ANN APPLICATIONS IN HYDROLOGY - MERITS AND DEMERITS

D. Nagash Kumar

ABSTRACT

Artificial Neural Networks (ANNs) have gained popularity among hydrologists, as is evidenced by the increasing number of papers on this topic appearing in hydrology journals, especially in the recent past. The practicing hydrologic community is becoming aware of the potential of ANNs as an alternative modelling tool. In terms of hydrologic applications, this modelling tool is still in its nascent stages. In this paper applications of ANN in various fields of hydrology are discussed. In addition merits and demerits of ANN are discussed.

3.1 INTRODUCTION

Artificial neural network (ANN) is a massively parallel distributed processor made up of simple processing units, which has a natural propensity for storing experimental knowledge and making it available for use (Haykin, 1999). It resembles the brain in two respects: (i) Knowledge is acquired by the network from its environment through a learning process and (ii) Interneuron connection strengths, known as synaptic weights, are used to store the acquired knowledge. ANN development is based on the following rules (ASCE, 2000a):

- Information processing occurs at many single elements called nodes, also referred to as units, cells, or neurons.
- Signals are passed between nodes through connection links.
- Each connection link has an associated weight that represents its connection strength.
- Each node typically applies a nonlinear transformation called an activation function to its net input to determine its output signal.

A typical ANN consists of a number of nodes that are organized according to a particular arrangement. One way of classifying neural networks is by the number of layers: single (Hopfield nets); bilayer (Carpenter/Grossberg adaptive
3.1.1 ANN Modelling

There are no fixed rules for developing an ANN, even though a general framework can be followed based on heuristics and experience. The goal of an ANN is to generalize a relationship of the form

\[Y = f(X) \]

where \(X \) is an \(n \)-dimensional input vector consisting of variables \(x_1, \ldots, x_n \), and \(Y \) is an \(m \)-dimensional output vector consisting of resulting variables of interest \(y_1, \ldots, y_m \). In hydrology, the values of \(x_i \) can be causal variables (ASCE, 2000a) such as rainfall, temperature, previous flows, water levels, spatial locations, evaporation, basin area, elevation, slopes, pump operating status, contaminant loads, meteorological data, and so on. The values of \(y_i \) can be hydrological responses such as runoff, stream flow, ordinates of a hydrograph, optimal pumping patterns, rain fields, hydraulic conductivities, contaminant concentrations, and others. A firm understanding of the hydrologic system under consideration is an important prerequisite for successful application of ANNs. For instance, physical insight into the problem being studied can lead to better choice of input variables for proper mapping. This will help in avoiding loss of information that may result if key input variables are omitted, and also prevent inclusion of spurious inputs that tend to confuse the training process. A sensitivity analysis can be used to determine the relative importance of a variable (Maier and Dandy, 1996) when sufficient data is available.

Determination of the optimal ANN architecture is an important step in ANN modelling. There is no specific approach for determination of such an optimal ANN architecture. Often, more than one ANN can generate similar results. The numbers of input and output nodes are problem dependent and are decided based on the number of input and output variables decided for the given problem. The flexibility lies in selecting the number of hidden layers and in assigning the number of nodes to each of these layers. A trial-and-error procedure is generally applied to decide on the optimal architecture. An excellent review of different approaches that allow the determination of network architecture with acceptable performance on the training is provided by Bishop (1995).

Training is a process by which the connection weights of an ANN are adapted through a continuous process of stimulation by the environment in which the network is embedded. The primary goal of training is to minimize the error function by searching for a set of connection strengths and threshold values that cause the ANN to produce outputs that are equal or close to targets. A score or grade is used to rate the network performance over a series of training patterns. The manner in which the nodes of an ANN are structured is closely related to the algorithm used to train it. Some of the algorithms used for ANN training include back-propagation algorithm, conjugate gradient algorithms, radial basis function, cascade correlation algorithm. All these algorithms are briefly described in ASCE (2000a) with an exhaustive list of references.

3.2 APPLICATIONS IN HYDROLOGY

ANNs have found increasing use in diverse disciplines ranging over perhaps all branches of engineering and science. The ability to learn and generalize "knowledge" from sufficient data pairs makes it possible for ANNs to solve large-scale complex problems such as pattern recognition, nonlinear modeling, classification, association, control, and others—all of which find application in hydrology today. One attractive feature of ANNs is their ability to extract the relation between the inputs and outputs of a process, without the physics being explicitly provided to them. They are able to provide a mapping from one multivariate space to another, given a set of data representing that mapping. Even if the data is noisy and contaminated with errors, ANNs have been known to identify the underlying rule. These properties suggest that ANNs may be well-suited to the problems of estimation and prediction in hydrology.
Flood and Kartam (1994, 1997) reviewed the application of ANNs to various branches of civil engineering. However, this study did not focus on applications in hydrology. More recently a review of ANN applications in hydrology is presented in ASCE (2000b). ANNs have been used by researchers for rainfall-runoff modeling, stream flow prediction, ground-water modeling, water quality, water management, precipitation forecasting, time series, reservoir operations, and other hydrologic applications (ASCE, 2000b). Although there are a number of works reported in the literature, one or two articles on each topic are cited in the following paragraphs for illustration. It may be noted that they need not necessarily represent all the works carried out on the topic.

The problem of rainfall-runoff modeling has received the maximum attention by ANN modelers in hydrology. This problem lends itself admirably to ANN applications (Hsu et al 1995). The nonlinear nature of the relationship, availability of long historical records, and the complexity of physically-based models in this regard, are some of the factors that have caused researchers to look at alternative models—and ANNs have been a logical choice. Tokar and Johnson (1999) reported that ANN models provided higher training and testing accuracy when compared with regression and simple conceptual models. Their goal was to forecast daily runoff for the Little Patuxent River, Maryland, with daily precipitation, temperature, and snowmelt equivalent serving as inputs. It was found that the selection of training data has a large impact on accuracy of prediction. The authors trained and tested the ANN with wet, dry, and average-year data, respectively, as well as combinations of these, in order to illustrate the impact of the training series on network performance. The ANN that was trained on wet and dry data had the highest prediction accuracy. The length of training record had a much smaller impact on network performance than the types of training data.

ANNs have achieved some success in stream flow prediction (time series), particularly when these are desired over a certain range of stream flow values. A major limitation appears to be in trying to design robust prediction techniques over a wide range of streamflows. The studies of Karunanithi et al (1994) and Thirumalach and Deo (1998) directed network training to better replicate low stream flow events, while Poff et al (1996) concentrated on high flow events to generate improved statistics for floods.

Aziz and Wong (1992) illustrated the use of ANNs for determining aquifer parameter values from normalized drawdown data obtained from pumping tests. Commonly referred to as the inverse problem in ground-water hydrology. This study drew on the pattern recognition ability of an ANN based on aquifer test data. Yang et al (1997) utilized an ANN to predict water table elevations in subsurface-drained farmlands. Daily rainfall, potential evapotranspiration, and previous water table locations were selected as inputs to the ANN.

ANNs were used for estimating precipitation with limited success. Zhang et al (1997) proposed that ANNs need to be employed in groups when the transformation from the input to the output space is complex. This group theory treats the input output mapping as being piecewise continuous. The idea is that each network predicts only in the range where the transformation is continuous, while a "reasoning" network determines the appropriate summation of responses. The authors were successful in making half-hourly rainfall estimates.

Recently, prediction of watershed runoff using Bayesian concepts and modular neural networks is made by Annala et al (2000). In this article networks were organized in a modular architecture to handle complex sets of rainfall-runoff data. Such data often contain examples corresponding to different rules that may be associated with high, low, and medium streamflows. Different modules within the network were trained to learn subsets of the input space in an expert fashion. A gating network was used to mediate the response of all the experts. The problem was posed as one of Bayesian statistics combined with maximum likelihood estimation of network parameters. The performance of modular networks in predicting runoff over three medium-sized watersheds was examined. On the basis of the results, modular based networks appear to be a good alternative for predicting runoff and in other situations in which a hydrologic variable can be discretised into number of states.

While the articles reviewed in this paper on ANN applications in hydrology are not exhaustive, it is obvious that ANNs have made a significant impact in this area. For the sake of illustration, a couple of studies carried out by author and his team is mentioned briefly next.

3.2.1 River Flow Forecasting using Recurrent Neural Networks

Nagosh Kumar et al (2004) used two different networks, namely the feed forward network (FFN) and the recurrent neural network (RNN), to Table 1. Network configuration for the FFN and RNN models

<table>
<thead>
<tr>
<th>Variable</th>
<th>FFN</th>
<th>RNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of input units</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Number of hidden layers</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Number of units in first hidden layer</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Number of units in second hidden layer</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Number of output units</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Number of previous output values passed to first hidden layer</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Value of learning rate</td>
<td>0.01</td>
<td>0.90</td>
</tr>
<tr>
<td>Value of the momentum rate</td>
<td>0.2</td>
<td>0.00</td>
</tr>
<tr>
<td>Number of iterations performed for training</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Root mean squared value of pattern error</td>
<td>0.161</td>
<td>0.154</td>
</tr>
</tbody>
</table>
forecast monthly river flows. The feed forward network is trained using the modified back propagation algorithm and the recurrent neural network is trained using the method of ordered partial derivatives. Details of the FFN and RNN configurations are given in Table 1. The selected networks were used to train and forecast the monthly flows of Hemavathri river, Karnataka, India, with a catchment area of 5,189 sq. km. up to the gauging site at Akkihebbal. Monthly flow data is available at the site from 1916-17 to 1972-73, i.e. for 57 years. The monthly flow ranges from 1.84 million cubic metres (M.cm.) in summer months to 2,894.81 M.cm. in monsoon months.

The trained networks are used for both single step ahead and multiple step ahead forecasting. A comparative study of both networks indicated that the recurrent neural networks performed better than the feed forward networks. In addition, the size of the architecture and the training time required were found to be less for the recurrent neural networks.

3.2.2 Temporal Disaggregation of Rainfall Data using ANN

Seasonal rainfall in many regions is influenced by global climatic parameters such as El Nino Southern Oscillation (ENSO), La Nina. Seasonal rainfall predictions are based on such global climatic parameters. However, for operational purposes, such as reservoir operation or river basin management in a larger context, rainfall data at a finer time interval are required. Nagesh Kumar and Raju (2000) developed a temporal disaggregation model based on Artificial Neural Networks for obtaining rainfall of monthly or shorter time periods from the given seasonal rainfall prediction. A feed forward neural network with back-propagation algorithm for learning was used. The methodology is applied to obtain monthly rainfall data from monsoon (June-September season) rainfall data for a sub-division in Orissa state. Monthly rainfall data for 124 years (1871-1994) for Orissa state, India was used for application. Rainfall data for the first 100 years was used for ANN training and remaining 24 years data was used for testing. Seasonal rainfall is used as the input neuron and the corresponding four monthly rainfall values as 4 output neurons. Two ANN architectures viz., (i) ANN with one hidden layer comprising of 10 neurons denoted as ANN(1,10,4) and (ii) ANN with two hidden layers each comprising of 5 neurons denoted as ANN(1,5,5,4) were used. A comparison of disaggregated rainfall data using ANN(1,5,5,4) with the corresponding observed rainfall data is shown in Figure 2. The disaggregated monthly rainfall data compared well with observed monthly data. In addition they preserved all the basic statistics such as summing to the seasonal value, cross correlation structure among monthly flows.

3.3 MERITS OF ANN

ANN derives its computing power through, (i) its massively parallel distributed structure and (ii) its ability to learn and therefore generalize. Generalization refers to the neural network producing reasonable outputs for inputs not encountered during training (learning). These two information-processing capabilities make it possible for neural networks to solve complex (large-scale) problems that are currently intractable. The use of neural networks offers the following useful properties and capabilities (Haykin, 1999):

1. Nonlinearity: An artificial neuron can be linear or nonlinear. A neural network, made up of an interconnection of nonlinear neurons, is itself nonlinear. Moreover, the nonlinearity is of a special kind in the sense that it is distributed throughout the network. Nonlinearity is a highly important property, particularly if the underlying physical mechanism responsible for generation of the input signal (e.g., runoff from a watershed) is inherently nonlinear.

2. Input-Output Mapping: A popular paradigm of learning called supervised learning involves modification of the synaptic weights of a neural network by applying a set of labeled training samples or task examples. Thus the network learns from the examples by constructing an input-output mapping for the problem at hand. Such an approach brings to mind the study of nonparametric statistical inference, which is a branch of statistics dealing with model-free estimation (the term "nonparametric" is used here to signify the fact that no prior assumptions are made on a statistical model for the input data).

3. Adaptivity: A neural network trained to operate in a specific environment can be easily retrained to deal with minor changes in the operating environmental conditions. Moreover, when it is operating in a nonstationary environment (i.e., one where statistics change with time), a neural network can be designed to change its synaptic weights in real time (e.g., modeling nonstationary hydrologic time series). As a general rule, it may be said that the more adaptive we make a system, all the more ensuring that the system remains stable, the more robust its performance will likely to be when the system is required to operate in a nonstationary environment. It should be emphasized, however, that adaptivity does not always lead to robustness; indeed, it may
do the very opposite. To realize the full benefits of adaptivity, the principal
time constants of the system should be long enough for the system to ignore
spurious disturbances and yet short enough to respond to meaningful changes
in the environment; the problem described here is referred to as the *stability-
plasticity dilemma* (Grossberg, 1988).

4. Evidential Response: In the context of pattern classification, a neural
network can be designed to provide information not only about which particular
pattern to select, but also about the confidence in the decision made. This
latter information may be used to reject ambiguous patterns, should they arise,
and thereby improve the classification performance of the network.

5. Contextual Information: Knowledge is represented by the very structure
and activation state of a neural network. Every neuron in the network is
potentially affected by the global activity of all other neurons in the network.
Consequently, a neural network deals with contextual information naturally.

6. Fault Tolerance: A neural network, implemented in hardware form,
has the potential to be inherently fault tolerant, or capable of robust computation,
in the sense that its performance degrades gracefully under adverse operating
conditions. For example, if a neuron or its connecting links are damaged,
recall of a stored pattern is impaired in quality. However, due to the distributed
nature of information stored in the network, the damage has to be extensive
before the overall response of the network degraded seriously.

7. VLSI Implementability: The massively parallel nature of a neural
network makes it potentially fast for the computation of certain tasks. This
same feature makes a neural network well suited for implementation using
very-large-scale-integrated (VLSI) technology. One particular beneficial virtue
of VLSI is that it provides a means of capturing truly complex behavior in
a highly hierarchical fashion (Mead, 1989).

universality as information processors in the sense that the same notation is
used in all domains involving the application of neural networks. This feature
manifests itself in different ways:
 • Neurons, in one form or another, represent an ingredient *common*
to all neural networks.
 • This commonality makes it possible to *share* theories and learning
algorithms in different applications of neural networks.
 • Modular networks can be built through a *seamless integration of
modules*.

9. Neurobiological Analogy: The design of a neural network is motivated
by analogy with the brain, which is a living proof that fault tolerant parallel
processing is not only physically possible but also fast and powerful.
Neurobiologists look to (artificial) neural networks as a research tool for the
interpretation of neurobiological phenomena. On the other hand, engineers
look to neurobiology for new ideas to solve problems more complex than
those based on conventional hard-wired design techniques.

3.4 DEMERITS OF ANN

Although several studies indicate that ANNs have proven to be potentially
useful tools in hydrology, their disadvantages should not be ignored. A major
limitation of ANNs is their lack of physical concepts and relations. Most
ANN applications have been unable to explain in a comprehensively meaningful
way the basic process by which ANNs arrive at a decision. This has been one
of the primary reasons for the skeptical attitude towards this methodology.
ANNs can be trained on input-output data pairs with the hope that they are
able to mimic the underlying hydrologic process. In essence, the physics is
locked up in the set of optimal weights and threshold values and is not
revealed back to the user after training. Therefore, artificial neural networks
cannot be considered as a panacea for hydrologic problems, nor can they be
viewed as replacements for other modeling techniques. Many studies have
also warned about the pitfalls of ANNs and caution against their use
indiscriminately (Chatfield, 1993; Carpenter and Barthelemy, 1994). It is
highly desirable that ANNs be capable of imparting an explanation, even if
only a partial one, as an integral part of its function. Some effort along these
lines has gone into the formation of knowledge-based ANNs and rule extraction
techniques. Hsu *et al* (1997) provided some heuristic functional relationships
between input and output variables of an ANN by using self-organizing
feature maps of the input variables. However, such ideas have not been
utilized in hydrologic applications.

Another issue is that there is no standardized way of selecting network
architecture. The choice of network architecture, training algorithm, and
definition of error are usually determined by the user’s past experience and
preference, rather than the physical aspects of the problem. Very often, ANN
training is performed with limited length of hydrologic data. Under these
circumstances, it will be difficult to say ‘when generalization will fail’, to
decide the range of applicability of the ANN. Unfortunately, this question
cannot be answered easily because cross validation does not always provide
a complete answer. In contrast, physically-based methods have an advantage,
because the physics can be used to fill the gaps where data is not available.

For ANN training, back propagation algorithm (Rumelhart *et al* 1986)
is the most frequently used and popular algorithm. In spite of the potential
capabilities of back propagation, it suffers from several drawbacks that can
lead to problems during training. The most commonly faced problems (ASCE,
2000a) are long, ambiguous training process, local minima, moving target and
network paralysis. These problems are briefly explained below.
Long Training Process: For complex problems, the direction of error reduction with a number of epochs is not very clear and may lead to some confusion regarding the continuation of the training process. The training process can be very long and sometimes futile for a bad initial weight space. The two main reasons behind slow learning are problems of step size and moving target.

Local Minima: During the search for an optimal weight space, the error is continuously reduced by reducing the step size until an optimal minimum is reached. For most practical scenarios, this local minimum may yield good results or may be the global minimum itself. However, no fixed guidelines are available for the rate at which this step size should be reduced during network training. Reducing the step size by infinitesimal amounts may not be practically feasible. A large step size may propel the search in a very different region of weight space and may yield a poor solution. The problem of local minima is faced by many traditional optimization methods, and such is the case for neural networks. This problem arises due to downward search in a complex, high-dimensional space full of hills, valleys, saddle points, etc. By changing the learning rate or step size, this problem can be avoided to some degree.

Moving Target: The problem of moving target arises as the weights have to continuously adjust their values from one output to another for successive patterns. The change in a weight during one training pass may be nullified in the next pass because of a different training pattern. Thus, the attenuation and dilution of weight changes also slows down the process of training.

Network Paralysis: The problem of network paralysis arises due to the large adjustment of weights in the initial epochs. When all the nodes produce large outputs, the derivative of the activation function can become very small. Since the error sent back from the output layer in the backward pass (or the weight adjustment) is proportional to the derivative of the activation function, the learning process slows down, and weight adjustment might be insignificant. Reducing the step size or learning rate usually avoids this problem.

Many improvements are suggested in the literature to overcome some of these limitations in the conventional back propagation algorithm and a few of them are briefly discussed in Nagesh Kumar et al (2004).

3.5 CONCLUSIONS

Following conclusions may be drawn from the present study.

• A very interesting feature of ANNs is the data exploration with capabilities to discover unknown dependencies and relationships among the variables. ANNs seem to learn interesting and new nonlinear relationships and bring out features of the input data that are not revealed by other techniques. There is need to find innovative ways of extracting this information, which is buried in the weight and threshold vectors of a trained network in an incomprehensible fashion. This feature has received very little attention among hydrologists.

• Proper use of an ANN requires not only a physical understanding of the hydrological process under consideration but also knowledge of ANNs and their operation. Trying to extract rules from a network or impart them with some explanation capability will entail extra computer effort. These fundamental aspects will lead to the construction of good training and validation data sets, selection and inclusion of relevant input variables, and development of proper ANN architectures and selection of training algorithms.

• Problems that involve decisions at several levels, or those dealing with hierarchical decision making may be better represented through modular neural networks, which consist of a group of regular neural networks. Many other applications in hydrology using ANN should be forthcoming but at the same time proper care should be taken in adopting ANN to different problems in hydrology.

3.6 ACKNOWLEDGEMENTS

For the preparation of this article and discussion on various critical issues, work presented by ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a, b) is extensively referred. The author wishes to acknowledge the efforts of the task committee for highlighting many relevant issues of this recent topic.

REFERENCES