

Prof. D. Nagesh Kumar Professor, Dept. of Civil Engg. Associate Faculty – CEaS, DCCC Indian Institute of Science Bangalore – 560 012 URL: http://www.civil.iisc.ac.in/~nagesh

1

Introduction Floods are the most common and widespread of all natural

- disastersFloods cause damage to houses, industries, public utilities and property resulting in huge economic losses, apart from
- loss of lives
 Though it is not possible to control the flood disaster totally, by adopting suitable structural and non-structural measures the flood damages can be minimized
- For planning any flood management measure latest, reliable, accurate and timely information is required
- Remote sensing technology has made substantial contribution in every aspect of flood disaster management such as preparedness, prevention and relief.

3

Flood Inundation Mapping

- Once a flood event occurs, information on flooded areas and quick assessment of damages is required for planning flood relief activities
- Satellite remote sensing provides synoptic view of the flood-affected areas at frequent intervals for assessing
 - Progression and recession of the flood inundation in short span of time which can be used for planning and organizing the relief operations effectively

Outline

- Floods and Potential use of Remote Sensing
- Real Time Monitoring of Floods
- GIS for Flood Damage Assessment
- Digital Elevation Models (DEMs)
- Delineation of Flood-prone Areas using Modified Topographic Index for Mahanadi Basin
- Integrated Approach to Flood Management
- Conclusions

2

Potential uses of Remote Sensing for Flood Management

- Flood inundation mapping and monitoring
- Rapid and scientific based damage assessment
- Monitoring and mapping of flood control works
- Monitoring and mapping of changes in the river course
- Identification of river bank erosion
- Identification of chronic flood prone areas
- Inputs for flood forecasting & warning models

8.	No Satellite	Sensor/ Mode	Spatial Res(m)	Spectral Res (µm)	Swath (km)	Used For
atellites	IRS-P6	AWIFS	56	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86 B5: 1.55-1.70	740	Regional level flood mapping
ad their ²	IRS-P6	LISS-III	23.5	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86 B5: 1.55-1.70	141	District-level flood mapping
Ors ³	IRS-P6	LISS-IV	5.8 at nadir	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86	23.9	Detailed level Mapping
for ⁴	IRS-1D	WIFS	188	B3: 0.62-0.68 B4:0.77-0.86	810	Regional level flood mapping
od s	IRS-1D	LISS-III	23.5	B2: 0.52-0.59 B3: 0.62-0.68 B4:0.77-0.86 B5: 1.55-1.70	141	Detailed level Mapping
6	Aqua/ Terra	MODIS	250	36 in visible, NIR & thermal	2330	Regional level Mapping
ing ^r	IRS-P4	OCM	360	Eight narrow bands in visible & NIR	1420	Regional level Mapping
8	Cartosat-1	PAN	2.5	0.5-0.85	30	Detailed level Mapping
9	Cartosat-2	PAN	1	0.45-0.85	9.6	Detailed level Mapping
10	Radarsat-1	SAR/ ScanSAR Wide	100	C-band (5.3 cm) HH Polarization	500	Regional level mapping
11	Radarsal-1	SAR/ ScanSAR Narrow	50	C-band (5.3 cm)	300	District-level mapping
15	Radarsat-1	Standard	25	C-band	100	District-level mapping
13	Radarsat-1	Fine beam	8	C-band (5.3 cm)	50	Detailed level mapping
14	ERS	SAR	25	C-band VV Polarization	100	District-level mapping

Microwave Remote Sensing for

Microwave SAR (Synthetic

Radarsat provides such data

• In adverse cloud conditions optical data from most of the satellites will not be useful

Radar) data has all weather capability.

Aperture

Flood Mapping

9

Utilization of Flood Images from RS & GIS						
S.No	Deliverables	Utilization				
1	Flood map	To map inundated areas for organizing relief operations				
2	Flood damages – Extent of inundation – Crop area submerged Number of Villages marooned – Length of Road/ railway network affected/submerged	Quick assessment of flood damages, for providing relief & Rehabilitation				
3	Flood control works and River configuration	orks and Strengthening of existing & planning of futu tion flood control works				
4	River Bank erosion	Planning anti erosion works				
5	Identification of chronic flood prone areas and Floodplain zoning	Hazard zonation & floodplain regulation, planning flood control works				

Flow Accumulation > 5 Cell Threshold

38

40

Introduction

- Preparing and maintaining an accurate flood map is a difficult task.
- Ease in availability of surface elevation data has resulted in DEM based models.
- A simple method for delineation of floodprone areas, Modified topographic index, is applied for the Mahanadi Basin

Topographic Index

Topographic index (Kirkby, 1975) is defined as

$$TI = \frac{\ln a_d}{\tan \beta}$$

TI is the topographic index a_d is the drained area per unit contour length $tan \beta$ is the local slope.

43

Delineation using MTI

- It allows the delineation of the portion of the basin as exposed to flood inundation assuming that it is the area characterised by the modified topographic index exceeding a given threshold TI_{ms}
- The threshold will be estimated by using a flooding map of the basin, which is assumed to have correct representation of flooding and non-flooding areas
- Modified topographic index map is compared with flood inundation map, and value of modified topographic index above which area is considered as inundated is obtained

45

46

Delineation using MTI (Contd.)

- The objective is to define a threshold value which minimizes both errors in the delineation of the flood inundation areas.
- The sum of two errors (ER1 + ER2) represents an objective function that can be used for the estimation of the two parameters TI_{ms} and n.
- An iterative algorithm is used on this function to search for a minimum value of (ER1 + ER2), to obtain the two parameters.

Study Area

- The study area lies between East longitudes 80° 30' and 86° 50', and North latitudes 19° 15' and 23° 35'.
- Length of the river is about 900 km, and it has a catchment area of approximately 1,41,600 km².
- Climate in the basin of Mahanadi is predominantly sub-tropical.
- Annual rainfall varies from 1143 mm to 2032 mm over the entire basin, average being 1438.1 mm.

- GIS analysis was performed on the DEMs to obtain the specific catchment area maps and slope maps.
- Analysis was also performed on the flood inundation maps obtained from NRSC.
- ArcMap, ERDAS Imagine and MapWindow GIS were used to perform all the operations.
- Iterations are carried out for each value of the exponent to obtain modified topographic index.
- It is compared with the flood inundation map to obtain 'n' and 'TI_{ms}' having the minimum error.

Methodology (Contd.)

- '*n*' and '*TI_{ms}*' obtained are used to produce flood inundation maps.
- Flood frequency analysis is performed by fitting the annual maximum flow data to three probability distributions: normal, log-normal and Gumbel distributions.
- Tests for goodness of fit were performed by using the χ^2 test and the Kolmorgov-Smirnoff test.

55

Results (Contd.)

- The error reduces as the spatial resolution of the DEM reduces.
- It was also noted that ER1 (the over-estimation) was significantly larger than ER2 in all the cases.
- As the flood magnitude increases, TI_{ms} has reduced, indicating that a larger area will be under flood inundation.

57

56

63

64

aclusions rong potential for use of RS, GIS and DEM r Flood Hazard planning, mitigation and anagement oper image processing of remotely sensed ita, DEM and spatio-temporal analyses with IS would be very effective for Flood anagement

rces

p://www.nrsc.gov.in/flood1.html

anumurthy, V, Manjusree, P, Srinivasa Rao, G, (2010), *bod Disaster Management*, Chapter 12 In *Remote Sensing plications*, Eds. PS Roy, RS Dwivedi and D Vijayan, tional Remote Sensing Center, Hyderabad.

MO (2009), Integrated Flood Management – Concept Paper, MO No. 1047, Associated Programme on Flood Management PFM), World Meteorological Organization (WMO), Geneva, ritzerland.

Infreda, S., Sole, A., and Leo, M D. "Detection of flood prone as using digital elevation models". *Journal of Hydrologic gineering*, ASCE, 16(10), 781-790, 2011 ang, W., and Montgomery, D. R. "Digital elevation model d size, landscape representation, and hydrologic simulations." *tter Resources Research*, 30(4), 1019–1028, 1994.