
Remote Sensing Introduction

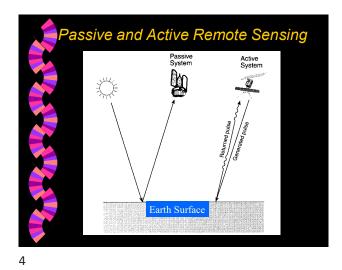
Prof. D. Nagesh Kumar Dept. of Civil Engg. IISc, Bangalore – 560 012, India URL: http://www.civil.iisc.ernet.in/~nagesh

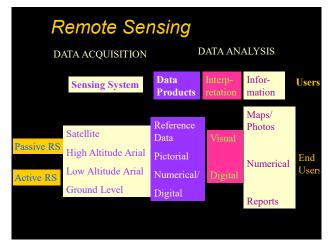
2

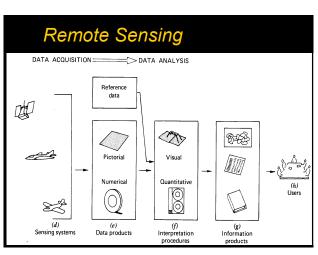
1

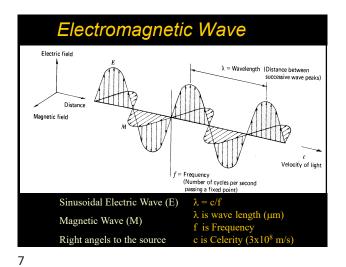
Remote Sensing

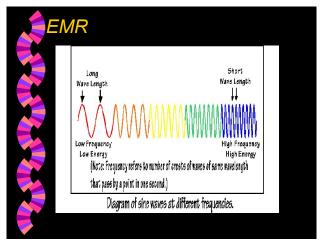
Remote Sensing is the science and art of obtaining information about an object, area or phenomenon through the analysis of data acquired by a device that is not in physical contact with the object, area or phenomenon under investigation.

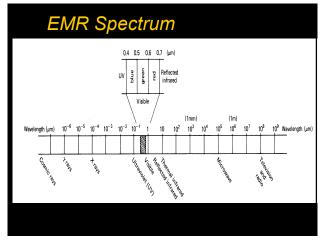

Examples

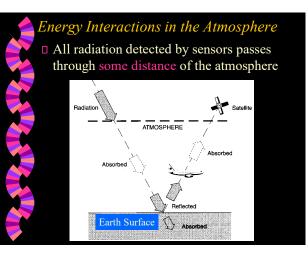

. Eyes are living examples (EMR distribution)

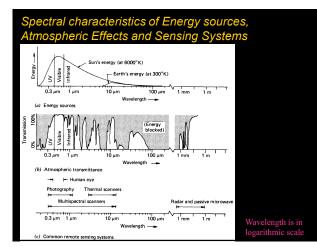

2 Sonar (like bats): Acoustic wave distribution

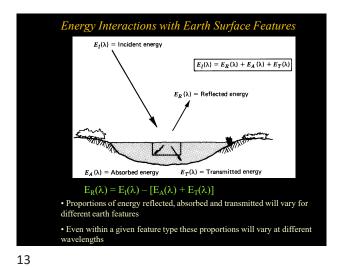

3. Gravity Meter: Gravity force distribution

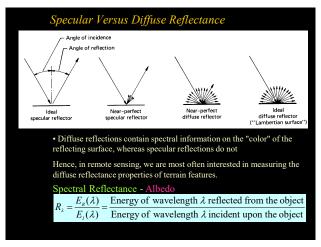

3

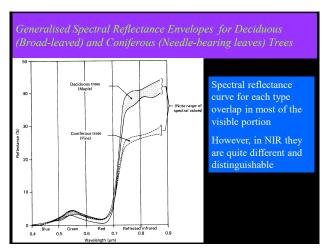


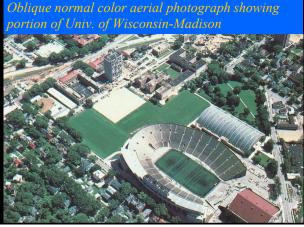


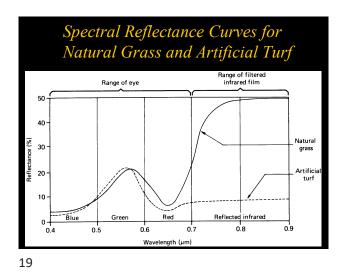




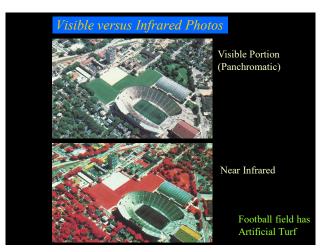




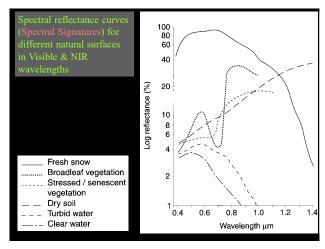



Albedo of various surface featuresSurface TypeAlbedo (%)Grass25Concrete20Water5–70Fresh snow80Forest5–10Thick cloud75Dark soil5–10

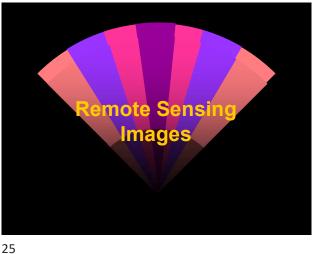
Oblique color infrared aerial photograph showing portion of Univ. of Wisconsin-Madison

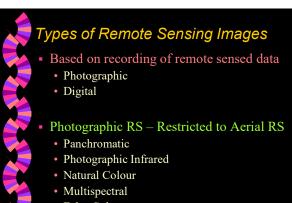


Typical Spectral Reflectance curves for Soil and Water Dry Barren Soil (Grav-brown) Healthy Green Vegetation 60 ----- Clear Water % Reflectance (° Spectral 20 0 0.6 1.0 0.4 0.8 1.2 1.4 1.6 1.8 2.0 2.2 2.4 Wavelength (µm) Lines in the figure represent average reflectance curves

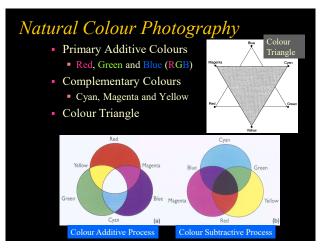

21

- Ability to view large parts of the globe at different scales (Synoptic View)
- Capability to monitor regions which may be very remote or where access is denied
- Ability to analyse different surfaces at wavelengths not detectable to the human visual system
- Ability to obtain imagery of an area at regular intervals over many years in order that changes in the landscape can be evaluated
- Capability to see human-induced effects on our planet
- - Certain skill level is required to interpret the imagery
 Interpretation based solely on remotely sensed data should be treated with caution unless supported by ground verification data.

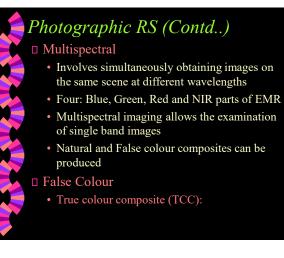

20



22


2.6

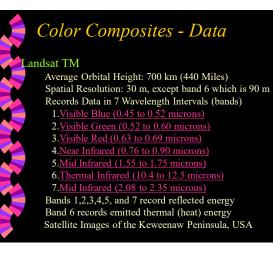
Synoptic Coverage Mosaic from IRS P4 – Oceansat - OCM

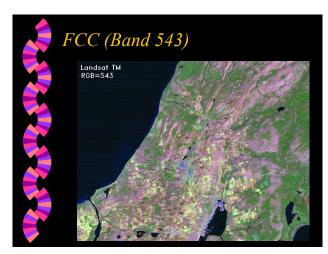


False Colour

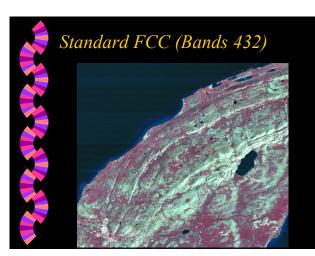
27

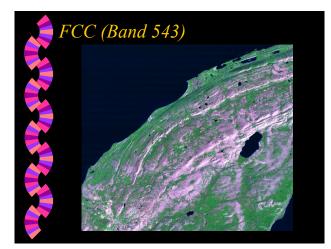
28

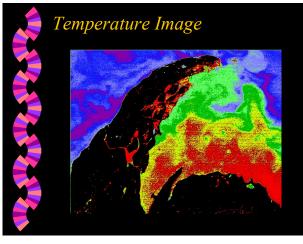

26

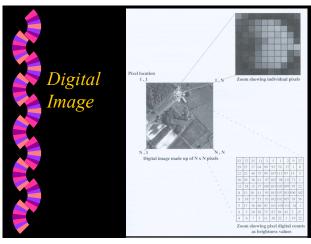

Photographic RS (Contd..)

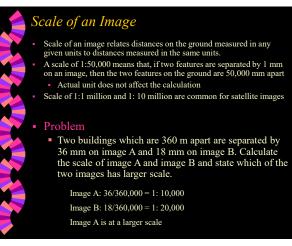
False Colour

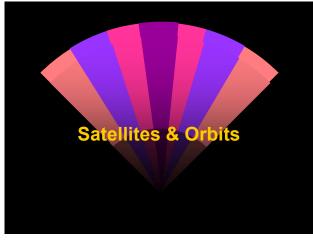

- True Colour Composite (TCC) Red band – Red; Green band – Green; Blue band – Blue
- False Colour Composite (FCC)
 - · Any other combination of colours
 - E.g., Blue band Red; Red band Green; Green band Blue
 E.g., Blue band Red; Red band Green; NIR band Blue
- Standard False Colour Composite (FCC) • E.g., NIR band – Red; Red band – Green; Green band – Blue
 - In IRS: Band 4 Red; Band 3 Green; Band 2 Blue

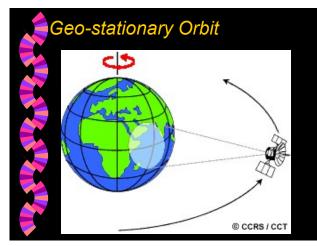












38

39

40

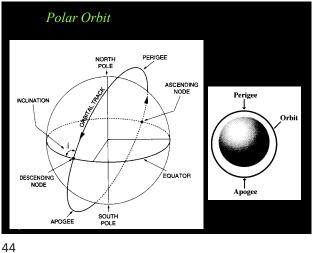
Satellite Orbits

Geostationary & Polar Orbiting Satellites

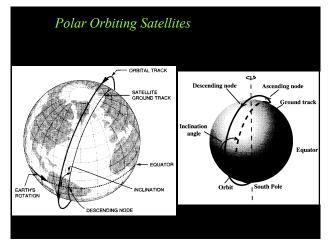
- Geostationary or Geosynchronous Satellites are used for communication & meteorological purposes
- Satellite is stationary with respect to a point on equator • Satellite must be geosynchronous i.e., orbital period should be 24 hrs.
- Placed in high altitude of 36,000 km
- It must be on equatorial plane
- Heavily inclined orbit 180°
- Sense of direction must be the same as sense of rotation of earth on its axis i.e., West to East
- Can yield a large area coverage of 45% to 50% of the total globe (Foot Print)

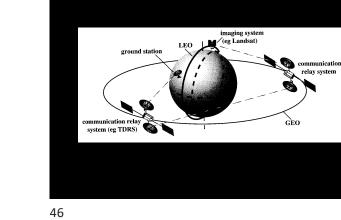
Polar Orbits

Polar orbit is to take the advantage of earth's rotation on its axis so that the newer segments (or sections) of earth will be under view of the satellite, provided the orbital period is smaller than the rotational period of earth (24 hrs)


• Typically RS satellite period will be 103 mts.

Satellite Orbits

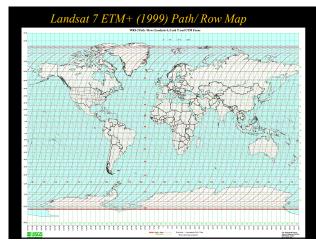

- Orbit will be elliptical or near circular
- Time taken by a satellite to complete one revolution in its orbit around the earth is called the Orbital period.
- Apogee and Perigee
- Angle of inclination of orbital plane with respect to equator is measured clockwise (typically 99° for RS Satellite)
- Nadir is the point of interception on the surface of the earth of the radial line between the center of the earth and the satellite
 - This is the point of shortest distance from the satellite
 - The circle on the surface of the earth described by the nadir point as the satellite revolves is called the ground track
- Any point just opposite to the nadir, above the satellite is called zenith.


Geostationary & Polar Orbiting Satellites

44

45

Swath


RS Satellite

RS Satellite is placed in Near polar, Near circular, inclined, medium period and sun synchronous orbit

- Near Polar for global coverage
- Near circular for uniform swath
- Inclined for differences in gravitational pull
- medium period for global coverage
- Sun synchronous for constant angle between the aspects of incident sun and viewing by the satellite

Band	Resolution	Spectral definition	Some applications ^a
1	30 m	Blue-green, 0.45-0.52 µm	Penetration of clear water; bathymetry; mapping of coastal waters; chlorophyll absorption; distinction between coniferous and deciduous vegetation
2	30 m	Green, 0.52-0.60 µm	Records green radiation reflected from healthy vegetation; assesses plant vigor; reflectance from turbid water
3	30 m	Red, 0.63-0.69 µm	Chlorophyll absorption important for plant-type discrimination
4	30 m	Near infrared, 0.76–0.90 µm	Indicator of plant cell structure; biomass; plant vigor; complete absorption by water facilitates delineation of shorelines
5	30 m	Mid-infrared, 1.55–1.75 µm	Indicative of vegetation moisture content; soil moisture mapping; differentiating snow from clouds; penetration of thin clouds
6	120 m	Far infrared, 10.4–12.5 μm	Vegetation stress analysis; soil moisture discrimination; thermal mapping; relative brightness temperature; soil moisture; plant heat stress
7	30 m	Mid-infrared, 2.08–2.35 μm	Discrimination of rock types; alteration zones for hydrothermal mapping; hydroxyl ion absorption

Landsat 7 (1999) – ETM+ Sensor Characteristics

Band	Spectral range	Ground resolution
1	0.450–0.515 μm	30 m
2	0.525–0.605 µm	30 m
3	0.630–0.690 µm	30 m
4	0.75–0.90 µm	30 m
5	1.55–1.75 µm	30 m
6	10.4–12.5 µm	60 m
7	2.09–2.35 µm	30 m
Pan	0.52–0.90 µm	15 m
	Revisit - 16 days; Swath – 18	35 km

	rogrum	Pan – 0.5-0.75 µm; 5.8 m;				
IRS 1A - 19	88; IRS 1B – 1991 Swath:	Swath: 70 km – 90 km; Revisit: 5 days				
IRS 1C - 19	95; IRS 1D - 1997 WiFS;	WiFS; OBTR (24 mts or 62 GB)				
Spectral Characteristics of LISS I & LISS II (IRS 1A & 1B)						
		Resolution				
Band	Spectral limits	LISS-I	LISS-II			
1	Blue-green 0.45-0.52 µm	72.5 m	36.25 m			
2	Green 0.52–0.59 µm	72.5 m	36.25 m			
3	Red 0.62-0.68 µm	72.5 m	36.25 m			
4	Near infrared 0.77-0.86 µm	72.5 m	36.25 m			
<u> </u>	al Characteristics of LISS III Spectral limits		D) esolution			
Band						
Band 1ª	Blue —					
	1		23 m			
1ª	Blue —		23 m 23 m			
1ª 2	Blue — Green 0.52–0.59 μm Red 0.62–0.68 μm Near infrared 0.77–0.86 μm		BD HI			
1ª 2 3	Blue — Green 0.52–0.59 μm Red 0.62–0.68 μm		23 m			
1 ^α 2 3 4 5	Blue — Green 0.52–0.59 μm Red 0.62–0.68 μm Near infrared 0.77–0.86 μm Mid-infrared 1.55–1.70 μm	ystem from earlier sate	23 m 23 m 70 m			