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12.1  Introduction 
 

In the recent years, the new paradigm of abrupt climate change has been well 
established, and a major global concern is to assess implications of climate change on 
hydrology of river basins and availability of water, which is considered to be a 
vulnerable resource. The future climate is unknown and uncertain. Hence to evaluate 
plausible impacts of climate change on the hydrology of a river basin, it is necessary 
to develop plausible future projections of hydrometerological processes in the river 
basin for various climate scenarios. For this purpose, a variety of methods are 
available. The classical methods use climate variables simulated by General 
Circulation Models (GCMs) for projected changes in GCM boundary conditions 
based on emissions scenarios. Among the scenarios available in literature, those that 
were published in the Special Report on Emissions Scenarios (SRES) (Nakicenovic et 
al. 2000) are widely used, and are known as SRES scenarios.  
 

The GCMs are among the most advanced tools, which use transient climate 
simulations to simulate the climatic conditions on earth, several decades into the 
future. For quantitative climate impact studies in hydrological processes, the various 
projections of variables output from the GCM simulations are studied. Since GCMs 
are run at coarse resolutions, the output climate variables from these models cannot 
be used directly for impact assessment on a local scale. Hence in the past two 
decades, several downscaling methodologies have been developed to transfer 
information from the GCM simulated climate variables to local scale.  
 

The remainder of this chapter is structured as follows. First, a brief description 
of SRES scenarios, downscaling methods and Support Vector Machine (SVM) is 
provided in section 12.2. The description of Malaprabha river basin in India, which is 
considered for case study, is provided in section 12.3. Subsequently, the SVM based 
methodology suggested for downscaling precipitation and temperature in the river 
basin is presented in section 12.4. Following this, results of downscaling models are 
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presented in section 12.5, and possible consequences on hydrology of the river basin 
are discussed. Finally, summary and conclusions drawn based on the study and some 
of the conceptual and philosophical issues concerning the use of downscaling models 
are provided in section 12.6. 
 
 
12.2  Background 
 

In this section a general description on the various SRES scenarios, 
downscaling methods and SVM is provided.   
 
12.2.1 SRES
 

The SRES scenarios are constructed based on the major driving forces or 
factors (e.g., human development including economic, demographic, social and 
technological changes) that are suited for climate impact assessment. These factors 
play significant role in energy consumption, land use changes and emissions, and 
represent a diverse range of different development pathways of the world for impact 
assessment. Hence they are useful for research on sustainable development and 
impact assessment, serving as inputs for evaluating climatic and environmental 
consequences of future greenhouse gas emissions and for assessing alternative 
mitigation strategies. These SRES scenarios were constructed with different ranges 
for each projection called ‘‘storyline.’’ There are four storylines (A1, A2, B1 and 
B2), describing the way the world population, land use changes, new technologies, 
energy resources, economies and political structure may evolve over the next few 
decades. Thus different world futures are represented in two dimensions, with one 
dimension representing economic or environmental concerns, and the other 
representing global or regional development patterns. For each storyline several 
emission scenarios were constructed, producing four ‘‘scenario families.’’ 
Ultimately, six SRES marker scenarios were defined: A1 has three marker scenarios 
(A1B, A1FI and A1T) and the others have one each.  
 

A1 Story-line. This scenario represents very rapid economic growth with 
increasing globalization, an increase in general wealth, with convergence between 
regions and reduced differences in regional per capita incomes. Materialist–
consumerist values will be predominant, with rapid technological change and low 
population growth when compared to A2 scenario. Three variants within this family 
make different assumptions about sources of energy for this rapid growth: fossil 
intensive (A1FI), non-fossil fuels (A1T), and a balance across all sources (A1B). 
 

A2 Story-line.  A2 scenario is represented as a heterogeneous, market-led 
world, with rapid population growth but less rapid economic growth than A1. The 
underlying theme is self reliance and preservation of local identities. Economic 
growth is regionally oriented, and hence both income growth and technological 
change are regionally diverse. Fertility patterns across regions converge slowly, 
resulting in high population growth. 
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B1 Story-line.  This scenario represents low population growth as A1, but 

development takes a much more environmentally sustainable pathway with global-
scale cooperation and regulation. Clean and efficient technologies are introduced. The 
emphasis is on global solutions to achieving economic, social and environmental 
sustainability. 
 

B2 Story-line.  B2 scenario represents population increase at a lower rate than 
A2, but at a higher rate than A1, with development following environmentally, 
economically and socially sustainable local oriented pathways. 
 

In SRES, none of the presented scenarios explicitly assumes implementation 
of the United Nations Framework Convention on Climate Change or the emissions 
target of the Kyoto Protocol. They exclude even the outlying “surprise” or “disaster” 
scenarios. It is preferable to consider a range of scenarios for climate impact studies 
as such an approach better reflects the uncertainties of the possible future climate 
change. For the case study presented in this chapter, A1B, A2, B1 and COMMIT 
scenarios were considered. In the COMMIT scenario, the atmospheric carbon-dioxide 
concentrations are maintained (‘Committed’) at the same level as in the year 2000. 
 
12.2.2 Methods of Downscaling 
 

The various downscaling methods available in literature can be broadly 
classified as dynamic downscaling and statistical downscaling (Figure 12.1).  
 

 
 
Figure 12.1. Methods of downscaling 
 

In the dynamic downscaling method, a Regional Climate Model (RCM) is 
embedded into GCM. There are two types of dynamic downscaling based on the 
types of nesting: one-way nesting and two-way nesting (Wang et al. 2004). One-way 
nesting consists of driving a limited-area high-resolution RCM with low-resolution 
data obtained previously by a GCM or by analyses of atmospheric observations. The 
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one-way nesting technique does not allow feedback from the RCM to the driving 
data. In two-way nesting, the RCM is run simultaneously with the host GCM, and it 
regularly updates the host GCM in the RCM region. Models of this type are typically 
developed using different numeric and physical parameterizations. They are not 
presently in use as they are cumbersome.  Benefits similar to ‘‘two-way nesting’’ can 
be derived from the use of a variable-resolution GCM. 
 

Statistical downscaling involves developing quantitative relationships 
between large-scale atmospheric variables (predictors) and local surface variables 
(predictands). There are three types of statistical downscaling namely- weather types, 
weather generators and transfer functions.  
 

Weather types or weather classification methods group the days into a finite 
number of discrete weather types or ‘states’ according to their synoptic similarity. 
These methods in turn are classified as subjective, objective, or hybrid.  

 
In subjective classification methods, the classifications were carried out 

manually using empirical rules. Some of the most widely known subjective 
classifications are Grosswetterlagen (Hess and Brezowsky 1969) and British Isles 
Weather Types (Lamb 1972).  

 
In objective classification methods, a variety of automated techniques 

developed using computers are used to group the weather types. The most popular 
objective classification methods are based on correlation based algorithms 
(Brinkmann 1999), clustering techniques (Huth et al. 1993; Kidson 1994) and Fuzzy 
rules based approaches (Wetterhall et al. 2005). 

  
The hybrid techniques combine elements of empirical/manual and automated 

procedures for grouping weather types, thereby avoiding time delay and enabling the 
production of easily reproducible and interpretable results (Frakes and Yarnal 1997; 
Anandhi 2010). Some of the hybrid techniques are screening discriminant analysis 
(Enke and Spekat 1997) and Classification and Regression Trees (CART) (Breiman 
et al. 1984).  
 

Weather generators are statistical models of observed sequences of weather 
variables. They can also be regarded as complex random number generators, the 
output of which resembles daily weather data at a particular location. There are three 
fundamental types of daily weather generators, based on the approach to modeling 
the daily precipitation occurrence: the Markov chain approach (Hughes et al. 1999), 
the spell-length approach (Wilks 1999) and weather types (Conway and Jones 1998). 
In the Markov chain approach, a random process is constructed which determines a 
day at a station as rainy or dry, conditional upon the state of the previous day, 
following given probabilities. If a day is determined as rainy, then the rainfall amount 
is drawn from yet another probability distribution. In case of the spell-length 
approach, instead of simulating rainfall occurrences day by day, the models operate 
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by fitting probability distribution to observed relative frequencies of wet and dry spell 
lengths.  

 
Transfer functions are a conceptually simple means for representing linear and 

nonlinear relationships between the predictors and predictands. Therefore, a diverse 
range of statistical downscaling methods using transfer functions have been 
developed in the recent past. Examples include transfer functions based on linear and 
nonlinear regression, artificial neural networks, canonical correlation analysis, 
principal component analysis, Support vector machine (Tripathi et al. 2006; Anandhi 
et al. 2008; Anandhi et al. 2009) and Relevant vector machine (Ghosh and Mujumdar 
2008). Transfer function based downscaling methods are sensitive to the subjective 
choices made in their design, viz., the type of transfer function used, choice of 
predictors and how well they are simulated by GCM, type of predictand, calibration 
period, timescale of downscaling (e.g., annual, seasonal, monthly, or daily), and 
temporal variation of the relationship between the predictors and predictand. 
However, transfer function methods have generally not been subjected to careful 
evaluation as the other downscaling techniques (Winkler et al. 1997; Anandhi et al. 
2008; Anandhi et al. 2009). In spite of this, transfer functions are most commonly 
used for downscaling due to relative ease of their application. Individual downscaling 
schemes differ according to the choice of mathematical transfer function, predictor 
variables or statistical fitting procedure (Conway et al. 1996; Schubert and 
Henderson-Sellers, 1997). 
 

Regression-based downscaling methods rely on the direct quantitative 
relationship between the local scale climate variable (predictand) and the variables 
containing the larger scale climate information (predictors) through some form of 
regression function (Karl et al. 1990; Wigley et al. 1990). The main advantage of the 
regression-based downscaling methods is the relative ease of their application. 
However, these models often explain only a fraction of the observed climate 
variability as they are unable to capture the extremes, especially when the predictand 
is precipitation (Wilby et al. 2004; Tripathi et al. 2006; Anandhi et al. 2008). 
Downscaling future extreme hydrologic events using regression based models may be 
problematic, because these events usually tend to be situated at the margins or beyond 
the range of the extremes in the calibration data set (Wilby et al. 2002). 
 

Artificial Neural Network (ANN) based downscaling techniques have gained 
wide recognition owing to their ability to capture nonlinear relationships between 
predictors and predictand (Tatli et al. 2005). Mathematically, an ANN is often viewed 
as a universal approximator. The ability to generalize a relationship from given 
patterns makes it possible for ANNs to solve large-scale complex problems such as 
pattern recognition, nonlinear modeling and classification.  The ANNs have been 
extensively used in a variety of physical science applications, including hydrology 
(ASCE Task Committee 2000; Govindaraju and Rao 2000). 
 

Despite a number of advantages, the traditional neural network models have 
several drawbacks including possibility of getting trapped in local minima and 
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subjectivity in the choice of model architecture (Suykens 2001).  (Vapnik 1995; 
Vapnik 1998) pioneered the development of a novel machine learning algorithm, 
called support vector machine (SVM), which provides an elegant solution to these 
problems. The SVM has found wide application in the field of pattern recognition and 
time series analysis.  Introductory material on SVM is available in a number of books 
(Cortes and Vapnik 1995; Vapnik 1995; Schölkopf et al. 1998; Vapnik 1998; 
Cristianini and Shawe-Taylor 2000; Haykin 2003; Sastry 2003). Most of the 
traditional neural network models seek to minimize the training error by 
implementing the empirical risk minimization principle, whereas the SVMs 
implement the structural risk minimization principle, which attempts to minimize an 
upper bound on the generalization error, by striking a right balance between the 
training error and the capacity of the machine (i.e., the ability of the machine to learn 
any training set without error). The solution of traditional neural network models may 
tend to fall into a local optimal solution, whereas global optimum solution is 
guaranteed in SVM (Haykin 2003). Further, the traditional ANNs have considerable 
subjectivity in model architecture, whereas for SVMs the learning algorithm 
automatically decides the model architecture (number of hidden units). Moreover, 
traditional ANN models do not give much emphasis on generalization performance, 
while SVMs seek to address this issue in a rigorous theoretical setting. The flexibility 
of the SVM is provided by the use of kernel functions that implicitly map the data to 
a higher, possibly infinite, dimensional space. A linear solution, in the higher 
dimensional feature space, corresponds to a non-linear solution in the original lower 
dimensional input space. This makes SVM a plausible choice for solving a variety of 
problems in hydrology, which are non-linear in nature. 

 
12.2.3 Least-Square Support Vector Machine (LS-SVM) 
 

The Least-Square Support Vector Machine (LS-SVM) provides a 
computational advantage over standard SVM (Suykens 2001). This subsection 
presents the underlying principle of the LS-SVM and is extracted from Anandhi et al. 
(2008) and Tripathi et al. (2006). 
 

Consider a finite training sample of N patterns � �� �Niyii ,,1,, ��x , where ix  
representing the “i-th” pattern in n-dimensional space (i.e., � � n

niii xx 	
� ,,1 �x ) 
constitutes the input to LS-SVM, and 	
iy  is the corresponding value of the 
desired model output. Further, let the learning machine be defined by a set of possible 
mappings ),( wxx f� , where )(�f is a deterministic function which, for a given 

input pattern x  and adjustable parameters w  ( n	
w ), always gives the same 
output. The training phase of the learning machine involves adjusting the parameter 
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i � )(ˆ �             (Eq. 12.2) 

where C is a positive real constant, and iŷ  is  the actual model output. The first term 
of the cost function represents weight decay or model complexity-penalty function. It 
is used to regularize the weight sizes and to penalize the large weights. This helps in 
improving the generalization performance (Hush and Horne 1993). The second term 
of the cost function represents penalty function. 
 
 The solution of the optimization problem is obtained by considering the 
Lagrangian as 
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where i�  are Lagrange multipliers, and b  is the bias term defined in eq. 2. The 
conditions for optimality are given by  

� �

�
�
�
�
�
�
�

�

��
�
�
�
�
�

�

�

����
�
�

����
�
�

���
�
�

����
�
�

�

�

NiyeyL

NiCe
e
L

b
L

L

iii
i

ii
i

N

i
i

i
N

i
i

,..,1               0ˆ

,...,1                     0

                                        0

                         0

1

1

�

�

�

�� xw
w

      (Eq. 12.4) 

 
 The above conditions of optimality can be expressed as the solution to the 
following set of linear equations after elimination of w and ei. 
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In Eq. 12.5, �  is obtained from the application of Mercer’s theorem.  
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where �(·)  represents nonlinear transformation function defined to convert a non-
linear problem in the original lower dimensional input space to linear problem in a 
higher dimensional feature space. 
 
 The resulting LS-SVM model for function estimation is: 

� � � � �� � � bKf ii xxx ,�            (Eq. 12.7) 

where �
i� and �b are the solutions to Eq. 12.5 and ),( xxiK  is the inner product kernel 

function defined in accordance with Mercer’s theorem (Mercer 1909; Courant and 
Hilbert 1970) and �b  is the bias. There are several choices of kernel functions, 
including linear, polynomial, sigmoid, splines and Radial basis function (RBF). The 
linear kernel is a special case of RBF (Keerthi and Lin 2003). Further, the sigmoid 
kernel behaves like RBF for certain parameters (Lin and Lin 2003). In this study RBF 
is chosen to map the input data into higher dimensional feature space, which is given 
by: 
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where, &  is the width of RBF kernel, which can be adjusted to control the 
expressivity of RBF. The RBF kernels have localized and finite responses across the 
entire range of predictors. 
 
 The advantage with RBF kernel is that it maps the training data non-linearly 
into a possibly infinite-dimensional space, and thus, it can effectively handle the 
situations when the relationship between predictors and predictand is nonlinear. 
Moreover, the RBF is computationally simpler than polynomial kernel, which 
requires more parameters. It is worth mentioning that developing LS-SVM with RBF 
kernel involves a judicious selection of RBF kernel width &  and parameter C. 
 
 
12.3  Study Region and Data Used 
 

The study region is the catchment of Malaprabha River, upstream of 
Malaprabha reservoir in India. The region covers an area of 2093.46 km2 situated 
between 15°30'N and 15°56' N latitudes, and 74°12' E and 75°8' E longitudes. It lies in 
the extreme western part of the Krishna River basin in India, and includes parts of 
Belgaum, Bagalkot and Dharwad districts of North Karnataka (Figure 12.2).  
Analysis of temporal variation of rainfall showed that, in general, the climate of the 
study region is dry, except in monsoon months (June–September) when warm winds 
blowing from Indian Ocean cause copious amount of rainfall. Isohyetal map prepared 
for the region showed considerable variation in spatial distribution of annual rainfall. 
Heavy rainfall (more than 3000 mm) is recorded at gauging stations in the upstream 
reaches of the Malaprabha catchment, which forms a part of the western Ghats. In 
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contrast, the average annual rainfall in the reservoir command area (i.e., downstream 
of the dam) is 576 mm. The average annual rainfall in the basin is 1051 mm. It may 
be noted that the Malaprabha River originates in a region of high rainfall, and it is the 
main source of surface water for arid and semi-arid regions downstream of 
Malaprabha reservoir. 

 
The data adopted for this study consists of monthly mean atmospheric 

variables simulated by Canadian Center for Climate Modeling and Analysis’s 
(CCCma) third generation Coupled Global Climate Model (CGCM3). The data 
comprised of the 20th century simulations (20C3M) for the period of 1971–2000, and 
future simulations forced by four SRES scenarios namely, A1B, A2, B1 and 
COMMIT for the period of 2001–2100. Reanalyzed data of the monthly mean 
atmospheric variables prepared by National Centers for Environmental Prediction 
(NCEP) for the period 1971–2000 were used. The data on observed precipitation 
were obtained from the Department of Economics and Statistics, Government of 
Karnataka, India, for the period of 1971–2000. The data on observed temperature 
were obtained from India Meteorological Department (IMD) for the period of 1978–
2000. The details of the data are furnished in Table 12.1. For the sake of analysis, the 
GCM data were re-gridded to NCEP grid using Grid Analysis and Display System 
(GrADS) (Doty and Kinter 1993). 
 
 
12.4  Methodology 
 

The development of a downscaling model begins with the selection of 
probable predictors, followed by their stratification (which is optional and variable 
dependant), and training and validation of the model. The developed model is 
subsequently used to obtain projections of predictand for simulations of GCM.  
 
12.4.1 Selection of Probable Predictors
 

The selection of appropriate predictors is one of the most important steps in a 
downscaling exercise (Fowler et al. 2007). The choice of predictors could vary from 
region to region depending on the characteristics of the large-scale atmospheric 
circulation and the predictand to be downscaled. Any type of variable can be used as 
predictor as long as it is reasonable to expect that there exists a relationship between 
the variable and the predictand. Often, in climate impact studies, only such variables 
are chosen as predictors that are: (i) reliably simulated by GCMs and are readily 
available from archives of GCM output and reanalysis data sets; (ii) strongly 
correlated with the predictand; and (iii) based on previous studies. The number of 
probable predictors is referred to as m1 in this chapter. 

12.4.2 Stratification of Predictors 
 

For the sake of stratification of predictors, the m2 climate variables (potential 
predictors), which are realistically simulated by the GCM, were selected from the m1 
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probable predictors, by specifying a threshold value (Tng1) for correlation between the 
probable predictor variables in NCEP and GCM data sets. For the estimation of 
correlation, product moment correlation (Pearson 1896), Spearman's rank correlation 
(Spearman 1904a and b) and Kendall's tau (Kendall 1951) were considered. 
 
Table 12.1 The details of the meteorological data used in the study 
Data type Source of data Period Details Time 

scale 
Observed data 
of precipitation 

Dept. of Economics & 
Statistics, Government of 
Karnataka (GOK), India 

1971–2000 Data at 11 gauging  stations are used 
to arrive at representative values of 
precipitation for the basin 

Daily 

Observed data 
of temperature 

India Meteorological 
Department (IMD) 

1978–2000 Data at 2 gauging stations namely 
Santhebasthewadi and Gadag  

Daily 

CGCM3 T/47 
data on 
atmospheric 
variables 
 

http://www.cccma.bc.ec.g
c.ca/cgi-bin/data/cgcm3 
 

1971–2100; baseline: 
20C3M (1971–2000); 
future: SRES A1B, 
A2, B1 & COMMIT 
(2001– 2100). 

12 grid points for atmospheric 
variables, with grid spacing � 3.75°.  
Latitudes range: 9.28°N to 20.41°N. 
Longitudes range: 71.25°E to 
78.75°E  

Monthly 

NCEP re-
analysis data of 
atmospheric 
variables  

Kalnay et al. (1996) 1971–2000 9 grid points for atmospheric 
variables, with grid spacing 2.5°. 
Latitudes range: 12.5°N to 17.5°N. 
Longitudes range: 72.5°E to 77.5°E  

Monthly 

NCEP re-
analysis data of 
atmospheric 
fluxes 

Kalnay et al. (1996) 1971–2000 16 grid points for atmospheric fluxes 
with grid spacing 1.9°.  
Latitudes range: 12.3°N to 20.0°N 
longitude range : 71.6°E to 77.5°E  

Monthly 

 

 
Figure 12.2. Location of the study region in Karnataka State, India. The latitude, 
longitude and scale of the map refer to Karnataka State. The data extracted at 
CGCM3 and 1.9° NCEP grid points are re-gridded to the nine 2.5° NCEP grid points.  
Among the nine grid points 1, 4 and 7 are on Arabian Sea, and the remaining points 
are on land 
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Depending on the predictand variable to be downscaled, the stratification of 
the corresponding potential predictors was carried out in space (land and ocean) or in 
time (e.g., wet and dry seasons). When precipitation was considered as predictand, 
the stratification of the predictors was carried out in time domain to form clusters 
corresponding to wet and dry seasons. When maximum and minimum temperatures 
were considered as predictands, the stratification of predictors was carried out in 
space domain. The following part of this subsection outlines finer details on the 
procedure suggested for stratification of potential predictors in the context of 
downscaling precipitation and temperature.  
 

Stratification of Predictors for Downscaling Precipitation.  The climate of 
a region can be broadly classified into seasons for analyzing precipitation. The 
predictor variables for downscaling a predictand could vary from season to season. 
Further the relationship between the predictor variables and the predictand varies 
seasonally because of the seasonal variation of the atmospheric circulation (Karl et al. 
1990). Hence seasonal stratification has to be performed to select the appropriate 
predictor variables for each season to facilitate development of a separate 
downscaling model for each of the seasons. The seasonal stratification can be carried 
out by defining the seasons as either conventional (fixed) seasons or as ‘‘floating’’ 
seasons. In fixed season stratification, the starting dates and lengths of seasons remain 
the same for every year. In contrast, in “floating” season stratification, the date of 
onset and duration of each season is allowed to change from year to year.  Past 
studies have shown that floating seasons are better than the fixed seasons, as they 
reflect ‘natural’ seasons, especially under altered climate conditions (Winkler et al. 
1997). Therefore identification of the floating seasons under altered climate 
conditions helps to effectively model the relationships between predictor variables 
and predictands for each season, thereby enhancing the performance of the 
downscaling model. Hence, for the case study presented in this chapter, the floating 
method of seasonal stratification is considered to identify dry and wet seasons in a 
calendar year for both NCEP and GCM data sets. In the floating method of seasonal 
stratification, the NCEP data are partitioned into two clusters depicting wet and dry 
seasons by using the K-means clustering method (MacQueen 1967), whereas the 
GCM data are partitioned into two clusters by using the nearest neighbor rule (Fix 
and Hodges 1951). 
 

From NCEP data on the m2 variables, n principal components (PCs), which 
preserve more than 98% of the variance, are extracted using principal component 
analysis (PCA). The PCs corresponding to each month are used to form a feature 
vector for the month. The PCs are also extracted from GCM data, but along the 
principal directions obtained for the NCEP data. They are used to form feature 
vectors for GCM data. Each feature vector (representing a month) can be visualized 
as an object having a specific location in multidimensional space, whose 
dimensionality is defined by the number of PCs. 
 

The feature vectors of the NCEP data are partitioned into two clusters 
(depicting wet and dry seasons) using the K-means cluster analysis. The clustering 
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should be such that the feature vectors within each cluster are as close to each other 
as possible in space, and are as far as possible in space from the feature vectors of the 
other clusters. The distance between each pair of feature vectors in space is estimated 
using Euclidian measure. Subsequently, each feature vector of the NCEP data is 
assigned a label that denotes the cluster (season) to which it belongs. Following this, 
the feature vectors prepared from GCM data (past and future) are labeled using the 
nearest neighbor rule to get the past and future projections for the seasons. As per this 
rule, each feature vector formed using the GCM data is assigned the label of its 
nearest neighbor from among the feature vectors formed using the NCEP data. To 
determine the nearest neighbors for this purpose, the distance between each pair of 
NCEP and GCM feature vectors is computed using Euclidean measure. Comparison 
of the labels of contemporaneous feature vectors formed from NCEP and GCM past 
data is useful in checking if the GCM simulations represent the regional climate fairly 
well, during the past period. 
 

Optimal Tng1 is identified as a value for which the wet and dry seasons formed 
for the study region using NCEP data are well correlated with the possible true 
seasons for the region. For this analysis, the plausible true wet and dry seasons in the 
study region are identified using a method based on truncation level (TL). In this 
method, the dry season is considered as consisting of months for which the estimated 
Theissen Weighted Precipitation (TWP) values for the region are below the specified 
TL, whereas the wet season is considered as consisting of months for which the 
estimated TWP values are above the TL. Herein, two options have been used to 
specify the TL. In the first option, the TLs are chosen as various percentages of the 
observed mean monthly precipitation (MMP) (70 to 100% of MMP at intervals of 
5%). In the second option, the TL is chosen as the mean monthly value of the actual 
evapotranspiration in the river basin. The actual evapotranspiration is obtained for 
Krishna basin from Gosain et al. (2006). The potential predictors corresponding to 
optimal Tng1 are noted. 
 

Stratification of Predictors for Downscaling Surface Temperature.  The 
surface temperature in a region is dominated by local effects such as evaporation, 
sensible heat flux and vegetation in the region. Therefore the potential predictor 
variables influencing surface temperature in the study region are stratified based on 
the location of grid points (land and/or ocean) corresponding to the variables, to 
assess the impact of their use on downscaled temperature. Out of the nine 2.5° NCEP 
grid points considered in the study region, six are above land and the remaining three 
are over sea. As there are no distinct seasons based on temperature, seasonal 
stratification as in the case of precipitation is not relevant. 
 
12.4.3 SVM Downscaling Model 
 

For downscaling the predictand, the m1 probable predictors at each of the 
NCEP grid points will be considered as probable predictors. Thus, there are m3 (= m1 
× number of NCEP grid points) probable predictor predictors. The potential 
predictors (m4) are selected from the m3 probable predictor variables. For this 
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purpose, the cross-correlations are computed between the probable predictor variables 
in NCEP and GCM data sets, and the probable predictor variables in NCEP data set 
and the predictand. A pool of potential predictors is then identified for each season by 
specifying threshold values for the computed cross-correlations. The threshold value 
for cross-correlation between variables in NCEP and GCM data sets is denoted 
hereafter by Tng2, whereas the same between NCEP variables and predictand is 
depicted as Tnp. The Tnp should be reasonably high to ensure choice of appropriate 
predictors for downscaling the predictand. Similarly, Tng2 should also be reasonably 
high to ensure that the predictor variables used in downscaling are realistically 
simulated by the GCM in the past, so that the future projections of the predictand 
obtained using GCM data would be acceptable. 
 

The downscaling model is calibrated to capture the relationship between 
NCEP data on potential predictors and the predictand. The data on potential 
predictors is first standardized for each season or location separately for a baseline 
period. Such standardization is widely used prior to statistical downscaling to reduce 
systemic bias (if any) in the mean and variance of the predictors in the GCM data, 
relative to those of the same in the NCEP reanalysis data (Wilby et al. 2004). This 
step typically involves subtraction of mean and division by the standard deviation of 
the predictor for the baseline period. The standardized NCEP predictor variables are 
then processed using PCA to extract such PCs which are orthogonal and which 
preserve more than 98% of the variance originally present in them. A feature vector is 
formed for each month using the PCs. The feature vector forms the input to the SVM 
model, and the contemporaneous value of predictand is its output. The PCs account 
for most of the variance in the input and also remove the correlations, if any, among 
the input data. Hence, the use of PCs as input to a downscaling model helps in 
making the model more stable and at the same time reduces the computational load. 
 

To develop the SVM downscaling model, the feature vectors formed are 
partitioned into a training set and a testing set. The partitioning was initially carried 
out using multifold cross-validation procedure, which was adopted from Haykin 
(2003) in an earlier work (Tripathi et al. 2006). In this procedure, about 70% of the 
feature vectors are randomly selected for training the model, and the remaining 30% 
are used for validation. However, in this study the multifold cross-validation 
procedure is found to be ineffective because the time span considered for analysis is 
small and there are more extreme events in the past decades than in the recent decade. 
Therefore, the feature vectors formed from approximately first 70% of the available 
data are chosen for calibrating the model and the remaining feature vectors are used 
for validation. The ‘normalized mean square error’ is used as an index to assess the 
performance of the model. The training of SVM involves selection of the model 
parameters &  and C. The width of RBF kernel � gives an idea about the smoothness 
of the derived function. Smola et al. (1998), in their attempt to explain the 
regularization capability of RBF kernel, have shown that a large kernel width acts as 
a low-pass filter in frequency domain. It attenuates the higher order frequencies, 
resulting in a smooth function. Alternately, RBF with a small kernel width retains 
most of the higher order frequencies leading to an approximation of a complex 
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function by the learning machine. In this study, grid search procedure (Gestel et al. 
2004) is used to find the optimum range for each of the parameters. Subsequently, the 
optimum values of the parameters are obtained from within the selected ranges, using 
the stochastic search technique of genetic algorithm (Haupt and Haupt 2004).  
 

The feature vectors prepared from GCM simulations are processed through 
the validated SVM downscaling model to obtain future projections of the predictand, 
for each of the four emission scenarios considered (i.e., SRES A1B, A2, B1 and 
COMMIT). Subsequently, for each scenario, the projected values of the predictand 
are chronologically divided into five parts (2001–2020, 2021–2040, 2041–2060, 
2061–2080 and 2081–2100) to determine the trend in the projected values of the 
predictand. The procedure is illustrated in the flowchart in Figure 12.3. 
 
 
12.5  Results 
 

The results of the downscaled precipitation, maximum and minimum 
temperatures are discussed in this section. 
 
12.5.1 Predictor Selection 
 

For downscaling precipitation, the predictor variables are screened on the twin 
basis that monsoon rain is dependent on dynamics through advection of water from 
the surrounding seas and thermodynamics through effects of moisture and 
temperature, both of which can modify the local vertical static stability. In a changed 
climate scenario, both the thermodynamic and dynamic parameters may undergo 
changes. Therefore in the present study, only such probable predictor variables, 
which incorporate both the effects, are chosen. Winds during south-west monsoon 
season advect moisture into the region while temperature and humidity are associated 
with local thermodynamic stability and hence are useful as predictors. Zonal wind is 
the response to heating in the monsoon trough in the North India. Meridional wind 
has more local effects, and together the winds are responsible for convergence of 
moisture and hence related to precipitation. Temperature affects the moisture holding 
capacity and the pressure at a location. The pressure gradient affects the circulation 
which in turn affects the moisture brought into the place and hence the precipitation. 
Higher precipitable water in the atmosphere means more moisture, which in turn 
causes statically unstable atmosphere leading to more vigorous overturning, resulting 
in more precipitation. Lower pressure leads to more winds and so more precipitation. 
At 925 mb pressure height, the boundary layer (near surface effect) is important. The 
850 mb pressure height is the low level response to regional precipitation. The 200 
mb pressure level depicts the global scale effects. Temperature at 700 mb and 500 mb 
represent the heating process of the atmosphere due to monsoonal precipitation which 
is maximum at mid-troposphere on a constant pressure height. Geopotential height 
represents the pressure variation, which reflects the flow, based on which the 
moisture changes. Due to these reasons, fifteen probable predictors are extracted from 
the NCEP reanalysis and CGCM3 data sets. They are the air temperature at 925 mb  
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Figure 12.3. Methodology followed for SVM downscaling. PCs and PDs denote 
principal components and principal directions, respectively. Tng2 is the threshold 
between predictors in NCEP and GCM data sets. Tnp denotes the threshold between 
predictors in NCEP data and the predictand 
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(Ta 925), 700 mb (Ta 700), 500 mb (Ta 500) and 200 mb (Ta 200) pressure levels, 
geo-potential height at 925 mb (Zg 925), 500 mb (Zg 500) and 200 mb (Zg 200) 
pressure levels, specific humidity at 925 mb (Hus 925) and 850 mb (Hus 850) 
pressure levels, zonal (Ua) and meridional wind velocities (Va) at 925 mb (Ua 925, 
Va 925) and 200 mb (Ua 200, Va 200) pressure levels, precipitable water (prw) and 
surface pressure (ps).  
 

For downscaling temperature, large scale atmospheric variables, namely air 
temperature, zonal and meridional wind velocities at 925 mb, which are often used, 
are considered as predictors. Surface flux variables, namely latent heat, sensible heat, 
shortwave radiation and longwave radiation fluxes can also be considered for 
downscaling temperature as they control the temperature of the earth’s surface. The 
incoming solar radiation heats the surface, while latent heat flux, sensible heat flux, 
and longwave radiation cool the surface. Due to these reasons, seven probable 
predictors are extracted from the NCEP reanalysis and CGCM3 data sets to 
downscale temperature. They are air temperature, zonal, and meridional wind 
velocities at 925 mb, and four fluxes: latent heat (LH), sensible heat (SH), shortwave 
radiation (SWR), and longwave radiation (LWR). 
 
12.5.2 SVM Downscaling Models 
 

From the selected potential predictors for each season, principal components 
are extracted to form feature vectors. These feature vectors are provided as input to 
develop SVM downscaling model following the procedure described in Section 12.4. 
For obtaining the optimal range of each of the SVM parameters (kernel width �, and 
penalty term C), the grid search procedure is used. Typical results of the domain 
search performed to estimate the optimal ranges of the parameters for wet and dry 
seasons are shown in Figure 12.4. From this figure, the range of � and C having the 
least NMSE (Normalized Mean Square Error) is selected as the optimum parameter 
range. The NMSE values are indicated in the bar code provided close to the two parts 
of the figure. Using Genetic algorithm, the optimum parameter is selected from the 
optimum parameter range. The optimal values of SVM parameters C and & thus 
obtained are 550 and 50 for wet season, and 850 and 50 for dry season, respectively. 
For maximum temperature the optimal values of SVM parameters C and &  are 2050 
and 50 while for minimum temperature 1050 and 50 were the optimal values of SVM 
parameters. The results of downscaling are compared with observed variables and 
showed in figure 12.5 The details of the downscaled variables were elaborated in 
Anandhi et al. (2008, 2009). 

12.5.3 Projected Future Scenarios 

The future projections of three meteorological variables (precipitation, 
maximum and minimum temperatures) were obtained for each of the four SRES 
scenarios (A1B, A2, B1 and COMMIT) using the developed SVM downscaling 
models. The projections were subsequently divided into five 20-year intervals (2001–
2020, 2021–2040, 2041–2060, 2061–2080, 2081–2100). The mean monthly values of 
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observed and projected precipitation for the study area were estimated using the 
Theissen method. For each of the four SRES scenarios, average of the mean monthly 
values of Theissen weighted precipitation, maximum and minimum temperatures are 
presented as bar plots, for all the five 20-year intervals in Figures 12.6, 12.7 and 12.8 
respectively. These plots facilitate in assessing the projected changes in each 
meteorological variable across twenty-year intervals over the period of 2001–2100, 
with respect to the past (20C3M), for each SRES scenario. Secondly, for each of the 
five 20-year intervals, the average of the mean monthly values of the aforementioned 
variables are plotted individually, for all the five scenarios (20C3M, SRES A1B, A2, 
B1 and COMMIT) in Figures 12.9, 12.10 and 12.11 respectively. These plots 
facilitate comparison of the past and projected mean monthly values of each 
meteorological variable across SRES scenarios, for each 20-year interval, and thus, 
help in assessing the changes in the variables across all the months in a year. 
 

 
Figure 12.4. Illustration of the domain search performed to estimate optimal values 
of kernel width (&) and penalty (C) for the SVM, for dry and wet seasons 
 

From the figures it is observed that precipitation, and maximum and minimum 
temperatures are projected to increase in future for A1B, A2 and B1 scenarios, 
whereas no trend is discerned with the COMMIT. The projected increases are high 
for A2 scenario, whereas they are least for B1 scenario. This is because among the 
scenarios considered, the scenario A2 has the highest concentration of carbon dioxide 
(CO2) equal to 850 ppm, while the same for A1B, B2 and COMMIT scenarios are 
720 ppm, 550 ppm and � 370 ppm respectively. Rise in the concentration of CO2 in 
atmosphere causes the earth’s average temperature to increase, which in turn causes 
increase in evaporation especially at lower latitudes. The evaporated water would 
eventually precipitate. In the COMMIT scenario, where the emissions are held the 
same as in the year 2000, no significant trend in the pattern of projected future 
precipitation could be discerned.  

 
From a perusal of Figures 12.6, 12.7 and 12.8 it can be observed that, in 

general, for the meteorological variables, the change from past to future is gradual, 
and the change is more for A1B scenarios, while it is the least for B1 scenario. In A2 
scenario the change is more and different from A1B. In the case of COMMIT no 
clear pattern change is visible.  
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Figure 12.5. Comparison of the monthly observed meteorological variable with the 
corresponding simulated variable using SVM downscaling model for NCEP data (a) 
Thiessen weighted precipitation (TWP) (b) maximum temperature (Tmax) (c) 
minimum temperature (Tmin) 
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Figure 12.6. Mean monthly precipitation in the study region for the period 1971–
2100, for the four scenarios considered 
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Figure 12.7. Mean monthly maximum temperatures in the study region for the period 
1978–2100, for the four scenarios considered 
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Figure 12.8. Mean monthly minimum temperatures in the study region for the period 
1978–2100, for the four scenarios considered 
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Figure 12.9. Projections obtained for ‘mean monthly precipitation’ in the study 
region for the four scenarios are compared with the past (20C3M) value of the 
statistic, for different future periods 
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Figure 12.10. Projections obtained for ‘mean monthly maximum temperature’ in the 
study region for the four scenarios are compared with the past (20C3M) value of the 
statistic, for different future periods 
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Figure 12.11. Projections obtained for ‘mean monthly minimum temperature’ in the 
study region for the four scenarios are compared with the past (20C3M) value of the 
statistic, for different future periods 
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From the Figures 12.9, 12.10 and 12.11 it can be inferred that the change in 
the variables is least in the first 20-year interval (2001–2020) and maximum in the 
last 20-year interval (2081–2100). 
 
12.5.4 Impacts of Climate Change on Hydrology 
 

The variables–precipitation and temperature play an important role in the 
hydrology of a river basin and are commonly used for impact studies. Some of the 
possible impacts of changes in the aforementioned variables are discussed in the 
following part of this subsection.  

 
In general, changes in climate variables (precipitation and temperature) cause 

changes in the water balance, by changing the various components of hydrologic 
cycle such as runoff, evapotranspiration, soil moisture, infiltration and groundwater 
recharge.  

 
Changes in precipitation and temperatures can affect the magnitude and 

timing of runoff, which in turn affect the frequency and intensity of hydrologic 
extremes such as floods and droughts. Changes in precipitation could be in the 
amount, distribution, intensity and frequency. Most of the precipitation in the region 
occurs in the monsoonal months (June to October). An increased precipitation 
amount, intensity and frequency during monsoon period could affect the frequency of 
floods while a decreased precipitation during the period could affect the frequency of 
drought. In general, the increase in surface temperatures modify the hydrologic cycle 
through changes in the volume, intensity, or type of precipitation (rain versus snow), 
and through shifts in the seasonal timing of stream flow (Regonda et al. 2005). In this 
region, with no snow cover, changes in temperature may not directly affect the 
runoff, but will cause changes in precipitation patterns and other climate variables 
and may also affect the evaporation and hence the runoff of the region. The changes 
in runoff affect the water resources infrastructure such as reservoirs. Reduced flow 
will mean less supply and potential economic damages, and increased flow may mean 
an under-designed reservoir or spillway with potential flood risk.  

 
A change in temperature affects the evaporation, evapotranspiration, and 

desertification processes and is also considered as an indicator of environmental 
degradation and climate change. These changes affect soil moisture content. Apart 
from temperature, the other factors that affect the evaporative demand of the 
atmosphere include vapor-pressure deficit, wind speed and net radiation. Therefore 
implications of the change in all these factors on evaporative demand should be 
carefully analyzed. Increased temperature increases evaporation from the reservoirs 
and evapotranspiration from plants. Further, increased temperatures can cause 
warming of reservoir and rivers in the region which in turn will increase evaporation 
as well as will affect their thermal structure and water quality.  

 
With changes in the various components of the hydrologic cycle, agriculture 

and the natural ecosystems in the river basins are affected. The growth of biological 
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pests and diseases increases as temperature and relative humidity levels increase with 
increase in precipitation. Natural ecosystems such as forests, pastures, deserts, 
mountain regions, lakes, streams, wetlands, coastal systems and oceans may face 
difficulties in adapting, and it is also possible to lose some of the flora and fauna.  
 

With increase in population, the demand of freshwater for domestic, industrial 
and agricultural uses definitely increases. This situation makes it prudent to assess the 
sensitivity of hydrological processes to the potential future changes in climate and 
population to meet the requirements. Incident solar radiation, relative humidity and 
wind speed are other variables that are also worth analyzing owing to their 
significance in effecting hydrological processes. 
 
 
12.6  Conclusions 
 

The Support Vector Machine (SVM) based models are developed to 
downscale monthly sequences of hydrometeorological variables (precipitation, 
maximum and minimum temperatures) in Malaprabha river catchment (upstream of 
Malaprabha reservoir) of Krishna river basin, India. The large scale atmospheric 
variables simulated by the third generation coupled Canadian GCM for various IPCC 
scenarios (SRES A1B, SRES A2, SRES B1 and COMMIT) were used to prepare 
inputs to the SVM models.  
 

The variables, which include both the thermodynamic and dynamic 
parameters, and which have a physically meaningful relationship with the 
precipitation, are chosen as the probable predictors for downscaling precipitation. For 
downscaling temperatures, large-scale atmospheric variables often used for 
downscaling maximum and minimum temperatures, and fluxes which control the 
temperature at the earth’s surface are chosen as plausible predictor variables in this 
study.  
 

Precipitation, maximum and minimum temperatures are projected to increase 
in future for A1B, A2 and B1 scenarios, whereas no trend is discerned with the 
COMMIT. The projected increase in predictands is high for A2 scenario and is least 
for B1 scenario.  
 

The implications of climate change on monthly values of each of the 
hydrometeorological variables are assessed. The changes in the intensity, frequency 
of extreme values need to be considered. Further, the uncertainties in the projections 
to the choice of downscaling methods and GCMs should also be considered to draw 
reliable conclusions about the possible impacts of climate change in the study region, 
which would help policy makers for realistic assessment, management and mitigation 
of natural disasters, and for sustainable development. Investigating these uncertainties 
is a future scope of the study. 
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