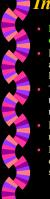


Prof. D. Nagesh Kumar

Professor, Dept. of Civil Engg. Associate Faculty – CEaS, DCCC Indian Institute of Science Bangalore – 560 012 URL: http://www.civil.iisc.ac.in/~nagesh

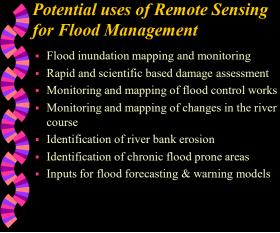
1



Outline

- Floods and Potential use of Remote Sensing
- Real Time Monitoring of Floods
- GIS for Flood Damage Assessment
- Digital Elevation Models (DEMs)
- Delineation of Flood-prone Areas using Modified Topographic Index for Mahanadi Basin
- Integrated Approach to Flood ManagementConclusions

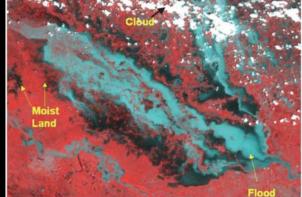
2


Δ

Introduction

- Floods are the most common and widespread of all natural disasters
- Floods cause damage to houses, industries, public utilities and property resulting in huge economic losses, apart from loss of lives
- Though it is not possible to control the flood disaster totally, by adopting suitable structural and non-structural measures the flood damages can be minimized
- For planning any flood management measure latest, reliable, accurate and timely information is required
- Remote sensing technology has made substantial contribution in every aspect of flood disaster management such as preparedness, prevention and relief.

3



 Once a flood event occurs, information on flooded areas and quick assessment of damages is required for planning flood relief activities

Flood Inundation Mapping

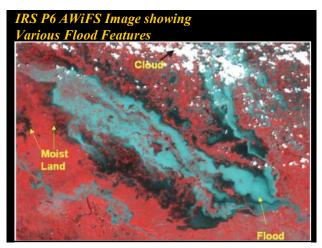
- Satellite remote sensing provides synoptic view of the flood-affected areas at frequent intervals for assessing
 - Progression and recession of the flood inundation in short span of time which can be used for planning and organizing the relief operations effectively

IRS P6 AWiFS Image showing Various Flood Features

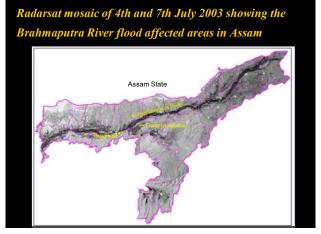
IRS Satellite Image (FCC) showing the Ganga River Basin

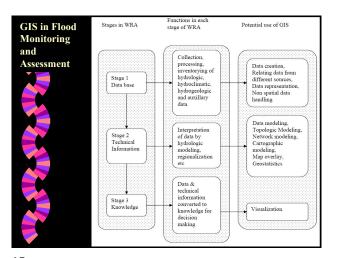
IRS Satellite Image (FCC) showing the Brahmaputra River Basin

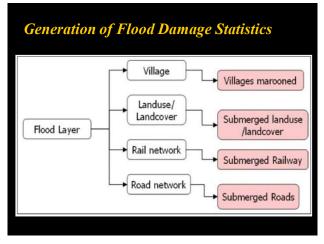
8


~	S.No	Satellite	Sensor/ Mode	Spatial Res(m)	Spectral Res (µm)	Swath (km)	Used For
Satellites	1	IRS-P6	AWIFS	58	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86 B5: 1.55-1.70	740	Regional level flood mapping
and their	2	IRS-P6	LISS-III	23.5	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86 B5: 1.55-1.70	141	District-level flood mapping
Sensors	3	IRS-P6	LISS-IV	5.8 at nadir	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86	23.9	Detailed level Mapping
used for	4	IRS-1D	WIFS	188	B3: 0.62-0.68 B4:0.77-0.86	810	Regional level flood mapping
Flood	5	IRS-1D	LISS-III	23.5	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86 B5: 1.55-1.70	141	Detailed level Mapping
	6	Aqua/ Terra	MODIS	250	36 in visible, NIR & thermal	2330	Regional level Mapping
Mapping	7	IRS-P4	OCM	360	Eight narrow bands in visible & NIR	1420	Regional level Mapping
	8	Cartosat-1	PAN	2.5	0.5-0.85	30	Detailed level Mapping
	9	Cartosat-2	PAN	1	0.45-0.85	9.6	Detailed level Mapping
	10	Radarsat-1	SAR/ ScanSAR Wide	100	C-band (5.3 cm) HH Polarization	500	Regional level mapping
	11	Radarsat-1	SAR/ ScanSAR Narrow	50	C-band (5.3 cm)	300	District-level mapping
	12	Radarsat-1	Standard	25	C-band	100	District-level mapping
	13	Radarsat-1	Fine beam	8	C-band (5.3 cm)	50	Detailed level mapping
	14	ERS	SAR	25	C-band	100	District-level mapping

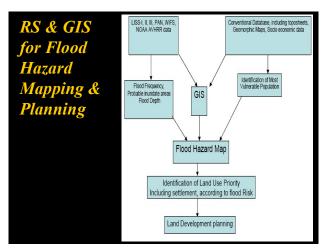
9

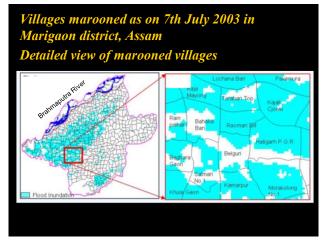

Real-Time Monitoring of Floods


- Whenever a flood event occurs in India, NRSC provides flood maps showing flood affected areas and flood damage statistics in near real time
- Presently, this information is being provided to the user departments within 6 hours after procuring the satellite data
- During the last one and half decades, major flood events in Assam, Bihar, Uttar Pradesh, West Bengal, Orissa, Andhra Pradesh, Jammu & Kashmir, Rajasthan, Punjab have been successfully mapped using Indian Remote Sensing (IRS) and other satellites.



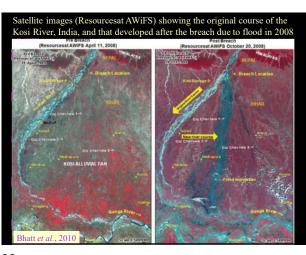
- In adverse cloud conditions optical data from most of the satellites will not be useful
- Microwave SAR (Synthetic Aperture Radar) data has all weather capability. Radarsat provides such data

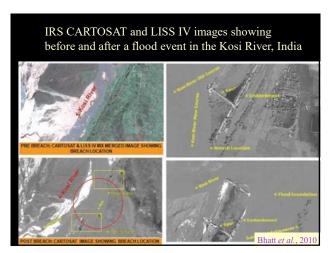


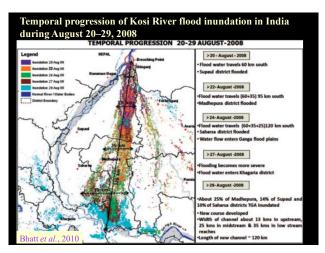

Monitoring Floods

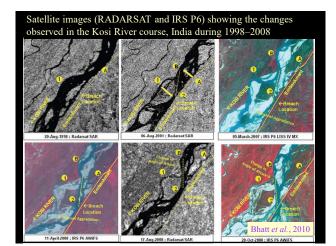
Non Flood Year (1988), TM 432

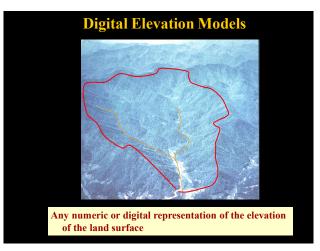
Flood Year (1993), TM 432

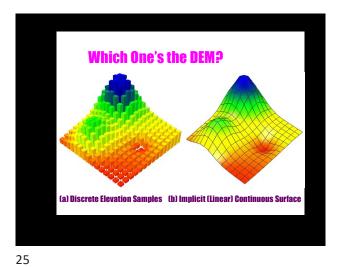


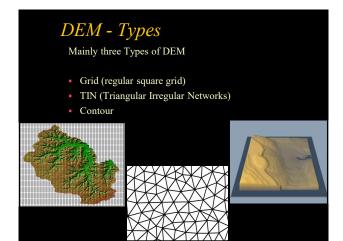


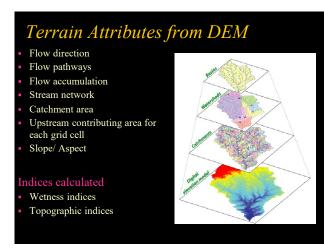


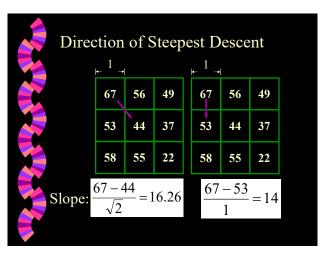

Utilization of Flood Images from RS & GIS

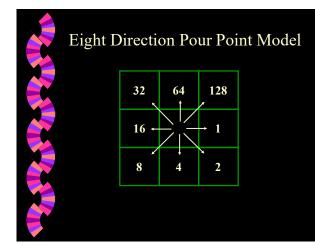

S.No	Deliverables	Utilization
1	Flood map	To map inundated areas for organizing relief operations
2	Flood damages – Extent of inundation – Crop area submerged Number of Villages marooned – Length of Road/ railway network affected/submerged	Quick assessment of flood damages, for providing relief & Rehabilitation
3	Flood control works and River configuration	Strengthening of existing & planning of future flood control works
4	River Bank erosion	Planning anti erosion works
5	Identification of chronic flood prone areas and Floodplain zoning	Hazard zonation & floodplain regulation, planning flood control works

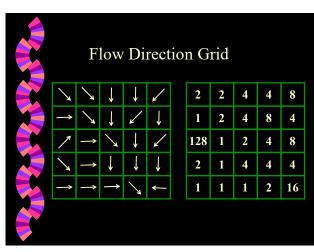


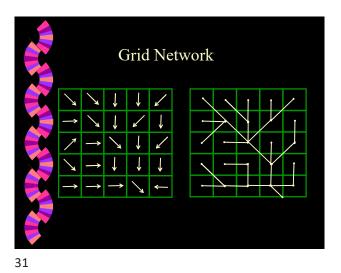


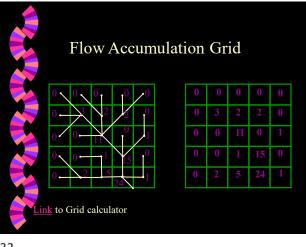


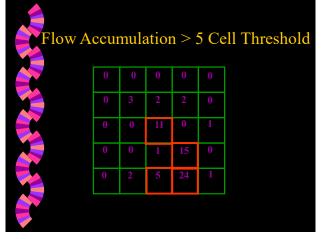


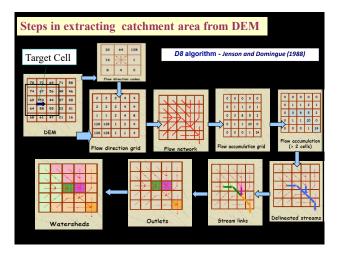


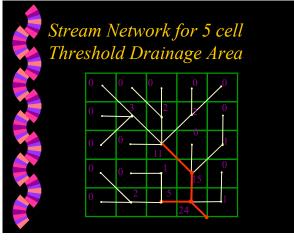


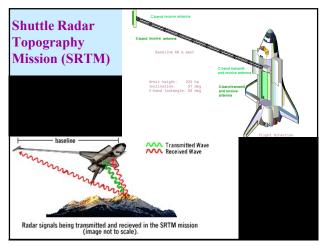


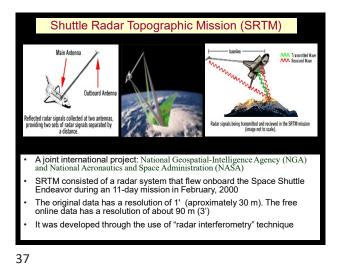


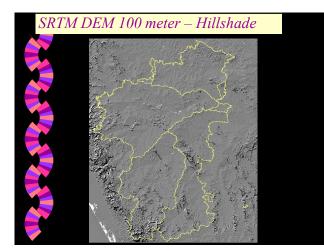


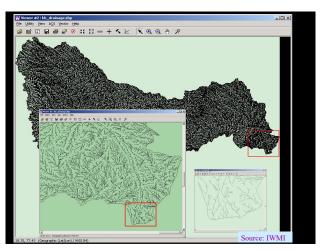




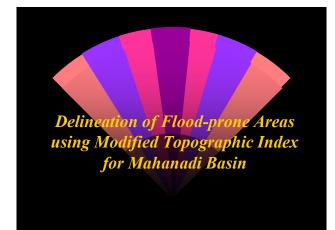




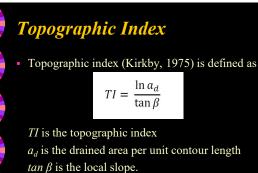


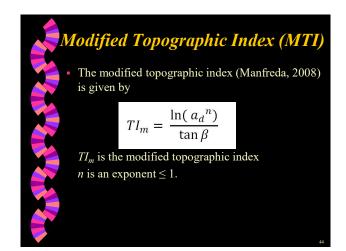


KRISHNA BASIN


38

40


Introduction


- Preparing and maintaining an accurate flood map is a difficult task.
- Ease in availability of surface elevation data has resulted in DEM based models.
- A simple method for delineation of floodprone areas, Modified topographic index, is applied for the Mahanadi Basin

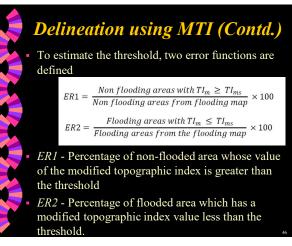
44

Delineation using MTI

It allows the delineation of the portion of the basin as exposed to flood inundation assuming that it is the area characterised by the modified topographic index exceeding a given threshold TI_{ms} The threshold will be estimated by using a flooding

map of the basin, which is assumed to have correct representation of flooding and non-flooding areas Modified topographic index map is compared with flood inundation map, and value of modified

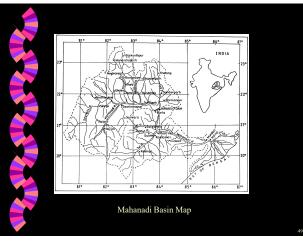
topographic index above which area is considered as inundated is obtained

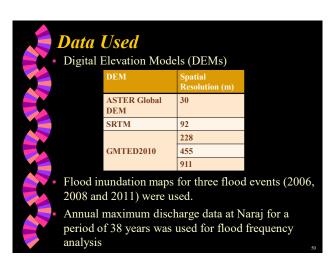

45

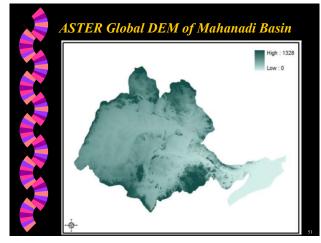
• The objective is to define a threshold value which minimizes both errors in the delineation of the flood inundation areas.

The sum of two errors (ER1 + ER2) represents an objective function that can be used for the estimation of the two parameters TI_{mx} and n.

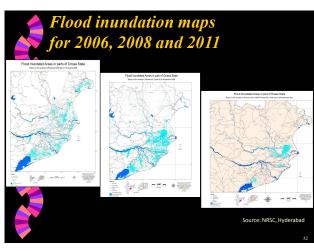
• An iterative algorithm is used on this function to search for a minimum value of (ER1 + ER2), to obtain the two parameters.

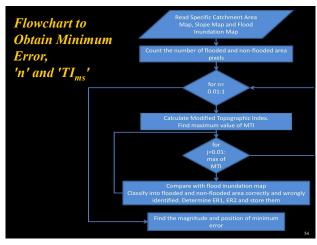



46


conta.)

- Study Area
 - The study area lies between East longitudes 80° 30' and 86° 50', and North latitudes 19° 15' and 23° 35'.
 - Length of the river is about 900 km, and it has a catchment area of approximately 1,41,600 km².
 - Climate in the basin of Mahanadi is predominantly sub-tropical.
 - Annual rainfall varies from 1143 mm to 2032 mm over the entire basin, average being 1438.1 mm.




50

51

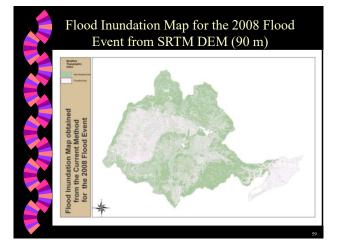
52

Methodology

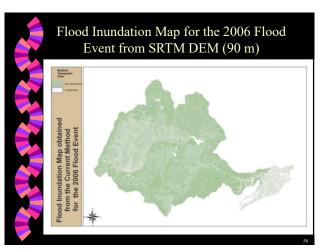
- GIS analysis was performed on the DEMs to obtain the specific catchment area maps and slope maps.
- Analysis was also performed on the flood inundation maps obtained from NRSC.
- ArcMap, ERDAS Imagine and MapWindow GIS were used to perform all the operations.
- Iterations are carried out for each value of the exponent to obtain modified topographic index.
- It is compared with the flood inundation map to obtain '*n*' and '*TI_{ms}*' having the minimum error.

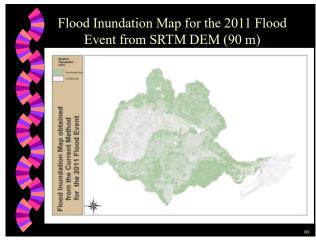
Methodology (Contd.)

- '*n*' and ' TI_{ms} ' obtained are used to produce flood inundation maps.
- Flood frequency analysis is performed by fitting the annual maximum flow data to three probability distributions: normal, log-normal and Gumbel distributions.
- Tests for goodness of fit were performed by using the χ^2 test and the Kolmorgov-Smirnoff test.

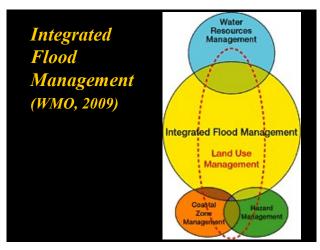


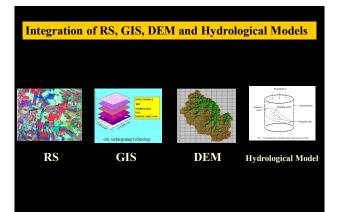
Results (Contd.)


- The error reduces as the spatial resolution of the DEM reduces.
- It was also noted that ER1 (the over-estimation) was significantly larger than ER2 in all the cases.
- As the flood magnitude increases, TI_{ms} has reduced, indicating that a larger area will be under flood inundation.


57

Results	Event (Year)	2006	2011	2008
Results	Magnitude (1000 cumecs)	(36.33)	(38.71)	(44.76)
	DEM Resolution (m)	п		
	900	0.01	0.01	0.01
	450	0.04	0.01	0.01
	225	0.04	0.01	0.01
Parameters Obtained from	90	0.03	0.01	0.01
the Method and the Errors	30	0.01	0.01	0.01
Corresponding to the	DEM Resolution (m)	TI _{ms}		
Parameters for the Three	900	6.13	5.49	5.27
Flood Events	450	6.24	5.21	5.08
	225	5.61	4.78	4.09
	90	5.28	4.38	4.32
	30	3.22	3.22	2.87
	DEM Resolution (m)	ER1 +		
	900	43.63	37.23	38.70
	450	42.63	43.09	39.88
	225	39.96	43.97	21.84
	90	32.42	37.98	35.51
	30	17.40	18.51	18.39


56


Integrated Flood Management Plan

- Manage the water cycle as a whole
- Integrate land and water management
- Manage risk and uncertainty
- Adopt a best mix of strategies
- Ensure a participatory approach and
- Adopt integrated hazard management approaches.

	2			
Strategies and	Strategy	Options		
Siralegies and		Dams and reservoirs		
Options for	Reducing	Dikes, levees and flood embankments		
- · ·	Flooding	High flow diversions		
Flood		Catchment management		
1 10011		Channel improvements		
Management		Floodplain regulation		
		Development and redevel- opment policies		
(WMO, 2009)	Reducing Susceptibility to Damage	Design and location of facilities		
		Housing and building codes		
		Flood proofing		
		Flood forecasting and warning		
		Information and education		
	Mitigating the Impacts of Flooding	Disaster preparedness		
		Post-flood recovery		
		Flood insurance		
	Preserving the Natural Resources of Flood Plains	Floodplain zoning and regulation		

64

63

Conclusions

- Strong potential for use of RS, GIS and DEM for Flood Hazard planning, mitigation and management
- Proper image processing of remotely sensed data, DEM and spatio-temporal analyses with GIS would be very effective for Flood Management

Sources

- http://www.nrsc.gov.in/flood1.html
- http://www.nrsc.gov.in/flood1.html
 Bhanumurthy, V, Manjusree, P, Srinivasa Rao, G, (2010), *Flood Disaster Management*, Chapter 12 In *Remote Sensing Applications*, Eds. PS Roy, RS Dwivedi and D Vijayan, National Remote Sensing Center, Hyderabad.
 WMO (2009), *Integrated Flood Management Concept Paper*, WMO No. 1047, Associated Programme on Flood Management (APFM), World Meteorological Organization (WMO), Geneva, Switzerland.
 Manfreda, S. Sele, A. and L. M. D. Zhang, M. S. Sele, A. and L. M. D. Zhang, M. S. Sele, A. and L. M. S. Sele, A. and M. S. Sele,
- Wanfreda, S., Sole, A., and Leo, M D. "Detection of flood prone areas using digital elevation models". *Journal of Hydrologic Engineering*, ASCE, 16(10), 781-790, 2011
 Zhang, W., and Montgomery, D. R. "Digital elevation model grid size, landscape representation, and hydrologic simulations." *Water Resources Research*, 30(4), 1019–1028, 1994.