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Ah&act-The response of Van der Pal’s oscillator to a combination of harmonic and white noise 
excitations is considered. The harmonic excitation frequency is taken to be in the nei~bourho~ of 
the system limit cycle frequency. The effect of addition of noise on the entrainment bchaviour is 
investigated using a combination of methods of stochastic averaging and equivalent non- 
linearixation. Results basad on the gaussian closure technique are also obtained and the theoretical 
solutions are compared with digital simulations. 

1. INTRODUCTION 

An important source of non-linearity in engineering systems is the presence of a self- 
excitation mechanism. This results in one or more periodic equilibrium states called limit 
cycles. In the study of self-excited systems possessing one stable limit cycle, the Van der Pol 
oscillator can be regarded as a touchstone. The behaviour of this system under deterministic 
and random excitations has been a subject of extensive study in the past. The effect of broad 
band noise on the limit cycle behaviour has been studied by several authors [f-5]. It has 
been shown that the interaction between limit cycle and the external noise produces 
bimodal probability distribution for the displacement and velocity processes [S]. This in 
turn invalidates the assumption gaussinness of linearization techniques in the response 
analysis. Under a harmonic excitation Van der Pal’s oscillator exhibits the well known 
phenomenon of frequency entrainment. The forming and breaking of entrained oscillations 
is associated with a series of bifurcations and this has been investigated notably by 
Cartwright [6], Minorsky [7], Dewan [8] and Holmes and Rand [9]. If in addition to 
harmonic excitation the system is perturbed by a random noise, the response will have 
several interesting features arising out of the interaction between the output components 
due to the basic limit cycle, the harmonic excitation and the random noise. In the past, 
Stratonovich [2] has studied this problem and presented a number of analytical results 
based on various approximations. In particular, he has investigated the breaking of 
entrained oscillation in terms of the stability of the response phase process. The method of 
gaussian closure has been employed by the present authors [lo] to find response in the 
primary resonance region. The acceptability of the approximate solution has been verified 
with the help of a stochastic stability analysis. In the present paper, the response of Van der 
Pal’s oscillator to combined periodic and white noise excitation is analysed using the 
stochastic averaging method. It is shown that the averaged equations can be solved exactly 
for a specific choice of system parameters. A general approximate solution is however 
possible for all parameter values through the method of equivalent non-linearization. 

The system under study is 

2. ANALYSiS 

I 
x-s3(1-4x2)+x=Qcoslt+ W(t) 

(Wl) Wt2)> = 2mt1 - t2). (1) 

Here a dot represents derivative with respect to time t, W(t) is a gaussian white noise 
process, ( * ) denotes the expectation operator and 6( ’ ) is Dirac’s delta function. The 
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parameters E, Q and D are assumed to be small compared to unity. It may be noted that for 
the unforced system the amplitude and frequency of the limit cycle oscillation are both 
equal to unity. In the absence of noise the response can be expected to consist of two 
periodic components, one due to the limit cycle of the system and the other due to the 
external harmonic excitation. However, if 1 is in the neighbourhood of the limit cycle 
frequency, the response at the limit cycle frequency is suppressed and the system oscillates 
only at the harmonic forcing frequency. This is the well known phenomenon of frequency 
entrainment [7]. The interest in the present work is to study the effect of addition of the 
noise W(t) on the system response. In their earlier work the present authors [lo] assumed 
the steady state solution of equation (1) in the form 

x(t) = R cos(lt - x) + Z(t) (2) 

where the first term represented the mean periodic response and Z(t) the stationary random 
component of the response. Under the closure assumption that Z(t) is a gaussian random 
process it was shown that 

R*[A* + (1 - 4a2 - R*)*] = Q/(d)* 

x = tan- ‘[A/(1 - 40* - R*)] 

A = (1 - n’)/(sn) 

u* = 0.125{(1 - 2R2) + J[l - 2R2 - 16(0/e)]} (3) 

where u* = (Z*). Further, this solution was deemed to be acceptable only if it satisfied 
a stochastic stability criterion. It is to be noted that the above solution has several 
drawbacks. Firstly the solution assumed in equation (2) is not valid in the limit Q + 0. This 
is because, for the case of Q = 0, the excitation consists of only white noise and as noted 
already the linearization methods such as the gaussian closure technique are not suited to 
handle this case. Also, the type of steady state response assumed in equation (2), namely, 
that a periodic mean plus a stationary random component can also be questioned. In view 
of this, it is of interest to investigate whether the stochastic averaging technique can avoid 
these limitations. For this purpose, equation (1) is re-written as 

2 + 1*x = -ix + ~$1 - 4x2) + Q cos It + H’(t) (4) 

where i = 1 - 1* is a detuning parameter. The solution of this equation is taken in the form 

x(t) = A cos(l,t + $) 

i(t) = -Al sin (At + $). (5) 

Here A and $ are slowly varying random processes. A pair of simplified equations for A and 
II/ can now be obtained based on the method of stochastic averaging [ll]. This leads to 

k = 0.5&A(l - A*) + 0.5(Q/J.)sin$ + (0.5D/A) + JD W,(t) 

$ = 0.5&j.) - 0.5[Q/(An)] cos rl/ + (JDI.4) W2(t). (6 7) 

Here W,(t) and W2(t) are independent gaussian white noise processes with unit strength. 
From the above equations, it can be observed that the equation governing the amplitude 
process is coupled to that of the phase process. Thus in order to obtain an approximate 
solution of equation (l), one has to solve the two-dimensional Fokker-Planck- 
Kolmogorov (FPK) equation governing the joint probability density function (pdf) of A 
and II/. This, in general, is not possible and hence further approximations would be necessary. 
It may be mentioned here that tfie above pair of equations for A and $ has earlier been 
studied by Stratonovich [2]. For this purpose, he has adopted different procedures based 
on physical arguments. In one case he has linearized A and JI around their respective 
deterministic values and computed the autocorrection of the response process. In another 
approximation he has considered equation (7) and replaced the terms containing A by the 
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corresponding deterministic values. In the present case this would amount to setting A = 1 
in equation (7) which leads to 

$ = OS&A) - O.S(Q/A)cos t// + ,/D W2(t). (8) 

Thus the equation of I,+ gets uncoupled from that of A which in turn enables the determina- 
tion of the stationary pdf of +. In the present investigation, however, an alternative 
approach is adopted. Here an approximate solution of equations (6) and (7) is obtained 
based on the equivalent non-linearization technique. This method consists of optimally 
replacing the given non-linear stochastic equation by an equivalent non-linear system so 
that the resulting equation can be solved exactly [12]. In order to apply this technique it is 
advantageous to first carry out the stochastic averaging of equation (4) in Cartesian 
co-ordinates. For this purpose, the solution is taken in the form 

x(t) = Z1 cos At + Z2 sin It 

i(t) = -2,AsinIt + Z,AcosAt. (9) 

Here Z1 and Z2 are slowly varying random processes. In the transformed co-ordinates 
(Z,, Z,), equation (4) now reads 

i, = -(sin&/A){-Zi(Z,cosAt + Z2sinIt) + .$-ZIAsinAt + Z,AcosIt) 

x [ 1 - 4(Z1 cos AC + Z1 sin At)*] + Q cos At + W(t)] 

i, = (cosAt/~){-ii(Z,cosAt + Z2sinAt) + e(-ZZIZ.sinAt + Z2AcosIt) 

x [l - 4(Z1 coslt + Z2 sin&)‘] + Qcos At + W(t)}. (10) 

This pair of stochastic equations can be simplified using the stochastic averaging method. 
This leads to 

i I = PIPI, Zz) + x/h w,(t) 

& = P2W13Z2) + $b W2@) 

PI = OS&(1 - z: - Z$)Z, + (o.s~z,/n) 

P2 = 0.5&(1 - z: - 292, + (0.5aZJI) + (0.5 Q/A). (11) 

Here WI and W2 are independent white noise processes with unit strength and D1 = (D/A2). 
The FPK equation governing the joint pdf of Z1 and Z2 is given by 

ap aG1 aG2 --- 
dt=-az, az2 

G 1 = P1(Z1, Z,) - 0.5D1 g 
1 

G2 = P2(Z1, Z,) - 0.5D1 g. 
2 

(12) 

Here, G1 and G2 are the so-called probability currents. For an FPK equation of the above 
form, the stationary state probability currents, in general, are not constants. However, for 
certain conditions on PI and P2 called the potential conditions [13], the steady state G1 and 
G2 are identically equal to zero. These conditions require that PI and P2 are obtained as 
gradients of a potential U, that is, 

PI+& P2=-$$ 
1 2 

(13) 

The necessary and sufficient condition for the existence of U is the potential condition 

apl ap2 o 
---=. 

az2 azl (14) 
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For the present problem one finds 

(15) 

At this stage, one has to consider two cases. 

Case (i) i = 0 
This is the special case in which the harmonic forcing frequency is equal to the frequency 

of limit cycle oscillation. For this case the condition of equation (14) is satisfied and 
accordingly equation (12) admits the following exact stationary solution 

~(Z1,z2) = N1expE(O.25&/~1){2(Z: + Zl - 6% + Z>‘> + ~~Z2/~~~~)~1. (16) 

Here N1 is the normalization constant, Thus A = 0 represents the special case in which 
solution of equation (1) can be obtained within the framework of the stochastic averaging 
method. It may be noted that the above solution has earlier been obtained by Stratonovich 
[2] using a similar procedure. 

Case (ii) B * 0 
For this case the condition of equation (14) is not satisfied and thus the exact stationary 

joint pdf of Zi and Z2 is no longer obtainable. Thus any further attempt to analyse equation 
(12) would require additional approximations. Here the method of equivalent non- 
linea~tion is employed. In this method, equation (11) is replaced by 

. 
ZI = O.S&Zi(l - z: - Zf, + ki f ,/Di WI(r) 
. 

22 = OS&Z2(1 - z: - Ztt + (O.SQ/n) - kz + .,,fD, W;(t). (17) 

Based on the minimum mean square error criterion the equivalent parameters kl and k2 are 
found to be 

k 1 = OSii(Z,)/R 

k 2 = O.S;i(Z, >/A. (18) 

The new set of equations (17) satisfy the condition of equation (14) and hence the stationary 
pdf is given by 

p(Z,, Z,) = N2exp [(0.25e/D1){2(Z: + Zi) - (24 + Zf)‘) 

+ {Qz2/(~D~~~ + (2/D~~(k~z~ - GM1 (19) 

where N2 is the normalization constant. The equivalent parameters kt and k2 have to be 
determined by solving a pair of non-linear equations obtained by combining equations (18) 
and (19). It can be noted that in equation (19) if& is set to zero, one gets back equation (16) 
and if both i and Q are set to zero, the pdf is identical to the first order stochastic averaging 
solution for the case when only noise acts on the system [S]. It also follows from equations 
(5), (9) and (19) that 

p(x, z?, t) = AN2 exp {(0.25s/D,)[2(x2 + g2/A2) - (x2 + n2/J2)‘] 

+ [Q/(ADt )] [X sin Rt + (_-i/A) cos At] 

+ (2kt/Di) [x cos It - (&‘A) sin At] 

- (2k2/&) [X sin At -t- (A/A) cos At]) 

~$4, $) = N,Aexp [(0.25s/D1)(2A2 - A4) - [QA sin @/‘(AD,)] 

+ A(2/DI)(kl cos I/I - k2 sin $)I. (20, 21) 
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Thus it may be observed that although ZI and Z2 reach stationarity, the response process 
x(t) is still non-stationary. Further, it can also be noted that in this approximation the 
process [x(t) - (x)] is non-stationary. 

3. NUMERICAL RESULTS AND DISCUSSION 

Numerical results are obtained based on the stochastic averaging solution given by 
equation (16), the combined averaging and non-linearization solution of equation (19) and 
the gaussian closure solution given by equation (3). The results are presented for different 
values of the detuning parameter A = (1 - A’)/(sJ), noise parameter N = 16(D/e) and 
harmonic excitation level H = Q*/(sJ)*. As noted earlier the solution of equation (1) within 
the framework of the method of stochastic averaging is obtainable only for the special case 
of A = 0. This solution is compared with the corresponding gaussian closure approximation 
in Figs 1 and 2. For A $= 0, the solution based on the combined averaging and non-line- 
arization is compared in Fig. 3 with the closure solution. Figure 3a also shows the mean 
response for the case of N = 0, which corresponds to the response when no noise acts on the 
system. The mean and the variance of x(t) as per equation (9) is given by 

(x} = (2, ) cos At + (2, ) sin At 

a:(t) = [<Zf) - (Z,)2‘J~~~2& f [(Z$> - (Z2)*]sin21t 

-I- [(Z,Z,> - <Z,)<Z~)Jsin2Rt. (22) 

Thus, in the averaging and the combined averaging and non-linearization approximations 
mean response is periodic with amplitude R2 = <Z, )’ f (Z$ > and the response variance is 
time varying. It must be noted that the response variance shown in Figs l-3 are the 
temporal average over (0,244 of the variance given in equation (22). From the numerical 
results presented it can be observed that both the closure and averaging solutions show 
qu~itatively identical behaviour. The addition of noise for a given levei of harmonic 
excitation is seen to reduce the mean response amplitude and increase the variance. At 
resonance the periodic term controls the response leading to higher mean amplitudes and 
lower variance levels. However, as the external frequency is changed the noise effects 
become more important as the mean reduces and the variance increases. The scope of these 
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approximations has further been examined through numerical simulations. For this pur- 
pose, the time variable in equation (1) is transformed to r = t/(2x) to get 

x” - ZKEX’( 1 - 4x”) + 479x = 4n*Q cos 2nlr + W(t) 

(W(ri) W(r2)) = 16n3D6(r2 - ~2). (23) 

This equation is solved by a fourth order Runge-Kutta algorithm for 100 samples of 
digitally simulated white noise process. The time histories of ensemble average and variance 
for a length of 50 cycles are obtained. The amplitude of the mean in the last cycle is shown in 
Fig. 3(a). The mean of the ensemble variance in the last two cycles is taken as the estimate of 
the stationary variance. This variance is presented in Fig. 3(b). It may be observed that 
qualitatively the theoretical predictions and the simulations compare very well. The closure 
approximation is found to underestimate the response, while the estimation of the mean 
response is fairly accurate. On the other hand the solution based on combined averaging 
and non-linearization shows a better comparison with the simulated results. 

4. SUMMARY AND CONCLUSIONS 

The behaviour of Van der Pol’s oscillator under periodic excitation is well known. The 
effect of adding noise onto the excitation has been studied in this paper. For this purpose, 
a combination of methods of stochastic averaging and equivalent non-linearization has 
been employed. It may be noted that the FPK equation corresponding to equation (1) has 
time varying drift coefficients due to the presence of a periodic term in the excitation. Thus 
a stationary solution for this equation does not exist. Hence the method of equivalent 
non-linearization as developed by Caughey [ 1 l] which depends on the existence of exact 
stationary solutions of FPK equations is not directly applicable in analysing equation (1). 
On the other hand, equation (1) can be readily handled using the stochastic averaging 
technique. In many random vibration problems the method leads to a one-dimensional 
approximation to the response amplitude and significantly simplifies the solution proced- 
ure. In the present problem, however, the simplified equation for response amplitude is 
coupled with the equation for the phase and a solution for the joint pdf of amplitude and 
phase is not possible in general. Thus one would see that within the individual frameworks 
of methods of stochastic averaging and equivalent non-linearization it is not possible to 
obtain an approximate solution of equation (1). On the other hand, by combining these two 
techniques one can gain the advantages of both these methods. Thus in the present study 
the pair of simplified equations for response variables obtained using the stochastic 
averaging technique is further analysed using the method of equivalent non-linearization. 
This leads to a non-gaussian estimate for the joint pdf of x and 1. In contrast with the 
linearization solution this approximation is valid even in the limit of Q + 0. The response 
moments obtained using this method are observed to show better comparison with the 
simulation results than the gaussian closure solution and point towards the usefulness of 
this approach. 
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