrated a
sequential probability model by ESO in terms of an initial decision rule and Markov process, which
was applied to inventory control problem. He tried to obtain the optimum expected value of objective
function along with statistical properties of stochastic inputs to arrive at optimum decision. In water
resources management, Watermeyer and Thomas [7] are first to incorporate the uncertainty in
optimum decision. The ESO in form of Stochastic Linear Programming (SLP) and Stochastic
Dynamic programming (SDP) were applied for evaluating sequential policy for multipurpose
reservoirs during late sixties. SLP was applied for five Finger lakes of New York state by Loucks [2],
for lake Seneca of New York state by Gablinger and Loucks [1]. LP has the advantage over DP with



the availability of standard well defined algorithm and also there is no dimensionality problem [6].
Even then, SLP was not so attractive to use for a long time because a separate program was needed
to incorporate the uncertainty of inflow and to insert the LP parameters in the LP package [1, 2].
With the availability of powerful packages to solve SLP problems, such as LINGO with derived sets,
sparse sets features, the above difficulties were overcome, and the application of  SLP to practical
problems became easy to handle, which is demonstrated in this paper.

The Hirakud multipurpose reservoir, under this case study, is operated considering only flood
control as the major objective. There is no prescribed operating policy for  other purposes. So
operating policy is available only for monsoon season but not for the non-monsoon season. An
attempt is made to use the stochastic optimization model, SLP, which takes care of the uncertainty
of uncontrolled inflow to the reservoir  to obtain the operation policy on monthly basis throughout
the year. The next section deals with the basic structure of SLP.  Third section deals with the
application of model to Hirakud multipurpose project. Fourth section shows the result of the
optimization model and the derived operating policy.

2. STOCHASTIC LINEAR PROGRAMMING MODEL

Each and every component of a deterministic LP is considered as deterministic in nature. But
in real practice, this never happens. Consider the transition of reservoir storage from one volume in
one season to some other volume in next season. The transition results partly from the release for
various uses, which can be controlled, and partly from inflow to the reservoir and reservoir losses,
such as evaporation and seepage loss, which can not be controlled. So the first component can be
made deterministic, but not the last two. They are random by its nature. Inclusion of such random
components makes the LP formulation SLP. Reservoir storage volume, inflow, release and time are
continuous variables, which are assumed to be discrete to simplify the computation (first order
Markov process). The following notations are used in this SLP model, which should be explained
before formulation.

In this model, Qt represents random unregulated inflow into the reservoir. St and Rt represent
random initial reservoir storage and release respectively, where t is the time period. The initial
reservoir storage volume and possible inflow in each period are discretised and denoted by k and i
 indices. PQi,t is the probability that the inflow in period t is within the discrete value range of the state
i represented by inflow Qi. Similarly, PSk,t is the probability that the initial reservoir storage volume
is within state k represented by Sk discrete value. The state of inflow in the next time period  i.e., t+1
is represented by j. The state of reservoir storage volume at the end of time  period t or reservoir
storage volume at beginning of time period t+1 is represented by l. The state of reservoir storage
volume at the end of time period t+1 is represented by m. Loss from the reservoir in a period, which
is considered as function of initial and final reservoir storage volumes, is represented by Ek,l,t. Release
in a period t, which is dependent on initial reservoir storage volume, final reservoir storage volume
and inflow, is given by

Rk,i,l,t = Sk,t + Qi,t - Ek,l,t - Sl,t+1 (1)                             

                                                                                                              
Let PRk,i,l,t represent the joint probability of release for the given initial storage volume Sk,t,

inflow Qi,t and final reservoir storage volume Sl,t+1. Let Bk,i,l,t  be the sum of the squared deviations
from target storage volume and target release given by the equation (8). The objective is to minimise



the total expected value of Bk,i,l,t. The SLP formulation is as given below.

Minimise 3 3 3 3 (B k,i,l,t  PR k,i,l,t)                (2)
                                                       k  i   l   t

subject to    3 PR l,j,m,t+1 = 3 3(PR k,i,l,t   P
t i,j)            œ  l , j , t (3)      

           
 m           k  i 
3 3 3 PR k,i,l,t = 1                                œ  t                         (4)

              .   k  i   l
        PR k,i,l,t  $ 0                               œ k , i , l , t (5)

( Non - negative constraints )

where Pt i,j is the transition probability of inflow to state j in month t+1 given that the state is i in the
month t. In the above formulation, the objective is to minimise the total sum of the products of Bk,i,l,t

and its corresponding joint probability, which is nothing but the expected value of system 
performance. The left hand term of equation (3) defines the joint probability of storage volume  state,
l at the beginning of the period t+1, Sl,t+1, and inflow Qj,t+1.The right hand term defines the joint
probability of storage volume state, l at the end of the period t, Sl,t+1, and inflow Qj,t+1 .These two
terms should be equal for continuity. When t = t max, then t+1 = 1; i.e., the first period of next year is
followed by the last period of current year. Constraint (4) states that all joint probabilities add up to
1 for each time period.

The steady - state probabilities of storage volume, PSk,t, can be found out from PRk,i,l,t as
follow.
    

PSk,t = ' ' PRk,i,l,t  œ k, t                                                        (6)                 
                   i   l
        

3. MODEL APPLICATION

The stochastic linear programming model formulated in section 2 is applied to an existing
reservoir namely, Hirakud reservoir [5]. The Hirakud multipurpose project  is built across river
Mahanadi at latitude 21032' N, longitude 63052' E in the Orissa state, India. Mahanadi river collects
runoff from a catchment area of about 1,41,600 sq. kms. and joins the Bay of Bengal. In the process,
it creates devastating floods in the costal districts, while four districts in the upstream side were often
facing drought due to erratic rainfall pattern. Considering these points, a dam was built at Hirakud
in 1956, incorporating flood control, irrigation and hydropower as various purposes in that order of
preference.                

Besides flood protection to 9,500 sq. kms. of delta area, 1,55,635 ha of  area in Kharif
season, 1,08,385 ha of  area in Rabi season is irrigated and 307.5 MW of installed capacity of
hydropower is generated from this multipurpose project. The average annual rainfall in the basin is
about 1420 mm. The daily minimum temperature in winter season varies from 70 C to 12.80 C, where
as the daily maximum temperature in summer season varies from 42.90 C  to 45.50 C.



Thirty five years of monthly data is used in this study. The data used are inflow to the
reservoir, initial storage volume, evaporation and release for irrigation and power. Monthly total
volume of all the above data are expressed in Million Acre-feet (M. ac. ft) units. The data is
processed for the model and the optimal operating policy is obtained as explained in the following
steps.

Step 1: The inflow volume of each month is discretised into 3 unequal states. The representative
value for each state, Qi,t, is found. The transition probability matrix for each month, Pt

 i,j, is
computed.

Step 2: The initial reservoir storage volume for each month is also discretised, and the
representative value for each state, Sk,t, is found out. The reservoir should be full during later part
of monsoon season i.e., in the months September and October. In the last forty years of operation,
it was also observed that the reservoir is almost full during these two months. So three states in
each month is chosen except for September and October months for which there is only one state
(the reservoir capacity ) for discretisation.

Step 3: A quadratic relationship between the water spread area (A) and active storage volume (S)
data was established and is as follows.

 A = 0.056 + 0.033 * S - 0.003 * S2 (7)          

Knowing the evaporation rate in the reservoir, total evaporation loss  is found out for
corresponding storage with the help of  equation (7).

Step 4: Rk,i,l,t value is found out for all possible combinations of states of initial reservoir storage
volume, inflow to reservoir and final reservoir storage volume using equation (1), considering the
evaporation losses, which is taken as function of average of initial and final reservoir storage
volume.

Target initial storage volume  ( Tt
s ) and target release (Tt

r ) for each month t should  be
set depending upon the requirement of command area and other uses. But in this work, average
of past thirty five years of release data is considered as target release and is shown in the Table
1. The target storage for each month is set judiciously considering the flood control in monsoon
season and is shown with its corresponding state in Table 2. As the flood control is the most
preferred purpose of this project, the reservoir should be empty (i.e., in state 1) in the month of
July. The reservoir should be filled up to its capacity in the month of November (i. e. in state 3)
to make the water available for the following non-monsoon seasons. In the remaining non-
monsoon periods depending on target release, the target storage is set. For various  combinations
of states, B k,i,l,t, summation of squared deviations from Tt

s and Tt
r is found out by equation (8).

.

B k,i,l,t = [ ( R k,i,l,t - T
t
r ) 

2 + ( S k,t - T
 t

 s ) 
2 ]                                               (8)    

If R k,i,l,t is more than the upper limit of release (the canal carrying capacity), then Rk,i,l,t is
restricted to the upper limit value. If  R k,i,l,t is negative for a particular combination, the
corresponding Bk,i,l,t value is forced to a very high value, so that, that particular combination will
not be considered in the optimal operating policy.



   Table 1.  Target release for every month.                  

Month Target release
( M. ac. ft)

Month Target release
( M. ac. ft)

Month Target release
( M. ac. ft)

JAN 0.62 MAY 0.50 SEP 1.04

FEB 0.59 JUN 0.51 OCT 0.88

MAR 0.70 JUL 0.94 NOV 0.56

APR 0.69 AUG 1.12 DEC 0.55

         Table 2.  Target storage for each month.                        

Month Initial Storage
Volume (M. ac. ft)

State Month Initial Storage
Volume (M. ac. ft)

State

JAN 3.14 2 JUL 0.03 1

FEB 2.60 1 AUG 3.51 2

MAR 2.04 1 SEP 4.35 1

APR 1.33 1 OCT 4.35 1

MAY 0.60 1 NOV 4.36 3

JUN 0.58 2 DEC 4.09 2

Step 5: Equation (2) through (5) is solved by LINGO. In this particular formulation, there are 284
decision variables and 92 constraint equations. By the available derived sets and sparse sets and
some other new features, the above formulation could be implemented easily. No separate
program is necessary to handle uncertainty and LP parameters as before. The input to the program
are B k,i,l,t and P t

 i,j. The decision variable values of PR k,i,l,t are  obtained as output, from which the
operating policy is found out.

Step 6: The operating policy is in the form of final reservoir storage volume i.e., l*=l (k,i,t). The
optimal final reservoir storage volume is shown as the function of  initial storage volume, inflow
and time period t. The optimal release is then obtained by the equation (1). The operating policy
function l (k,i,t) is obtained from the non-zero PR k,i,l,t values.

4. RESULTS AND DISCUSSIONS

The optimal operating policy function l* = l(k,i,t), obtained by solving SLP model, is given
in Table 3. This policy is the steady state operating policy. The target storage and target release
can not be achieved for each and every month. The optimum achievements are as shown in table
3 in terms of reservoir storage volume, and hence the release by equation (1), which satisfies the
objective of minimisation of expected system performance represented by equation (2). The target



storage is fully met in the months from February to May, July, September and October; is partly
met in August, November and December; and is never met in January and June. If the reservoir
is operated violating the optimal operating policy to satisfy the target, there may be short term
gain, but in the long term, this option will turn out to be suboptimal.

Table 3.  Optimal operating policy for each month.
JANUARY                             FEBRUARY                         MARCH

Inflow Inflow Inflow

Storage 1 2 3 Storage 1 2 3 Storage 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

2 - - - 2 - - - 2 - - -

3 - - - 3 - - - 3 - - -

APRIL                                   MAY                                             JUNE 

Inflow Inflow Inflow

Storage 1 2 3 Storage 1 2 3 Storage 1 2 3

1 1 1 1 1 1 1 1 1 1 1 1

2 - - - 2 - - - 2 - - -

3 - - - 3 - - - 3 - - -

JULY                                     AUGUST                                      SEPTEMBER

Inflow Inflow Inflow

Storage 1 2 3 Storage 1 2 3 Storage 1 2 3

1 1 2 2 1 1 1 - 1 1 1 1

2 - - - 2 1 1 1

3 - - - 3 - - -

OCTOBER                            NOVEMBER                                DECEMBER

Inflow Inflow Inflow

Storage 1 2 3 Storage 1 2 3 Storage 1 2 3

1 2 3 3 1 - - - 1 - - -

2 2 2 3 2 1 1 1

3 2 2 - 3 - 1 1

The optimal operating policy for each month usually gives the policy for only



those initial storage volume state, to which the reservoir reaches in the previous month. For
example, the final storage volume state for the month of July can be 1 or 2 depending on the
inflow state in that month (see table 3). So the policy for the month of August shows for the initial
storage volume states 1 and 2 only. Policy is not defined for the other states (denoted by "-" ),
which are transient states. After steady state is reached, the reservoir storage will not reach the
trasient state as it will result in suboptimal solution. Therefore, the remaining operation will
involve only those states mentioned in steady state operating policy after steady state is reached.

5. SUMMARY

The application of Stochastic Linear Programming (SLP) for finding a suitable operating
 policy for Hirakud reservoir in Mahanadi river basin of Orissa state in India is presented in this
paper. The operating policy is on monthly basis. From the available monthly data for thirty five
years, the probability transition matrix of  unregulated inflow to the reservoir is found out. 
Depending  on the actual command area requirement, target reservoir storage and target release
for every month is set. System (Project) performance is evaluated for all possible operations as
the sum of squared deviations from target  storage and target release. Then an optimal operating
policy is found out  by running the optimization  model, SLP, on LINGO,  which  gives the
optimum expected system performance. This monthly operating  policy can be used on real time
basis to get maximum long term benefits from the reservoir system.
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