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1.1. IntroductIon

Precipitation is a critical variable driving the atmosphere’s 
general circulation through latent heat release. As such, 
accurate quantification of the spatiotemporal variability 
of  precipitation is essential for applications involving 
 environmental, atmospheric, water resource, and related 
 science and engineering disciplines. The increased 
 availability of data products from microwave (passive and 
active) remote sensing has contributed toward our 
 understanding of the spatiotemporal distribution of pre-
cipitation by  providing near-real-time spatially continuous 
precipitation estimates at smaller temporal sampling inter-
vals [Petty, 1994; Ferraro, 1997; Bauer, 2001; Grecu and 
Anagnostou, 2001; Kummerow et al., 2001; Turk et al., 2002; 
McCollum and Ferraro, 2003; Wilheit et al., 2003; Ferraro 
et  al., 2005; Levizzani and Gruber, 2007]. These include 
data products from the Special Sensor Microwave Imager 
(SSM/I) on Defense Meteorological Satellite Program 
 satellites [Ferraro, 1997], Advanced Microwave Sounding 
Unit (AMSU) on National Oceanic and Atmospheric 
Agency (NOAA) Polar Orbiting environmental satellites 
[Ferraro et al., 2005], Tropical Rainfall Measuring Mission 
(TRMM) microwave imager (TMI) and precipitation radar 
(PR) [Kummerow et al., 2001; Wang et al., 2009], Advanced 
Microwave Scanning Radiometer-Earth Observing System 
(AMSR-E) [Wilheit et al., 2003] on National Aeronautics 
and Space Adminis tration (NASA) and Japan Aerospace 
and Exploration Agency (JAXA) joint satellites, etc. Along 
with  the widespread acceptance of  microwave-based 

 precipitation products, it has also been recognized that 
these products contain large uncertainties [Petty, 1994; 
Smith et al., 1998; Kummerow et al., 1998, 2005; Coppens 
et al., 2000]. Studies quantifying global uncertainty offered 
by  microwave rainfall algorithms show climatologically dis-
tinct space/time domains that contribute approximately 
25%  uncertainty to rainfall product that goes undetected by 
a microwave radiometer [Kummerow et al., 2005]. Of these, 
nearly 20% is attributed to changes in cloud morphology 
and microphysics and 5% to changes in the rain/no-rain 
thresholds. The purpose of this chapter is to describe 
the foundations of rain/no-rain classification (RNC) based 
on passive microwave brightness temperatures, outstanding 
issues, areas of future research, and a comprehensive review 
of the existing RNC algorithms, based on the works by 
Grody [1991], Adler et al. [1993], Ferraro et al. [1998], Seto 
et al. [2005, 2009], Kida et al. [2009], and Kubota et al. 
[2007].

The physically based overland rainfall retrieval 
 algorithms incorporate rainfall screening as an integral 
part, without which the succeeding overland rain 
retrieval technique gets corrupted easily. From the work 
by Grody [1991], “the physics of rain detection and screen-
ing are every bit as important as those of conversion.” 
Studies by rainfall intercomparison projects including 
algorithm intercomparison projects sponsored by the 
Global Precipitation Climatology Project and NASA 
WetNet Precipitation Intercomparison Projects con-
clude that inadequate screening of  nonraining pixels 
complicates the simplest to the most complex of  retrieval 
algorithms.

To date, various approaches exist to detect raining areas 
within a radiometer footprint. While some of these tech-
niques are easy to implement, some others involve sophisti-
cated programming logic for correct  implementation. 

1
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4 ReMote SeNSiNg of the teRReStRial WateR CyCle

Currently, there exist two schools of thoughts for describ-
ing rainfall screening methodologies. One approach 
addresses screening as part of the rainfall retrieval problem. 
The other approach considers RNC as an essential pre-
processing step for proper identification of potential rain 
measurements before the actual retrieval process. Regardless 
of which philosophy is followed, typical RNC classification 
algorithms should accurately identify rainfall signatures 
over surfaces covered with snow/ice that offer difficulty in 
uniquely separating rainfall signature from the surface con-
ditions. This implies that an algorithm should either 
“dynamically” determine nonraining pixels or it should 
depend on suitable surface masks based upon climatology 
(e.g., for snow and ice) or geography (e.g., for deserts) 
[Ferraro et al., 1996]. The organization of this chapter is as 
follows: Section  1.2. presents a discussion on the funda-
mental principle of passive microwave data and radiative 
transfer model. Atmospheric attenuation (i.e., reduction of 
a signal due to atmospheric gases, hydrometeors) is a criti-
cal factor affecting radiometer brightness temperature. 
Hence, Section 1.3. discusses the complex interactions of 
atmospheric hydrometeors (like water vapor, ice, precipita-
tion) with different microwave frequencies. Section  1.4. 
describes the fundamentals of the RNC classification tech-
nique and highlights prominent RNC algorithms that are 
embedded in the Goddard profiling (GPROF), the global 
satellite mapping (GSMaP) of precipitation, and the 
Goddard scattering (GSCAT) algorithms. Section  1.5. 
summarizes various indices used for performance evalua-
tion of a typical RNC classification. Compared to RNC 
classification over oceans, overland classification offers a 
myriad of complications as land presents itself as a radio-
metrically warm background with highly varying surface 
emissivities [Spencer et al., 1989; Grody, 1991; Adler et al., 
1994; Ferraro, 1997]. The fairly complex atmospheric atten-
uation in the scattering regime complicates rainfall delinea-
tion even further. For these reasons, overland RNC 
warrants separate attention. There are several open ques-
tions that need to be addressed. These have been discussed 
in Section 1.6.  followed by the conclusions in Section 1.7.

1.2. PrIncIPles of PassIve MIcrowave 
satellIte MeasureMents

Radiometry is the field of science related to measure-
ment of incoherent electromagnetic radiation. According 
to thermodynamic principles, all materials (gases, liquids, 
solids) both emit and absorb incoherent electromagnetic 
energy. The magnitude of thermal emission I can be 
expressed as a product of emissivity (ε) and the Planck 
(blackbody) function B(T) as

 I B T hc ehc kT
λ λ λ λ

λε ε λ= = −−( ) [ ( )]/( )/2 12 5  (1.1)

where h is Planck’s constant, k is Boltzmann’s constant, c 
is the speed of light, and T is thermal temperature [Elachi, 
1987]. By approximating the thermal emission from 
the  Planck function using Rayleigh-Jeans formula, the 
microwave brightness temperature can be conveniently 
expressed as a linear function of physical temperature 
and emissivity (ε) as

 
Tb T= ε PhysicalTemperature ,  (1.2)

where ε is a complex function of the dielectric constant 
whose values are quite well known for gases and calm 
water but not so well understood for the complicated case 
of rough water and land surfaces [Elachi, 1987].

A downward-viewing spaceborne radiometer is built to 
sense the upwelling electromagnetic energy emanating 
from the surface, which reaches the top of the atmos-
phere after attenuation. The brightness temperatures reg-
istered by this radiometer depends on absorption and 
scattering properties of atmosphere and background 
emissivity, which vary with frequency and polarization. 
The intensity of brightness temperature (Tb) incident on 
a spaceborne microwave radiometer (directed toward 
Earth), indicates radiation received by the spaceborne 
antenna from regions of space, which are defined by the 
antenna pattern. “The antenna pattern is usually strongly 
peaked along its beam axis. And when pointing towards the 
ground, its spatial resolution or footprint size is defined by 
the angular region over which the antenna power pattern is 
less than 3 dB down from its value at beam center” [Njoku, 
1982]. The total noise power resulting from the thermal 
radiation incident on the antenna, also known as 
“antenna temperature” is expressed as a function of the 
antenna gain pattern [G(θ, ϕ)] and the brightness temper-
ature distribution incident [TB(θ, ϕ)] as

 
T T G da b= ( ) ( )∫ ∫

1
4 4Π

Ω
Π

θ φ θ φ, , .  (1.3)

As shown in Figure 1.1, the distribution of Tb is  composed 
of self-emitted radiation from land/sea, upward emission 
from the atmosphere, and downward atmospheric 
 emission that is rescattered by the surface toward the 
antenna coupled with atmospheric  attenuation. Therefore, 
an interpretation of Tb will essentially reveal the physical 
properties of the media that produce them. Knowing the 
atmosphere, surface environmental parameters, and radi-
ometer characteristics, radiative transfer models (RTMs) 
can be used to normalize the measured Tb to a common 
reference for comparison. This implies that RTMs can 
interpret Tb from radiometers with different characteris-
tics having different viewing geometries (incidence angles) 
and operating at different frequencies [Chandrasekhar, 
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1960; Volchok and Chernyak, 1968; Paris, 1971; Snider 
and Westwater, 1972; Fraser, 1975; Savage, 1976; Wilheit 
et al., 1977]. Several factors contribute to the quantitative 
accuracy of RTMs such as the realism in specifying 
hydrometeor shape, size, and phases  encountered in 
real  rain clouds, knowledge of vertical hydrometeor 
 profiles, and proper generation of local radiative interac-
tion  properties (like single scatter albedo, extinction 
 coefficient, etc.).

The general problem of radiative transfer was solved 
by Chandrasekhar [1960] and further extended for micro-
waves in a cloudy atmosphere by Volchok and Chernyak 
[1968], Paris [1971], Snider and Westwater [1972], Fraser 
[1975], Savage [1976], and Wilheit et al. [1977]. For a 
medium in thermodynamic equilibrium, the change in 
microwave intensity Iλ over a distance ds in the direction 
(θ, ϕ) is given by the expression:

 

dI

ds
k k I k B

k

P Is s s s

λ
λ λ

λ λ

= − +( ) + +

( )∫ ∫ ′

ab sc ab
sc

, , , ,

4

0

2

0

Π
Π Π

θ φ θ φ θ φ(( )sin ,θ θ φ
s s sd d  (1.4)

where, P s sλ
′ ( )θ φ θ φ, , ,  is an inverse scattering phase func-

tion that describes the relative contribution of each polar 
angle θs and each azimuthal angle ϕs to the energy 

 scattered in the direction (θ, ϕ); and kab, ksc denote the 
absorption and scattering coefficients, respectively. In 
other words, the gradient of Iλ along s is determined by 
the balance of energy lost by absorption and by scatter-
ing out of the direction of I and energy gained by thermal 
emission and by scattering into the direction of I. The 
literature presents several solutions for RTM based on 
the assumptions of Marshall Palmer drop size distribu-
tion, horizontally homogeneous atmosphere in thermal 
equilibrium [Savage et al., 1995; Lovejoy and Austin, 
1980]. Generally, forward radiative transfer equations 
found in the literature are either scalar or vector models. 
While the scalar model solves radiative transfer equations 
with a single Stokes’ parameter and considers only the 
polarization effects caused by the surface, vector models 
consider polarization effects caused by both surface and 
hydrometeors. Vector models consider four Stokes’ 
parameters, which make the calculations complex and 
difficult to implement. Hence, vector models require 
comparatively larger amount of computational time 
when compared with scalar models. These will not be 
 discussed in this chapter. Comprehensive details regard-
ing microwave radiative transfer are given in Liou [1980] 
and Janssen [1993].

Uncertainty in effectively interpreting microwave Tb 
stems from several factors, like antenna pattern, devia-
tion of spacecraft attitude parameters (roll, pitch, yaw), 

Atmosphere

Upwelling atmospheric Tb

Downwelling 
atmospheric Tb

Reflected 
atmospheric 

Tb

Tb due to 
surface

emission

θ

Ocean

Figure 1.1 Spaceborne radiometer observing the ocean at a nadir angle θ.
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alteration of land surface emissivity during rainfall, 
 nonhomogeneity of land surfaces that results in high and 
variable surface emissivity, atmospheric attenuation, etc. 
Attenuation results from the complex interaction of elec-
tromagnetic waves with ice, water vapor, oxygen, and 
other precipitation sized hydrometeors aloft, which can 
be liquid and/or solid and which may precipitate to 
 surface as rainfall or snowfall depending on the tempera-
ture in the subcloud layer. As atmospheric attenuation 
 complicates detection of rainfall signature within Tb, 
knowledge regarding the sources and sinks of microwave 
radiation within the atmosphere is crucial to fully under-
stand these uncertainties.

1.3. atMosPherIc attenuatIon 
of MIcrowaves

With the advent of microwave radiometers on board 
 satellites like Defence Meteorological Satellite Program 
(DMSP), TRMM, Global Precipitation Mission (GPM), 
Megha Tropiques (MT), etc., microwave rainfall products 
have become an indispensable source for precipitation infor-
mation and for real-time applications in flood forecasting. A 
choice of frequency channels on board these satellites are 
made based on the geophysical parameter to be studied and 
its sensitivity to major atmospheric  constituents. Several 
studies have examined the response of microwave frequency 
channels due to precipitation-sized particles in the atmos-
phere [Weinman and Guetter, 1977; Spencer, 1986; Wu and 
Weinman, 1984]. Works have also been  conducted to esti-
mate sensitivity of Tb to variations in atmospheric and pre-
cipitation parameters using cloud radiative models such as 
those by Weinman and Guetter [1977], Wilheit et al. [1982], 
Wu and Weinman [1984], Szejwach et al. [1986], Olson [1987], 
and Kummerow and Weinman [1988]. This section describes 
the field of spectroscopy, an age-old science explained by 
quantum mechanics during the first half of the twentieth 
century involving the study of absorption and emission by 
gases. The five possible ways in which radiation interacts with 
atmospheric gases are  ionization-dissociation interaction, 
electronic transition, vibrational transition, rotational transi-
tion, and forbidden transition [Kidder and Vonder Haar, 
1995]. Among these, vibrational and rotational transitions 
are important for satellite meteorology as they occur mostly 
in the infrared and microwave portion of the electromagnetic 
spectrum. Some of the prominent sources causing atmos-
pheric attenuation of microwaves are discussed below.

1.3.1. Absorption by Gaseous Atmosphere

An extensive study of microwave absorption of atmos-
pheric gases (both theoretically and experimentally) shows 
that, emission/absorption in gaseous atmosphere is domi-
nated by the presence of water vapor and oxygen [Waters, 

1976; Ulaby and Stiles, 1981]. Absorption  characteristics of 
these gases are summarized by Staelin [1969], Paris [1971], 
Derr [1972], Waters [1976], and Fraser [1975]. Microwaves 
undergo resonant absorption and emission at certain fre-
quencies due to the quantum energy states of the water 
vapor/oxygen molecules. Within microwave spectrum, these 
molecules are  subjected to rotational transition wherein a 
molecule changes rotational energy states. This causes a 
peak in Tb measured by a radiometer. The magnitude of 
increase in Tb depends on the total number of water vapor/
oxygen molecules along the propagation path through the 
 atmosphere. At higher altitudes there is a decrease in the 
number of water vapor/oxygen molecules per unit volume. 
This in turn reduces the bandwidth of water vapor/oxygen 
emission (absorption) leading to an increase in absorption 
at the peak of resonance. The rotational lines of water and 
oxygen are “pressure broadened” in the atmosphere owing 
to the presence of other gases; there is also a slight depend-
ence on temperature [Kidder and Vonder Haar, 1995]. Water 
vapor has a weak absorption line at 22.235 GHz and a 
strong line at 183 GHz. All sensors currently used for pre-
cipitation make a measurement near 22.235 GHz like TMI 
at 21.3 GHz and AMSR at 23.8 GHz. Oxygen has two 
major peaks, one near 60 GHz and another at 118.75 GHz. 
More details regarding the absorption characteristics of 
atmospheric water vapor and oxygen can be obtained from 
Paris [1971] and Fraser [1975].

1.3.2. Cloud Liquid Water

In an atmosphere with cloud particles, the prominent 
sources and sinks of microwave energy are local emission 
and absorption. In the scattering regime, cloud droplets 
interact weakly with microwave radiation. As the cloud 
liquid water particles are usually less than 100 µm in 
diameter, much smaller than the wavelength of radiation, 
for this Rayleigh region, the scattering effect is negligible. 
Generally, for the Rayleigh regime, the effect of cloud 
particles on microwave radiation depends on liquid water 
content, cloud temperature, and wavelength of radiation. 
When microwave radiation interacts with rain clouds, the 
phenomenon is similar to an ensemble of drops with no 
coherence from drop to drop in the phase of scattered 
light. Within a rain volume, the usual practice is to 
assume the raindrops to be randomly distributed. Once 
we calculate the scattering and absorption for a single 
drop of spherical dielectric, it is possible by integration to 
determine corresponding coefficients for a rain cloud that 
is an ensemble of drops. The particle sizes of raindrops 
within a rain-bearing cloud are usually described by a 
continuous function known as drop size distribution 
(DSD). This function is responsible for defining the con-
centration of rain particles per unit volume per unit 
increment of the drop radius.
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Studies by Fraser [1975] estimated the single-scatter 
albedo as a function of wavelength for DSD representing 
very thin fair weather cumulus and very dense cumulonim-
bus clouds. Generally, for cumulus clouds, scattering 
remains negligible at all wavelengths. For cumulonimbus 
clouds raining at 150 mm/h, scattering will be small only for 
all values of wavelength >~3 cm. Studies by Lovejoy and 
Austin [1980] concluded that scattering can be neglected for 
all clouds if wavelength is >0.5 cm, and for rain rate <10 
mm/h if wavelength is >1 cm [Stepanenko, 1968; Wilheit 
et al., 1977]. A complete and published summary of extinc-
tion, scattering, and absorption  coefficients and scattering 
phase functions is available in Savage [1978]. Savage 
approximated the scattering phase functions by Legendre 
polynomials, and expressed the Legendre coefficients (for 
the phase function) and extinction, scattering, and absorp-
tion coefficients as power law relations in liquid water con-
tent [Barrett and Martin, 1981]. Lovejoy and Austin [1980] 
assessed the  relative contribution of cloud droplets and 
raindrops to total cloud layer absorption and came out 
with the conclusions that at rain rates = 10 mm/h, cloud 
absorption was 30–40% as large as rain absorption. This 
conclusion was consistent with the observations by Gorelik 
et al. [1971]. In 1976, Savage stated that addition of a non-
scattering cloud layer above the rain layer counteracted 
 scattering and resulted in Tb increase by an amount propor-
tional to the cloud layer thickness. It must be noted that as 
cloud droplets, water vapor, and oxygen all absorb (but do 
not scatter) microwave radiation, they have the potential to 
confuse precipitation estimates based on absorption 
[Barrett and Martin, 1981]. Authoritative treatment of this 

subject may be found in Gunn and East [1954], Shifrin and 
Chernyak [1968], Paris [1971], Schwiesow [1972], Hansen 
and Travis [1974], Savage [1976], and Fraser [1975].

1.3.3. Surface Emission

In the microwave spectrum, an emitting surface must 
be considered as a gray body so that its emissivity value 
stays lower than unity. For homogeneous land surfaces, 
the variability in microwave radiances depends on surface 
skin temperature and surface emissivity, while the 
 variability for open water bodies is attributed to the 
atmospheric constituents such as columnar water vapor, 
temperature profiles, and presence of cloud liquid water. 
Unlike the oceans, it is very difficult to model land  surface 
properties in the microwave spectrum due to the 
 spatiotemporal variations of soil features like roughness, 
vegetation cover, and moisture content. The response of 
different surface types on the temperature and humidity 
retrievals has been quantified by English [1999]; in these 
studies microwave emission errors for different continen-
tal surfaces were evaluated by using a mathematical tech-
nique to potentially extend the low-altitude sounding 
information over solid surfaces. Microwave land surface 
emissivity for various surface conditions on a global scale 
was attempted by Prigent et al. [1998], Weng et al. [2001], 
and Pellerin et al. [2003].

Different surfaces contribute varying amounts of emis-
sion to a microwave radiometer footprint. Figure 1.2 shows 
the Tb variations for different microwave frequency chan-
nels over land and ocean surfaces [Ferraro et al. 1998]. 

Figure 1.2 Emissivity characteristics of various surface types represented by Tb as a function of frequency (a) over 
land and (b) over ocean [Ferraro et al., 1998].
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Oceans provide a stable and uniformly “cold” back-
ground for a radiometer, emphasizing more the extinc-
tion of upwelling radiation by atmospheric constituents. 
Emissivity of sea surface is dependent on the dielectric 
properties of seawater through the Fresnel equation. 
Studies were conducted to predict the dielectric constant 
of seawater with an aim to improve the retrieval of 
 atmospheric parameters [Klein and Swift, 1977]. Over 
snow- covered soil, the emissivity values depend on the 
dielectric constant of frozen soil (~3), thickness, water 
equivalent, and liquid water distribution. If  snow is dry, 
Tb decreases with an increase in snow water equivalent. In 
the case of wet snow, even a small increase in the amount 
of liquid water causes Tb to rise due to volume scattering. 
The dependence of snow on Tb is more prominent at 
microwave frequencies >8–12 GHz. In the presence of 
vegetation, microwave radiation gets emitted, absorbed, 
and scattered with the radiative properties mostly con-
trolled by the vegetation density, dielectric properties, 
and relative size of vegetation components with respect 
to wavelength. Increasing vegetation density increases the 
emissivity in horizontal polarization and reduces the 
emissivity polarization difference [Prigent et al., 1997]. In 
effect, the presence of vegetation reduces the radiometric 
sensitivity to soil moisture. Studies have developed com-
putational schemes to improve the mathematical descrip-
tion of surface emissivity for several land types: bare soil, 
vegetation canopy, and snow-covered terrain [Shi et al., 
2002; Ferrazoli et al., 2000; Fung, 1994].

Theoretical models for microwave emission from soils 
have been presented by many studies [Njoku and Kong, 
1977; Wilheit, 1978; Burke et al., 1979; England, 1976] by 
considering emission from soil for a range of moisture 
and temperature profiles. At low microwave frequencies, 
Tb is strongly affected by soil moisture content. This strong 
dependence is owing to the comparatively high dielectric 
constant of water (~80) compared to that of dry soil. The 
dielectric constant of wet soil can reach 20 or more, result-
ing in an emissivity change at 1.4 GHz from about 0.95 for 
dry soil to 0.6 for wet soils. Despite a strong sensitivity of 
the emissivity on soil moisture, microwave remote sensing 
of soil moisture from space is complicated due to highly 
varying surface roughness and vegetation cover, which is 
aggravated by the presence of mixed surfaces within satel-
lite field of view (FOV). To summarize, varying emissivity 
values from spatiotemporal variations of land surface 
types can deeply affect radiometer observations, often 
leading to rainfall retrieval errors.

1.3.4. Ice

Ice particle shapes are crucial in scattering regimes, as 
they significantly affect the emerging radiance field [Mugnai 
and Wiscombe, 1986; Bohren, 1986]. Crystals of ice exhibit 

a large variety of shapes and modes depending on atmos-
pheric temperature and humidity conditions. If we simplify 
the domain of shapes that the ice nucleation process can 
create, they can be considered as columns and plates. The 
usual practice is to adopt a Marshall-Palmer size distribu-
tion for ice particle sizes in all theoretical treatments.

Sensitivity of Tb values to the integrated mass of ice/
rain depends on frequency, until the optical depth reaches 
the saturation level [Evans et al., 1995]. Fulton and 
Heymsfield [1991] studied the response of Tb (18, 37, 92, 
183 GHz) to hydrometeors due to intense convection and 
suggested that even the lowest microwave frequency 
channel (18 GHz) is significantly obscured by deep 
 convective ice mass. Generally, with an increase in micro-
wave frequency (>60 GHz), scattering signatures become 
more pronounced and a dramatic increase is observed in 
 volume scattering (ks), absorption coefficients (ka), and 
single-scatter albedo. This is because the aging of ice 
results in internal voids that tend to scatter microwave 
radiation. And, an increase in microwave frequencies is 
accompanied by an increase in the scattering cross  section 
of inhomogeneities, thereby causing a decrease in radia-
tion emanating from them. Thus, at higher frequencies, 
scattering dominates with microwave radiation acting 
relatively transparently to the rain below freezing level. In 
satellite meteorology, the high single-scatter albedo pro-
duced by ice is crucial, as it heavily depresses high- 
frequency microwave channels. Ice has much smaller 
absorption coefficients than water that result in high 
albedos at all SSM/I frequencies. A single scatter albedo 
approaching unity indicates that any thermal radiation 
upwelling from below an ice layer that is attenuated by 
the ice will be scattered out of the radiometer’s field of 
view, with very little ice-emitted radiation to replace it 
[Spencer et al., 1989]. When the scattering coefficient is 
large, and since there is very little (2.7 K) downwelling 
radiation from cosmic background, very low values of Tb 
will be recorded at 85.5 GHz frequency. This extremely 
low Tb observed is usually attributed to convective rain-
fall. Due to the high sensitivity of 85.5 GHz frequency to 
frozen ice, RNC algorithms for land regions are essen-
tially based on ice scattering at this frequency. Studies 
have also been conducted by Anagnostou and Kummerow 
[1997] that suggest that as Tb at 85.5 GHz (V) frequency 
is more variable in raining than in nonraining area, stud-
ies of rainfall screening can utilize even the standard 
deviation of Tb at 85.5 GHz (V) frequency in a 5 × 5 pixel 
window [Biscaro and Morales, 2007].

1.3.5. Precipitation

At microwave wavelengths, precipitation-sized drops 
interact strongly with microwave radiation [Kidder and 
Vonder Haar, 1995]. Interaction of electromagnetic (EM) 
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waves with a spherical dielectric causes scattering 
 (redirecting) or absorption (conversion to mechanical 
energy) of radiation depending on the size of  precipitation 
particles [Barrett and Martin, 1981]. One of the earlier 
studies by Mie [1908] introduced the general mathemati-
cal solution for scattering and absorption of EM waves by 
a dielectric sphere of arbitrary radius. Later on, this was 
applied to the context of rain by Gunn and East [1954]. 
The expressions for Mie efficiency factors are given by

 
Q n

rcex
ex,λ( ) = σ

Π 2
,  (1.5)

 
Q n

rcsc
sc,λ( ) = σ

Π 2 .  (1.6)

In equations (1.5) and (1.6), r denotes the radius of the 
rain drop, λ stands for the wavelength, and nc represents 
the complex index of refraction; Qex and Qsc refer to the 
Mie efficiency factors of extinction coefficient and scat-
tering coefficient for a single drop. The symbols σex and σsc 
represent the effective cross sections for extinction and 
scattering.

Fraser [1975] has calculated the Mie efficiency factors 
for extinction and scattering and the Rayleigh extinction 
coefficient for a range of drop sizes [Barrett and Martin, 
1981]. If  we consider a single raindrop particle whose size 
is much smaller than the wavelength of EM waves, 
Rayleigh approximation to the exact Mie expression 
applies. The absorption cross section will then be propor-
tional to the cube of particle diameter and hence propor-
tional to the volume and mass of the raindrop while 
scattering cross section will be negligible. When cloud 
drops coalesce into raindrops with dimensions comparable 
to microwave wavelengths, absorption per unit mass 
increases and scattering can no longer be ignored. Based 
on the theoretical calculations by Savage [1976], rain rates 
of even a few millimeters per hour cause depression (below 
260 K) in Tb for microwave frequencies close to 100 GHz. 
Studies by Kidder and Vonder Haar [1977] used Tb thresh-
old values to discriminate raining from nonraining pixels. 
Although attempts to use measurements at 37 GHz for 
land regions [Weinman and Guetter, 1977; Spencer et al., 
1983; Spencer, 1986] met with partial success, mainly in 
cases of heavier convective rainfall, more reliable micro-
wave rainfall monitoring was made possible only after the 
launch of SSM/I (1987) [Barrett et al.,1988; Spencer et al., 
1989]. Spencer et al. [1989] calculated the scattering and 
absorption properties of rain for the three main wave-
lengths (19.35, 37, 85.5 GHz) that have been used to meas-
ure precipitation (Figure 1.3). Their study came out with 
the conclusions that liquid drops both absorb and scatter 
microwaves of which absorption dominates [Kidder and 
Vonder Haar, 1995], especially in the frequency range 
below 22 GHz. This implies that, in this frequency range, 

scattering does not occur and ice  particles above rain are 
nearly transparent. Another prominent result of their 
study is that with an increasing rain rate, scattering and 
absorption both increase with microwave frequencies.

1.4. raIn/no-raIn classIfIcatIon Methods

An ideal approach toward understanding the funda-
mentals of RNC classification is based on the emissivity 
characteristics of background surface. RNC algorithms 
follow different principles when the underlying surface is 
land or ocean. Ocean surfaces, which appear “cold” to a 
radiometer operating in the microwave region, offer good 
contrast for the detection of rain drops, which appear 
radiometrically warm. As this phenomenon utilizes the 
strong physical relationship between low-frequency (6–37 
GHz) Tb and liquid rainfall, overocean techniques are 
essentially emission based. Land, however, offers a 
 radiometrically warm background, which tends to hide 
emission from raindrops. Overland RNC techniques 
solely rely on ice scattering at a high- frequency (85 GHz) 
microwave channel and are ambiguous in nature [Wilheit, 

280

260

240

220

200

180

160

140

120

100

80
10 20 30

Rain rate (mm/h)

85.6 GHz

37 GHz

18 GHz

LandOcean

T b
 (

K
)

40 50 60
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GHz. [Reprinted from radiative transfer modeling of Wu and 
Weinman, 1984.]
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1986; Spencer et al., 1989; Grody, 1991; Adler et al., 1993; 
Ferraro and Marks, 1995; Lin and Hou, 2008; Wang et al., 
2009; Gopalan et al., 2010]. This is mainly due to the 
highly varying emissivity from the land surface back-
ground that clutters rainfall signature. The complicated 
nature of high-frequency microwave scattering with ice 
crystals adds to the uncertainty, thereby rendering the use 
of radiative transfer models extremely difficult. It should 
be noted that the microwave frequencies are utilized to 
retrieve several geophysical parameters over ocean; for 
example, 6.8 and 37 GHz are used for wind speed retrieval 
[Wentz, 1983], 7 GHz is used for retrieving sea surface 
temperature [Chelton and Freilich, 2005], and so forth.

Some of the first rainfall screening studies were by 
Ferraro et al. [1986] and Wentz and Cavalieri [1995]. They 
proposed using multiple channels to identify a rainfall 
signature from radiometer-received Tb. Their study, 
involved an intensive analysis of Scanning Multichannel 
Microwave Radiometer (SMMR) passes over central 
North America on 20 January, 1979. The study region 
was chosen to represent a wide variety of surface and 
atmospheric features ranging from harsh winter 
 conditions and deep snow cover in the northern latitudes 
to heavy convective rains.

Based on the criteria of  spatial resolution and 
 sensitivity to surface parameters, differences between 18 
and 37 GHz channels were selected as the optimum 
channel combination for rain/no-rain discrimination. 
Their study observed that the presence of  clouds and 
precipitation led to an increase in Tb. Ferraro et al. [1994] 
expanded on these ideas and developed a set of  geo-
graphical screens for land, ocean, semiarid land, coast-
lines, and sea ice. Using SSM/I data over ocean surfaces, 
Wentz and Cavalieri [1995] proposed the no-rain algo-
rithm based on the fundamental principles of  radiative 
transfer and explicitly showed the physical relationships 
between the input (Tb) and the output (wind speed, 
columnar water vapor, columnar cloud liquid water, rain 
rate, and effective radiating temperature for upwelling 
radiation). Later on, this algorithm was extended to 
include the effects of  rainfall. Comprehensive details can 
be found in Wentz [1997]. The screening methodology 
that has evolved continuously throughout the years is the 
Grody-Ferraro screening methodology (discussed in 
Section 1.4.1). This is currently built in to the GPROF 
algorithm [Kummerow et al., 2001]. Various versions of 
GPROF have been applied in SSM/I, TMI, and AMSR-E 
missions [McCollum and Ferraro, 2003; Wang and Wolff, 
2010]. The purpose of  this section is to describe the 
major indices used for demarcating the rainfall signature 
within a microwave FOV, through which we discuss some 
of  the prominent RNC algorithms adopted for land, 
ocean, and coastlines, using data from satellites like 
SSM/I, TRMM, etc.

1.4.1. Scattering Index

The technique of using a scattering index (SI) to deline-
ate raining pixels originated from the studies by Grody 
[1991]. Initially, the idea was proposed to create geo-
graphical masks for eliminating Tb cluttering due to 
desert sand and ice-capped land surfaces. This was essen-
tial, as uncertainty in detecting scattering caused by 
desert/ice-capped surfaces led to false estimates of rain-
fall over these regions. RNC algorithms based on SI by 
Grody [1991] largely relied on regression relationships of 
microwave low-frequency channels, especially the 19 and 
22 GHz. Vertical polarization measurements were pre-
ferred, as they resulted in smaller aliasing effects in the 
presence of mixed boundaries (e.g., coastlines). Adler 
et al. [1993] devised a global empirical relation for SSM/I 
to calculate the estimated value of Tb at 85 GHz (V) 
under nonrainy conditions (Tb Estimated, ), using a fixed quan-
tity of 243 K. Later on Ferraro et al. [1994] and Ferraro 
and Marks [1995] introduced the concept of using low- 
frequency channel combinations (10–37 GHz) to repre-
sent Tb, Estimated. Since the introduction of Grody-Ferraro 
screening methodology [Ferraro et al., 1986, 1998; Grody, 
1991], it has been the most applied technique for use in 
microwave land precipitation algorithms. The key idea in 
this technique is that radiation emitted from land sur-
faces is affected by ice particles and raindrops at high fre-
quency 85 GHz Tb. Calculation of Tb, Estimated  involves 
simulation of 85 GHz Tb values for clear sky conditions 
(i.e., nonscattering condition). The difference between 
Tb, Estimated  and the observed 85 GHz Tb (Tb, Observed ) gave a 
measure quantifying the degree of scattering by ice parti-
cles and raindrops, wherein the rain rate is proportional 
to the amount of scattering. As rainfall SI models offered 
an indirect and nonunique relation that varied from 
region to region, empirical relationships were largely 
employed between precipitation and SI to map rainfall 
over land surfaces [Spencer et al., 1989; Kidd and Barrett, 
1990; Conner and Petty, 1998; Adler et al., 1994; Dinku 
and Anagnostou 2005].

As experience with SI-based studies grew, it became 
increasingly clear that a new suite of algorithms was nec-
essary that efficiently modeled the value of Tb, Estimated  to 
suit the highly varying emissivity from the background 
land surface. Results of the ensuing development for 
overland regions are summarized in Table 1.1. Approaches 
involved using 85 GHz (H) channel instead of 85 GHz 
(V) channel to depict Tb, Observed  [owing to the failure of 
the first of  SSM/I’s 85.5 GHz (V) channel Tb] [Adler 
et al., 1994; Kummerow and Giglio 1994], using channels 
of 19 GHz (V) and 22 GHz (V) to represent TB Estimated  
owing to their increased  sensitivity to land surface emissivity. 
SI-based RNC  classification techniques are currently 
being used for overland RNC classification embedded in 
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prominent algorithms such as GSCAT and GPROF algo-
rithms, which are discussed in Sections 1.4.3 and 1.4.4.

1.4.2. Polarization-Corrected Temperature

Atmospheric hydrometeors have a depolarizing effect 
on microwave radiation that is emitted and reflected from 
a highly polarized surface [Wu and Weinman, 1984; 
Huang and Liou, 1983]. Therefore, polarization offers a 
great deal of information for separating the highly 
 polarized radiances of the ocean from the essentially 
unpolarized radiances due to precipitation volume scat-
tering [Weinman and Guetter, 1977]. Spencer et al. [1989] 
proposed an index comprised of linear combinations of 
vertical and horizontal polarizations to eliminate  contrast 
between land and water/wet surfaces to yield a precipita-
tion signal whose interpretation does not vary much 
depending on the background surface. The conceptual 
diagram of this index, known as polarization-corrected 
temperature (PCT) is shown in Figure 1.4.

The PCT relates the vertically and horizontally 
 polarized Tb, and Spencer et al. [1989] described it as a 
measure of the distance from the no-scattering line. 
Earlier studies by Spencer [1986] noted that upon  addition 
of nonscattering materials to the atmosphere above a 
nonraining, oceanic scan spot, the observed Tb will tend 
to move along the no-scattering line. When scattering 
materials (e.g., precipitation) gets introduced into the 
atmosphere, the point moves off  the no-scattering line. 
As scattering lowers the Tb values, observations in which 
precipitation occurs will essentially fall between the no-
scattering line and the no-polarization line. If  Tb,HCLF  
and Tb,VCLF

 refer to the horizontally and vertically polar-
ized cloud free ocean Tb respectively, Tb,H  and Tb,V  are 
the horizontally and vertically polarized Tb that are at 
least partially affected by any combination of clouds 
and precipitation, Tb,VOLA  and Tb,HOLA  are the vertically 

and  horizontally polarized Tb of  the ocean with no over-
lying atmosphere, then the expression for PCT is given by

 
PCT H V=

−

−

β

β

T Tb b, , ,
1

 (1.7)

Table 1.1 prominent scattering index based Rnc methods

Sl no: Algorithm proposed by
Observed Tb  
(K)

Estimated Tb  
(K)

SI Threshold 
(K)

1. Grody [1991] 85(V) 450 2 0 506 1 874 0 00619 22 22
2. . . ., , ,− × − × + ×T T Tb b bV V V

SI > 10

2. Adler et al. [1994]  
(GScAT)

85(H) 251 SI > 4

3. Kummerow and Giglio [1994] 85(H) Min[ ],Tb 37 265H, SI > 0
4. Ferraro [1997] 85(V) 451 9 0 44 1 775 0 00522 22

2. . . ., , ,− × − × + ×T T Tb b b19V V V SI > 10

5. Ferraro [1997] 37(V) 62 18 0 773 19. . ,+ ×Tb V SI > 5
6. Kummerow et al. [2001] 

(GpROF)
85(V) Tb, 22V SI > 8

7. M1 [Seto et al., 2005] 85(V) μ SI > k0σ
8. M2 [Seto et al., 2005] 85(V) a b Tb+ × ,22V SI > k0σe

Source: Modified and adapted from Seto et al. [2005].
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Figure 1.4 Schematic diagram of vertically and horizontally 
polarized Tb of ocean with and without an overlying atmos-
phere [Spencer et al., 1989].
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where

 
β =

−

−

T T

T T
b b

b b

, ,

, ,

.VCLF VOLA

HCLF HOLA

 (1.8)

Calculation of PCT at any frequency requires a nearly 
constant value of β. Experiments using SSM/I observa-
tions of global cloud-free oceanic areas show that to 
obtain a physically meaningful value of PCT (between 
275 and 290 K) the value of β should be 0.45. Absolute 
accuracy for β is not as important as keeping it constant 
in all subsequent calculations. Equation 1.7 for PCT can 
be rewritten as

 
PCT T Tb v b h= −1 818 0 818. ., ,

 (1.9)

PCT values using 85.5 GHz frequency channels will 
generally be lower than the background PCT, although 
its Tb depression will be much less than that due to the 
strong volume scattering effects of  precipitation. Hence, 
this property of  85.5 GHz PCT is employed to detect 
cloud liquid water. Studies by Mugnai et al. [1993] using 
numerical model simulations demonstrated that 85 
GHz signals represent emissions from upper-level liq-
uid and ice scattering in the upper reaches of  tall pre-
cipitation clouds. Therefore, PCT using 85.5 GHz 
channel is sensitive to precipitation top height for tall 
convection and surface rainfall for moderate convec-
tion. A modified relation for PCT was proposed by 
Kidd and Barret [1990] using SSM/I’s 85.5 GHz chan-
nels as the basis for  estimation of  precipitation over 
both land and water. PCT is currently being used for 
RNC classification and the succeeding rainfall retrieval 
oceans and coastlines in the algorithm of  the GSMaP, 
which is discussed in Section 1.4.4

1.4.3. Goddard Scattering Algorithm

The Goddard scattering algorithm (GSCAT) was first 
proposed by Adler et al. [1993]. Their study detected the 
existence of rainfall signature using an empirical logic 
tree applied to multiple channels. The algorithm relied on 
frequencies of 86 and 37 GHz (both in the horizontal 
polarization) to eliminate nonraining areas. This tech-
nique worked well over ocean and land areas but suffered 
from the inability to detect rain from clouds below the 
freezing level. Efforts were undertaken to modify the 
GSCAT RNC algorithm by including geographical 
screens (for deserts and snow-covered surfaces) similar to 
the work by Grody [1991]. Adler et al. [1994] modified this 
algorithm and included better quality control and use of 
lower frequency channels to differentiate cold surface 
and desert from precipitation. This differentiation was 

essential when rainfall retrieval is to be made globally. 
Adler et al. [1994] and Kummerow and Giglio [1994] 
 created GSCAT2, which used 85 GHz (H) instead of 85 
GHz (V), to represent the value of Tb,Observed  and a 
 constant value (251 K) for Tb, Estimated without using any 
regression equations such as Grody [1991]. It was devel-
oped using channel information from SSM/I sensors. The 
methodology employed several checks, including the 
existence of cold ocean, coastline, desert, ice-covered 
regions, and ambiguous cold surface possible precipita-
tion checks. These checks prevented surface effects that 
might lead to false identification of rain regions. 
GSCAT-2 proved to perform successfully in the SSM/I 
era to demarcate rain/no-rain regions, but not without 
some false rain identifications. The overall procedure for 
identifying raining pixels was not all that dissimilar from 
the scattering index by Grody [1991]. In an intercompari-
son study involving seven microwave techniques over 
Japan, Lee et al. [1991] showed that the GSCAT had the 
highest correlation with the Grody scheme during the 
convective regime in July–August 1989. The scattering 
signatures in GSCAT were used to retrieve rain intensity 
in proportion to the amount of scattering by ice and 
graupel aloft based on radiative transfer calculations 
applied to numerical cloud model results.

1.4.4. Goddard Profiling Algorithm

The GPROF algorithm is considered the established 
algorithm framework for microwave rainfall products 
from TRMM (launched in November 1997), Aqua (satel-
lite of AMSR-E launched in May 2002), and included in 
the initial plans for the proposed Global Precipitation 
Measurement (GPM) mission (to be launched in 2014). 
GPROF follows separate sets of algorithms for RNC 
classification over land, ocean, and coastlines. Various 
versions of GPROF screening methodology have been 
implemented in SSM/I, TMI, and AMSR-E missions 
with an improved version to be applied in GPM mission 
[McCollum and Ferraro, 2003; Wang et al., 2009; Gopalan 
et al., 2010].

1.4.4.1. RNC Over Land
The RNC classification algorithm of GPROF for land 

regions [Kummerow et al., 2001] assumes that Tb at 21.3 
GHz (V) represents the nonscattering portion of Tb from 
85 GHz (V). A scattering index threshold of 8 K is fixed to 
judge rainfall signature from a pixel/footprint. All  pixels 
that exceed this threshold were identified as  “possible 
rain” and were then processed using the full Bayesian 
algorithm to quantify the rain rate, which could be zero or 
nonzero. GPROF version 4 used the screening methodol-
ogy of GSCAT 2 [Adler et al., 1994]. Version 5 of GPROF 
[Petty 1994] employed polarization-based  emission and 
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scattering indices that could isolate signal coming from 
rain clouds with the background variability.

1.4.4.2. RNC Over Oceans
Over oceans, the predictable ocean surface emissivity 

offers contrast to the signals emanating from liquid 
hydrometeors over the range of microwave frequencies. 
Yet, the RNC detection technique of TRMM TMI 
 usually fails over oceans to detect shallow rain observed 
by PR owing to the small scale of shallow rain when 
 compared with the resolution of channels used in the 
emission-based algorithm. As clouds are optically thick 
at 85 GHz, it becomes very difficult to use the emission-
based algorithm to detect shallow rains. Owing to the 
contrast between atmospheric liquid and low emissivity 
ocean surface, screening rainfall pixels over oceans relies 
on estimation of the liquid water path (LWP). The screen-
ing of GPROF over the ocean consists of two processes: 
checking the LWP and screening out clear ocean pixels 
and ice surface pixels. The flowchart for GPROF method 
over the ocean is shown in Figure 1.5.

In the first process, based on the study of Karstens et al. 
[1994], the LWP is checked using TMI low-resolution chan-
nels of 22 GHz (V) and 37 GHz (V) using the relation

LWP = −( ) − −( )
+
0 39 285 1 40 285

4 29
22 37. log . log

. .
, ,T Tb V b V

(1.9)

All the footprints having LWP values less than the maxi-
mum LWP was classified under “no rain,” where the 
value of maximum LWP (kg /m2) is based on the follow-
ing relation:

 
LWP

FLH
_max . * .= 






0 25

4000
 (1.10)

Here the value of freezing level height (FLH) is derived 
from the work by Wilheit et al. [1991] and the values of 
0.25 and 4000 represent the liquid water content and a 
typical FLH [Wilheit et al., 1991].

The second process was based on the GSCAT algo-
rithm [Adler et al., 1994], which employed three checks. 
The first check employed threshold values for Tb from 
22 GHz (V) and 85 GHz (H) channels to identify the 
target pixel as “possibly rain.” This check was origi-
nally used to screen ice surfaces and “possible rain,” but 
in the GPROF version 6 algorithm, this was utilized to 
detect rainfall signature. The second check aimed to 
distinguish ice surfaces from “rain” using Tb at 22 GHz 
(V). The third check was to identify clear ocean using 
Tb at 37 GHz (H) and 85 GHz (H). If  the target pixel 
was not identified as ice surface/clear ocean by these 
checks, it was flagged as “possible rain.” After the 
screening process, the footprints identified as “possible 
rain” are processed using the Bayesian algorithm to 
quantify rain rate.

Is LWP < LWP_max No rain
(clear ocean)

Is Tb,85H> 262.0
Is  Tb,22V<  269.1

Is Tb,22V< 192.0

Is Tb,85H– Tb,37V> 0.5
Is Tb,37V≤ 186.7

Rain possible

No rain
(ice surface)

No rain
(clear ocean)

Rain possible

Apply Bayesian algorithm

No rain Rain
R = 0 R > 0

Checking 
of LWP

Checking
for clear
ocean &

ice surface

Figure 1.5 Flowchart for Rnc method of GpROF over ocean [Kida et al., 2009].
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Tb,85H > 257, Tb,22V < 269.1

Tb,22V <192

Tb,85H − Tb,37H > 0.5
Tb,37H < 186.7 > 257

Tb,37H − Tb,85H > 10.5 Tb,22V > 37.9 + 0.88 × Tb,19V Tb,22V < 269.1

Tb,22V < 269.1
Tb,22V > 37.9 + 0.88 × Tb,19V

Tb,22V < 261.9
Tb,22V < 163.3 + 0.49 × Tb,85H

Tb,22V < 261.9
Tb,22V < 0.49 × Tb,85H + 163.3

No

No

Ambiguous

Yes

Yes

No

Tb,22V < 269.1

No

Possible rain

No

AmbiguousNo rain (ice)
Yes

No

Tb,22V < 269.1
Yes

No
No

Yes
Possible rain

Yes

No

YesYes

Clear coast check

No

Yes
Possible rain

Yes
No rain (ice)

No rain (open ocean)
Yes

No

Ambiguous

Yes
No rain Ambiguous No

Figure 1.6 Decision tree for demarcating rainfall over coasts (HA93) [McCollum and Ferraro, 2005].

1.4.4.3. RNC Over Coasts
Rain identification over land or water involves checks 

for snow/desert surfaces, which tend to depress the 
high-frequency microwave channels. Coastlines are 
much more difficult as, for either water or land surfaces, 
adding the opposite surface into the footprint will have 
the same effect as rainfall. Over land, adding surface 
water to the footprint will reduce the Tb’s, as does scat-
tering caused by rain, and adding land to a water foot-
print will increase Tb’s, similarly to rain over water, 
resulting in emission [McCollum and Ferraro, 2005]. 
Over coasts, microwave footprint is a combination of 
radiometrically warm land surface and cold ocean sur-
face. One of  the very first RNC algorithms developed 
for coasts was using SSM/I channels by Adler et al. 
[1994]. They proposed a complex decision tree method 
as shown in Figure  1.6, to isolate rainfall signature 
without using the SI method by Grody [1991]. More 
details about this method are available in Huffman and 
Adler [1993], which will hereinafter be referred to as 
HA93. The HA93 algorithm was implemented in 
GPROF and has remained in use in successive GPROF 
versions [Wilheit et al., 2003].

Bennartz [1999] provided a technique to account 
for  the coastline complexity, which involved use of 
 effective antenna pattern function and scan geometry 
of  the microwave instrument and high-resolution 
land-water mask to analyze the fraction of  land versus 
water within each radiometer footprint. The study 
represented the atmospheric contribution from rain 
assuming a constant land Tb, while the land versus 
water fraction was used to weight the relative contri-
bution of  land-ocean surfaces to  background signal. 
This technique was implemented to retrieve column 
water vapor for noncloud conditions using SSM/I 
data for the Baltic Sea region of  western Europe. The 
study concluded that satellite navigation uncertainty 
created a dominant source of  error. The assumption 
of  a constant value to represent Tb from highly vary-
ing land surfaces fails in raining situations, for which 
cases the method of  Bennartz [1999] cannot be imple-
mented. The land surface emissivities have not yet 
been incorporated in the land component of  GPROF 
rainfall algorithms. And, use of  a straight cutoff  for 
Tb values also cannot be implemented over coasts as 
water within the footprint reduces the high-frequency 
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Tb’s. As a result, combination of  several criteria were 
examined to classify a footprint as having “no rain,” 
“possibly rain,” or “ambiguous.” The criteria were 
mostly determined from the studies of  Grody [1991] 
and Adler et al. [1993].

The HA93 decision tree method for RNC classifica-
tion of  coastline is summarized in figure  1.6. In this 
figure, the “clear coast check” by Adler et al. [1993] 
involves the following checks for Tb from 85 GHz (H) 
and 37 GHz (H):

 
σ T Kb, ,85 10H( ) >  (1.11)

 
ρ T Tb b, , . ,37 85 0 5H H,( ) >  (1.12)

 Slope <1 2. , (1.13)

where
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and σ (standard deviation) and ρ (cross correlation) are 
computed on a 5 × 5 footprint array centered on the 
 footprint of interest. This test identifies cases in which 
low humidity allows the (similar) surface emission signals 
from Tb,37H  and T Tb b, ,/85 89H H to dominate the microwave 
 signal [McCollum and Ferraro, 2005].

The HA93 algorithm added ambiguous classes for TB 
combinations for which rainfall rate was retrieved based on 
the requirement that another scheme be applied to estimate 
whether the retrieval was useful or an artifact. In case this 
could not be done, no estimate was made for such foot-
prints in the “ambiguous” class, leaving “holes” in the 
resulting rainfall map. Footprints that were classified under 
“possible rain” were required to satisfy a cutoff threshold 
using higher frequency channels to be flagged as “rain” 
over land regions. The HA93 algorithm used Tb,85 257H K<  
criterion to assign a positive rain  classification. The study 
conducted by McCollum and Ferraro [2005] using AMSR-E 
data suggested that a threshold using Tb,85H  fails to provide 
a clear cutoff. The availability of TMI Tb’s collocated with 
TRMM PR rainfall rates enabled choosing cutoff criteria 
that could efficiently separate raining from nonraining 
footprints. To summarize, the study by McCollum and 
Ferraro [2005] provided two major improvements to the 
existing RNC classification algorithm for coasts. The first 
step was to estimate conditions where positive rain rates 
should be estimated rather than leaving the areas without 
estimates as in the previous algorithm. Owing to the high 
 correlation among the various TMI microwave channels, 
principal component analysis often provides a useful 

 technique to separate signals of geophysical variables by 
the creation of mutually orthogonal statistically uncorre-
lated  eigenvectors [Conner and Petty, 1998]. Therefore, the 
 second step modified the cut-off threshold for rain/no-rain 
classification by using a PCT criterion instead of a straight 
Tb cut-off. These modifications were  implemented in 2004 
for the version 6 TMI product and third release of AMSR-E 
products with a slight difference for each product. The 
 significant changes implemented for the latest version (ver-
sion 7) of the GPROF TMI ocean algorithm involves addi-
tion of the probability of precipitation parameter, wherein 
pixels are not screened before Bayesian scheme. The algo-
rithm developers recommend using 50% probability of 
rainfall threshold within the FOV when comparing with 
instantaneous PR and TMI rain rates. For the TMI coastal 
algorithm, a change in the land/ocean classification has 
been implemented [Zagrodnik and Jiang, 2013].

1.4.5. Global Satellite Mapping of Precipitation 
(GSMaP) Algorithm

The GSMap algorithm was developed by the Earth 
Observation Research Center, Japan Aerospace 
Exploration Agency (JAXA/EORC), and has been 
 further improved with the use of  PR measurements. 
Comparative studies by Kummerow et al. [2001] evalu-
ated the performance of  TRMM monthly rainfall esti-
mates from both its sensors TMI and PR, which revealed 
a bias between both the rainfall products of  nearly 30% 
over ocean and 26% over land (using version 5 of  data 
 products). The TRMM version 6 algorithms display 
improvements within level 2 surface rain retrieval algo-
rithms based on physical principles. Results of  inter-
comparison studies between version 5 and version 6 
algorithms are presented in Chiu et al. [2006]. GSMaP is 
drawn up to the highest levels of  precision and resolu-
tion with temporal resolution of  1 h and spatial resolu-
tion of  0.1°. The RNC algorithms implemented in 
GSMaP for over land, over ocean, and coastal regions 
are discussed below.

1.4.5.1. RNC Over Land

Seto et al. [2005] developed the RNC classification algo-
rithm (version 4.5) for GSMaP that was employed in 
TRMM. Their study involved statistically summarizing all 
the TMI Tb values under no-rainfall conditions of PR 2A25, 
for the land regions into a database that represented both 
the spatial and temporal variations of Tb. This “land surface 
brightness temperature database” contained the spatiotem-
poral variations of Tb including the effects of sand and 
fallen snow [Seto et al., 2005]. Due to the varied spatial reso-
lutions of TMI channels among themselves as well as with 
PR, footprint size was defined by means of effective field of 
view (EFOV). PR footprints, the center of which lie within a 
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TMI footprint, were chosen as reference. In their study, all 
the PR observations within a TMI footprint that had a “no-
rain” or “rain-possible” flag were adjudged to be in no-rain 
conditions. Their study summarized TMI observations 
under no-rain conditions in a database with resolution of 1 
month and 1° latitude × 1° longitude. The distribution of Tb 
values under no-rain conditions was represented using a 
Gaussian distribution. The mean (μ) and standard deviation 
(σ) of 85 GHz (V) Tb were calculated to represent the distri-
bution and stored in the database.

Seto et al. [2005] proposed two RNC methods (named 
as M1 and M2) for real-time use. The first method (M1) 
used the parameters estimated from the database of TMI 
Tb under no-rain conditions. The value for Tb, Estimated  was 
fixed as equivalent to μ and the threshold of scattering 
was judged at k0σ where k0 was a constant in space and 
time. The thresholds for M1 differed with month and grid. 
This was an improvement over the threshold of Adler 
et al. [1994], which remained fixed at a constant value of 
251 K. M2 considered a linear regression fit using least 
mean square error, between Tb (21.3 V) and Tb (85.5 V), 
both under no-rain conditions, using the database.

 
T a b Tb b, ,. .~85 5 21 3V NoRain V NoRain
( ) + ( )  (1.14)

The subscript denotes observations conducted under no-
rain / clear sky conditions. If σe is the standard  deviation of 

residuals of equation and k0 is a constant in both space 
and time, the pixel fulfilling the criterion of equation (1.11) 
is adjudged as containing a rainfall signature:

 
T T kb b e, ,. .85 5 85 5 0V Estimated V Observed
( ) − ( ) > σ  (1.15)

The number of rain pixels increased or decreased depend-
ing on the value of k0, which varied with regions and sea-
sons. The usual practice was to affix a constant value for k0 
for simplicity reasons. For GSMaP, the value of k0 adopted 
was 3.5 and no desert/snow masks were employed as in 
Grody [1991]. The proposed RNC for version 4.7 was the 
same as that of version 4.5 with the only difference being in 
the retrieval part. These RNC methods are also known as 
PR-dependent methods as they cannot be applied to other 
microwave radiometers not accompanied by spaceborne 
precipitation radar. The methods (M1 and M2) were modi-
fied with an aim to make the RNC methods independent of 
PR so that these could be applied to data from other micro-
wave radiometers as well. Comprehensive details regarding 
these can be found in Seto et al. [2009].

1.4.5.2. RNC Over Oceans
Over oceans, GSMaP adopted the method of  Kida 

et  al. [2009]. Their study employed two stages for 
 detection of  rain and no-rain footprints, as shown in 
Figure  1.7. In the first stage, deep rain pixels were 

Rain85 > 1

Within the range of 10 GHz
EFOV from a target 
pixel

PCT37V< 1

Tb,10V_Ra inf ree< Tb,10V

And/or

Tb,19V_Ra inf ree< Tb,19V

Tb,10V_Ra inf ree< Tb,10V

And/or

Tb,19V_Ra inf ree< Tb,19V

And/or

Tb,37V_Ra inf ree< Tb,37V

Rain

No rain

No rain

No

Yes Yes

No

No

First stage

Second stage

Figure 1.7 Flowchart for Rnc classification used in GSMap  [Kida et al., 2009].
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determined by Tb from 85 GHz (V) scattering  signature, 
and shallow rain pixels were determined with normal-
ized polarization difference at 37 GHz (V). The study 
considered all the pixels of  85 GHz (V) lying within the 
EFOV of  10 GHz (V) pixel. The condition for detec-
tion of  deep rain pixel was then fixed as the existence 
of  one or more pixels of  85 GHz (V) within the EFOV 
of  10 GHz (V), having a rain rate > 1mm/h (rain 85 
pixels). The study classified the target pixel (central 
pixel) as deep rain pixel upon fulfilling the above con-
dition. If  not, the normalized PCT [Petty, 1994] as 
given by equation 1.12 was used to check the existence 
of  shallow rain:

 
PCT V H

V H
37

37 37

37 37
V

b b

b b

T T

T T
=

−

−
, ,

, _ inf , _ inf

.
Ra ree Ra ree

 (1.16)

Based on the results of the first stage, their study checked 
emission signatures from raindrops in the second stage. 
The three checks used in the second stage are shown in 
Figure  1.7 from which it can be seen that Tb values of 
channels 19 GHz (V), 10 GHz (V), and 37 GHz (V) were 
used.

Kida et al. [2009] proposed modifications for the RNC 
method of  GSMaP in order to use Tb from 37 GHz (V) 
more efficiently. Their study was essentially a 
PR-dependent method wherein the level 2 standard 
 product 2A25 [Iguchi, 2007] was used as the validation 
product. Their study modified two conditions used in the 
first stage of  GSMaP. In the original GSMaP algorithm, 

for the first stage, in the presence of  pixels whose rain 
85 > 1 mm/h within the EFOV of  10 GHz (V), the cen-
tral target pixel was identified as a deep rain pixel, even 
if  it may actually be a shallow rain pixel. This led to 
misclassification of  most of  the shallow rain pixels as 
no-rain pixels (Figure 1.8). Kida et al. [2009] modified 
the first-stage algorithm by checking the rain rate of  85 
GHz (V) Tb pixel just for the target pixel, to avoid mis-
classification of  shallow rain pixels as deep rain pixels. 
The second modification was use of  37 GHz (V) Tb 
instead of  normalized PCT to detect shallow rain. This 
was because Tb at 37 GHz (H) was known to be more 
sensitive to wind speed than Tb at 37 GHz (V). With 
increase in wind speed, Tb at 37 GHz (H) increases more 
than Tb at 37 GHz (V). And in the case of  an extraordi-
nary event such as a typhoon, characterized by strong 
wind speed, PCT (using 37 GHz) will be less than 1, 
leading to misclassification of  shallow rain in windy 
regions. Hence, their study  preferred Tb from 37 GHz 
(V) channel, which was less sensitive to wind speed 
variations.

1.4.5.3. RNC Over Coasts
Over coastal areas, GSMaP used the RNC algorithm 

proposed by Kubota et al. [2007]. Their study was an 
improvement over the RNC detection method of 
McCollum and Ferraro [2005], which detected precipitat-
ing areas using PCT index at 85 GHz (V) and a decision 
tree of several empirical conditions for TMI Tb’s. Kubota 
et al. [2007] used the condition of surface temperature 
< 273.2 K for flagging no-rain pixels over coastal areas. 

Deep rain pixels
of 85 GHz

Shallow rain
pixel

Target pixel of 85 GHz
misclassified as a deep
rain pixel

EFOV of 10
GHz

Figure 1.8 Example of a shallow rain pixel being misclassified as a deep rain pixel [Kida et al., 2009].
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The previously employed condition of Tb,85H  > 257, Tb,22V  
< 269.1 leads to false rainfalls during the winter in mid-
latitude coastal areas and hence is avoided. Kubota et al. 
[2007] classified ambiguous class into “possible rain” and 
“no-rain” classes. Instead of using a PCT cutoff thresh-
old, their study applied a scattering index threshold of 
RainPCT85 > 1, to possible rain cases. Here, rainPCT85 
stands for rain rate from PCT index calculated using 85 
GHz (V) channel frequency. Selection of a suitable thresh-
old for RNC classification is as important as deriving the 
algorithm itself. For the GMSaP algorithm, Kida et al. 
[2008] proposed a parameterization of rain/no-rain 
threshold value of cloud liquid water as a function of 
storm height based on CloudSat precipitation product 
and the cloud liquid water derived from Aqua/AMSRE.

1.5. rnc PerforMance analysIs

RNC classification is a typical example for dichoto-
mous classification having just two probabilities of either 
zero (denoting “no”) or unity (denoting “yes”) whose 
result can be expressed in 2 × 2 contingency matrix as 
shown in Table 1.2. In Table 1.2, the element a denotes 
the number of correct (or yes) forecasts of an observed 
event, c refers to the number of events that occurred but 
were not forecast, b is the number of forecasts of events 
that did not occur, and d is the number of correct fore-
casts of events that did not occur. It should be noted that 
Table 1.2 depicts dichotomous classification wherein col-
located TMI and PR observations are analyzed assuming 
PR observations to be “true” or near perfect. Some stud-
ies increase the resolution of low-frequency channels by 
linear interpolation to match the resolution of 85 GHz 
(V) channels. Data collocation can then be performed 
using the geolocation information from TRMM PR and 
TMI data set to assign a TMI pixel at the 85 GHz (V) 
resolution as the nearest neighbor for every PR pixel in 
an orbit [Gopalan et al., 2010; Indu and Kumar, 2013]. 
Data collocation has also been carried out by aggregating 
all of the PR observations within a TMI footprint before 
skill score calculations [Seto et al., 2005]. This section 

 discusses some of the statistical descriptors used to ana-
lyze performance of this binary classification. The com-
monly used indices for RNC accuracy assessment are 
summarized in Table 1.3.

The most commonly used indices are the probability of 
detection (POD) or prefigurance [Panofsky et al., 1965] 
and the false alarm ratio (FAR). POD is the likelihood 
that an event would be estimated, given that it occurred, 
whereas FAR is an element of the conditional distribution 
of events given the estimate. Due to the negative 
 orientation of FAR, smaller values indicate better esti-
mates [Wilks, 1995]. Another measure used to compare 
the average estimate with the average observations is the 
frequency bias (B). B signifies the ratio of number of yes 
estimates to the number of yes observations. In this meas-
ure less than one indicates underestimation and greater 
than one indicates overestimation. The threat score (TS) 
or critical success index (CSI) indicates the number of cor-
rect yes estimates divided by the total number of occa-
sions on which the event was estimated or observed [Wilks, 
1995]. CSI has been widely used as a performance meas-
ure for rare events (as rainfall extremes) as it does not use 
the content of null events, as in POD and FAR [Montero-
Martinez et al., 2012]. These indices help to answer ques-
tions regarding meteorological aspects such as: (1) How 
reliable is a product in detecting  precipitation? (obtained 
using POD); (2) How to  quantify  overall bias of satellite 
estimates using ground truth? (obtained using B); (3) How 
often does a product indicate precipitation during nonpre-
cipitating scenarios? (obtained using FAR).

Performance analysis of binary classification can also 
be characterized using relative accuracy measures or skill 
scores. Skill scores quantify the agreement between fore-
cast and observations [Tartaglione, 2010]. A skill score is 
the ratio of differences [Stanski et al., 1989; Wilks, 1995] 
of scalar representations of the classification perfor-
mance. An estimating scheme cannot be useful if  it yields 
skill scores that can be obtained by less sophisticated esti-
mating procedures [Storch and Zwiers, 1999]. It is to be 
noted that no single skill score can be used to indicate 
forecast skill. Hence, various skill scores or relative accu-
racy measures are derived from the contingency table. 
Different skill scores perform differently. Some of the skill 
scores used are Heidke skill score (HSS), Kuiper skill 
score (KSS), Gilbert skill score (GSS), and odd’s ratio 
skill score (ORSS). The reference accuracy measure in the 
HSS [Heidke, 1926] is the hit rate of random estimates, 
subject to the constraint that the marginal distributions of 
estimates and observations characterizing the contingency 
table for the random estimates are the same as the mar-
ginal distributions in the actual verification data set [Wilks, 
1995]. HSS is a generalized skill score that tends to elimi-
nate classifications occurring purely due to chance. Thus, 
perfect classification yields HSS value of 1, which implies 

Table 1.2 Layout of contingency matrix a

Event Observed

Rain Judged 
by pR (Yes)

no Rain Judged 
by pR (no)

Event Forecast
Rain judged by TMI 

(Yes)
a b

no rain judged by TMI 
(no)

c d

a Assuming that the rainflag by pR is near perfect and can be 
used as validation data.
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that the performance of the classification is 100%. 
Another popular skill score, which was proposed by Pierce 
[1884] is the Kuiper skill score, known by many names 
such as true skill statistic [Flueck, 1987], Pierce skill score, 
Kuiper’s performance index [Murphy and Daan, 1985], 
and so forth. KSS does not depend on climatological 
event frequency. Perfect classification results in a KSS 
value of 1, whereas inferior classification can even take 
negative values. The highlight of KSS is that both random 
and constant estimates receive a zero score. It also tends to 
zero if  the event under consideration is rare in nature. 
Both HSS and KSS can be extended to multicategory esti-
mate as well. Gilbert skill score, known as equitable threat 
score (ETS), was proposed by Gilbert [1884]. He proposed 
that, when the expected number of hits obtained by a ran-
dom estimating system with the same estimate rate of 
occurrence as the actual estimating system is subtracted 
from both the numerator and denominator, it results in a 
measure known popularly as ETS or Gilbert skill score 
(GSS) [Hogan et al., 2010]. GSS is widely used to opera-
tionally assess the performance in forecasting events over 
a range of thresholds [Tartaglione, 2010]. A perfect esti-
mate gives GSS a value of 1, whereas a worst estimate 
gives GSS a value of 0. Doswell et al. [1990] has proved 
that ETS is  monotonically but nonlinearly related to the 

truly equitable Heidke skill score with the relation ETS = 
HSS/(2-HSS). However, GSS can be a useful index only if  
supplemented with additional information such as the fre-
quency of occurrence of the event [Mason, 1989].

The odds or risk of an event happening, denoted by 
ORSS, is the performance index that can be subjected to 
statistical significance testing. ORSS is the ratio of prob-
ability that the event will happen to the probability of it 
not happening. This measure depends solely on the con-
ditional joint probabilities and not on the marginal prob-
abilities, and is therefore independent of any bias between 
observations and estimates. When the hit and false alarm 
rates are identical, odds ratio becomes unity. ORSS varies 
between +1 and −1, where a score of 1 indicates perfect 
skill and a score of 0 represents no skill. Negative values 
imply that the estimate was opposite to what was origi-
nally observed. Stephenson [2000] stated that associated 
variables that give odds ratio larger than unity can be 
tested for significance by considering the natural loga-
rithm of the odds ratio referred also as “log odds,” which 
is asymptotically Gaussian distributed. Agresti [1996] 
stated that when any one of the cell counts is zero, the 
asymptotic standard error in log odds becomes infinite 
and the odds ratio can no longer be meaningfully tested 
for significance. More information regarding validation 

Table 1.3 List of performance statistics used in the study

Serial no. performance Measure Formula Range

1. probability of detection (pOD) a
a c+

[0, 1]

2. Threat score (TS) of critical 
success index (cSI)

a
a b c+ +

[0, 1]

3. Miss rate (M) 1 − H [0, 1]

4. False alarm ratio (FAR) b
a b+

[0, 1]

5. Heidke skill score (HSS) 2 ad bc

a c c d a b b d

−( )
+( ) +( ) + +( ) +( )

[–∞, 1]

6. Kuiper skill score (KSS) ad bc
a c b d

−
+( ) +( )

[–1, 1]

7. percent correct (pc) or hit rate 
(H)

a d
n
+ [0, 1]

8. Bias (B) a b
a c
+
+

[0, ∞]

9. Gilbert skill score (GSS) a a
a b c a

r

r

−
+ + −

  a
a b a c

nr =
+( ) +( ) [0, 1]

10. Odds ratio skill score (ORSS) ad bc
ad bc

−
+

[–1, 1]

11. Log odds ratio ln(a) + ln(d) − ln(b) − ln(c) [–∞ , ∞]
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of satellite-based precipitation estimation can be obtained 
from the research by the International Precipitation 
Working Group (IPWG) (http://www.isac.cnr.it/~ipwg/
IPWG.html ).

It should be noted that the performance of an RNC 
algorithm is strongly affected by the spatial and temporal 
scales for rainfall detection and the rainfall detection 
threshold. Identification of an optimum threshold for 
RNC classification depends on the missed rain amount, 
false rain amount, and most importantly on the user 
requirements. If  the end product is to generate rain maps 
for flood warning, a lower threshold should be fixed for 
safety reasons. A larger threshold value is preferred if  the 
resulting rain map is to be used for drought warning [Seto 
et al., 2005]. Difference in spatial resolutions of multifre-
quency satellite microwave observations is a common 
problem in RNC classification and subsequent rainfall 
retrieval process. Usage of channels with larger FOV will 
incorporate more noise from outside the test area, thereby 
resulting in decreased accuracy. When the radiometer 
FOV is partially filled with cloud or rain, it results in 
beam filling effects that have been well documented in 
many studies [Melitta and Katsaros, 1995; Greenwald 
et al., 1997; Bremen et al., 2002; Chiu et al., 1990; Short 
and North, 1990; Kummerow et al., 1998]. Some studies 
have used techniques to deconvolve the TMI Tb’s at 10 
GHz and convolve at 21–85 GHz to a common FOV cor-
responding to 19 GHz (H) FOV [Backus and Gilbert, 
1970]. A resampling technique is applied to the TMI data 
to perform this operation using a linear combination of 
nearby observations using knowledge regarding TMI 
antenna patterns and scan geometry. The crucial points 
to be considered are the parallax effects between the 
instruments (e.g., TMI and PR) and their antenna pat-
tern, the inclusion of signals from outside the EFOV if  
footprint is defined using EFOV, beam filling effects, and 
the like [Bauer et al., 2002]. Studies showing temporal 
variations of FAR and POD for various RNC algorithms 
were presented in Seto et al. [2005]. Their study revealed 
that diurnal variations in the physical temperature of 
land surface cause Tb values of no-rain pixels to be lower 
at night. This directly implies that at night, a constant 
rainfall detection threshold for Tb will tend to produce a 
higher FAR.

1.6. oPen QuestIons

The ultimate goal of RNC classification is to produce 
the most accurate detection of rainfall signature from 
microwave footprints over any background surface (land, 
ocean, coast). Since the accuracy of RNC algorithms is 
tied to the characteristic properties of microwave data in 
multiple frequency channels, the need to understand and 
improve quality of information retrieved from various 

channels is obvious. There remain several open questions 
that need to be addressed such as uncertainty due to 
RNC, inability of present algorithms to detect light rain, 
and so forth. Here, we outline some important questions 
and possible future research directions.

1.6.1. Resampling/Matchup Errors

The distribution of microphysical parameters, precipi-
tation cells, cloud cover, and associated volume absorp-
tion and scattering coefficients are subjected to large 
variability within a microwave radiometer footprint [Smith 
and Kidder, 1978; Austin and Geotis, 1978; Mugnai and 
Smith, 1988]. For quantitative assessment of rain/no-rain 
classification, by far the biggest issue is the nonuniform 
spatial resolution wherein diffraction limits the attainable 
resolution. Microwave footprints are characterized with 
large horizontal resolution (FOV). And when information 
from multiple frequencies having differing resolutions 
need to be combined to retrieve geophysical parameters, 
which are not necessarily homogeneous over the footprint 
area, the problem of resolution mismatch becomes criti-
cal. The literature presents several approaches to solve this 
issue in the form of simple  averaging of high-resolution 
measurements to match the low-resolution data, matching 
the resolution of all the frequencies to a common 25 km 
spatial resolution. Backus and Gilbert [1970] proposed a 
technique for inverting seismic data in order to retrieve 
Earth density profiles. This technique reconstructed meas-
urements at different resolutions from those originally 
sampled using a combination of oversampled measure-
ments. Theory by Backus and Gilbert [1970] is being largely 
employed in atmospheric remote sensing applications to 
convolve microwave measurements to a common resolu-
tion [Hollinger et al., 1987]. Another common approach 
being followed is averaging of inhomogeneous retrieved 
parameters from data of differing resolutions. However, 
the accuracy of retrieval is strongly influenced by input 
data resolution, which if  not done carefully tends to incor-
porate errors. Further, due to the varying FOV sizes and 
spectral bands used by different microwave radiometers, 
some of the thresholds used for RNC screening are unreli-
able, which tends to get aggravated at the interfaces 
between surface types (i.e., coastline) and results in 
“ambiguous” classification in the resulting rainfall prod-
uct. Before undertaking experiments using the plethora of 
available microwave products, it would be worthwhile to 
understand these effects.

1.6.2. Drawback of Modeling RNC Using Database

Many authors utilize a statistical database of Tb under 
no-rain conditions to model the nonscattering portion of 
85 GHz (V) instead of using a set of sensitive channel 
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combinations. The creation of such a consistent database 
requires TRMM-like satellites without which the 
 databases cannot be produced globally. The issue is that a 
database built on TRMM observations cannot be applied 
to areas beyond TRMM coverage area. Moreover, satel-
lites such as GPM and MT have slightly different channel 
frequencies than TRMM TMI (85.5 GHz for TMI, 89.0 
GHz for AMSR-E) and therefore a previously created 
database would need to be adjusted to suit each sensor. 
To overcome this problem, radiative transfer modeling of 
land surfaces is essential.

1.6.3. Assumption of Marshall Palmer Size 
Distribution for Ice

Atmospheric hydrometeors are generally nonspherical 
[Pruppacher and Klett, 1978]. The alteration of Tb meas-
urements due to hydrometeor size, phase, layer depth, 
and other factors is quantified by Mie [1908] theory. Ice 
particles are complicated with unknown particle sizes, 
densities, and shapes, all affecting Tb. The assumption of 
Marshall-Palmer size distribution for ice is a result of 
convenience, due to the unavailability of direct measure-
ments of ice particle sizes within convective storms. Even 
if  the measurements existed, modeling using radiative 
transfer becomes highly difficult. This is why we rely on 
empirical relationships. For overland regions, scattering-
based modeling is not very well understood. Ice particles 
actually found within a rainstorm have highly varying 
shapes and sizes that depend on atmospheric temperature 
and humidity. Ice particle shapes offer a crucial parame-
ter for single scattering calculations that affects emerging 
radiance field [Mugnai and Wiscombe, 1986; Bohren, 
1986]. Yet they remain modeled as an ensemble of 
spheres, despite the evidence that oriented ice particles 
can cause polarization difference of up to 10 K in strati-
form regions associated with strong convection. When 
the particles causing scattering are small in size compared 
to the wavelength of observation, scattering is more or 
less assumed to be well approximated by that of a sphere 
of equal mass, but the actual electromagnetic solutions 
are completely intractable for all but a very few shapes. 
This area still needs to be addressed.

1.6.4. Additional Factors

Microwave sensors are relatively insensitive to low- 
altitude liquid-water-bearing clouds. There are no  specific 
screens developed to reliably separate nonraining and 
raining clouds. Moreover, defining a suitable threshold to 
detect raining clouds so that it suits every climatic regime 
is nearly impossible due to the lack of corresponding 
validation data. The usual procedure for selecting a 
threshold is to either detect even the lightest rain at the 

cost of misclassifying nonraining clouds or to detect rain 
only above a certain threshold at the expense of eliminat-
ing light-rain pixels. The choice of either a liberal or a 
conservative threshold affects the accuracy of RNC and 
this area needs to be researched further.

Also, most of the overland precipitation retrieval 
 algorithms rely on a fixed land-sea-coast database that 
might not exactly match up with what the instrument 
(i.e., radiometer) is viewing as it enters the decision tree 
classification scheme. Ambiguity is further offered to the 
retrieval process due to the existence of inland water 
 bodies [Sudradjat et al., 2010]. Over oceans, RNC classi-
fication is affected by strong winds that tend to impact 
the emitting temperature and polarization signature espe-
cially at low microwave frequencies. This in turn causes 
misclassification of the area as rain where no rain is 
 present. When ocean surface is clear and calm, the 
 emissivity will be at its lowest. In the presence of a dry 
atmosphere, very low Tb values can result that may again 
cause erroneous screening of raining area. These pose 
serious problems for 85 GHz scattering based techniques 
using single polarization temperature thresholds to delin-
eate rain areas.

The scattering properties of each surface type are dif-
ferent. A database consisting of scattering properties of 
different land surface covers can be generated to create 
different SI-based RNC algorithms sensitive for each sur-
face type. Change in land use land cover (such as defor-
estation) that affect scattering signatures of land covers 
need to be accounted. Usage of ancillary information for 
land surface types might improve the rain detection over 
problematic surfaces such as desert, semiarid regions, 
coastal, and inland regions. In order to develop more 
physically based approaches for overland precipitation 
retrieval, all these problematic issues need to be addressed.

1.7. conclusIons

Rainfall screening methodologies have progressed with 
the evolution of new microwave sensors. Over the 
years,  RNC studies have evolved from simple relations 
 formulated for computational expedience to more 
 elaborate computer-intensive schemes that effectively 
 discriminate rainfall occurrence. This chapter discussed 
the principles of rain/no-rain (RNC) algorithms that have 
been developed through the years processing data from 
satellite-borne passive microwave radiometers. Any 
screening algorithm would depend on the characteristic 
interaction of atmospheric constituents with the 
 microwave frequency energy. Hence, we summarized the 
 interaction of microwaves with major sources and sinks 
of microwave frequency energy such as water vapor, cloud 
water, cloud ice, precipitation, and the like. Two  different 
approaches to RNC classification were  presented: one 
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based on scattering signatures of atmospheric constitu-
ents at high microwave frequencies and the other based on 
emission-based techniques for over ocean rainfall delinea-
tion. We focused on the major rainfall screening tech-
niques used for the different backgrounds of land, ocean, 
and coastlines. Quantifying the uncertainty caused in 
overland rainfall retrieval due to improper screening of 
raining pixels is not a trivial task owing to cluttering of 
microwave brightness temperature by varying overland 
emissivity, beam filling errors, resolution matchup errors, 
and the like. Often the rainfall products suffer from under-
estimation of warm rainfall due to low-level liquid-water-
bearing clouds that go undetected by a microwave 
radiometer. Over the years, overland RNC algorithms 
have been continuously evolving to bridge the gap in bias 
caused between the passive and active microwave rainfall 
products. Such studies have made significant contribu-
tions to improve the existing RNC techniques used in 
prominent algorithms such as the global satellite mapping 
(GSMaP) and Goddard profiling algorithm (GPROF). 
Many recent studies have propagated the idea of RNC 
classification to land surfaces of small areal extent. 
Challenges for RNC classification include detecting shal-
low rainfall, improving accuracy through derivation of 
global threshold values, addressing the nonhomogeneity 
of geophysical parameters within the large field of view of 
microwave footprints, and using RNC screening tech-
niques independent of PR that can be applied to satellites 
outside the field of view of TRMM. Future work in these 
directions will aim to create global RNC classification 
algorithms using scattering properties of different land 
cover types, which can be globally applied for sensors of 
slightly differing fields of view.
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