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Abstract

The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement
data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is
proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads
whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF)
matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ , that simultaneously
parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the
FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of
the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem
and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based
on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance
of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem
of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of structural system identification lies at
the heart of condition assessment of existing structures and
in developing structural health monitoring strategies. This
class of problems constitutes inverse problems, in which
properties of the structure need to be estimated based on
noisy data for then applied forces and a limited set of
response measurements. These problems are closely associated
with problems of finite element (FE) model updating [9,23]
and structural damage detection using response data [5].
These problems have received wide attention in the broader
context of engineering dynamical systems [8,26,20]. One
of the important mathematical tools that form the basis of
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the development of structural system identification methods
is the Kalman filter [19,18,3,13]. The Kalman filter and
its variants have been widely used in the development of
structural system identification strategies for both linear and
nonlinear dynamical systems [35,15,17,10,32]. The Kalman
filter provides the exact solution to the problem of state
estimation when process and measurement equations are
linear and noises are additive and Gaussian. When these
conditions are not met, one can develop suboptimal strategies
based on linearization or transformation methods [3,27], or,
alternatively, employ Monte Carlo simulation strategies to
solve the problem [7]. The application of the latter class
of approaches to structural engineering problems has been
recently attempted by a few authors. Thus, Ching et al. [4],
have applied a stochastic simulation based filtering technique,
namely, the sequential importance sampling based method as
developed by Doucet et al. [6], and an extended Kalman filter
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(EKF) for identifying parameters of three different classes of
dynamical systems. Manohar and Roy [21] have applied three
simulation-based filtering strategies to the problem of system
parameter identification in two typical nonlinear oscillators,
namely, the Duffing Coulomb oscillators. The filters that these
authors have investigated included: the density based Monte
Carlo filter as developed by Tanizaki [33], the Bayesian
bootstrap algorithm due to Gordon et al. [12] and the sequential
importance sampling based method as developed by Doucet
et al. [6]. The application of the Rao–Blackwell theorem in
conjunction with a time domain substructuring scheme to
identify localized nonlinearities has been investigated by Sajeeb
et al. [28]. Namdeo and Manohar [22] have developed a bank of
self-learning particle filters for the identification of parameters
of nonlinear systems. The recent work by Ghosh et al. [11]
outlines a particle filtering procedure to deal with nonlinear
measurement models and (or) additive /multiplicative non-
Gaussian noises.

Problems of system identification when structural response
to only static data is available have been considered by several
authors. We cite here a few representative studies. Hoshiya
and Sutoh [16] consider problems of system identification
in the context of geotechnical engineering problems and
combine the finite element method with a Kalman filter-
weighted local iteration procedure. Banan etal [1,2] consider
the problem of estimating elastic constants of a structural
model based on measured displacements under known static
loads. These authors minimize an index of discrepancy between
experimental analytical model predictions on nodal forces or
displacements at measured sites. Sanayei and Saletnik [29]
discuss the relative advantages of using strain measurements
over measuring displacements, in the context of system
identification using static test data. These authors have
developed a method that optimizes a quadratic performance
error formed using difference between the analytical and
measured strains. In a subsequent paper these authors [30] have
discussed the accuracy of the system identification vis-à-vis
the presence of noise in measurements and in the selection of
measurement locations. The performance of three alternative
identification schemes based on the measurement of strains
and displacements has been investigated by Sanayei et al. [31].
This study is based on experiments conducted on a steel frame
and demonstrates the successful updating of parameters of
the computational model. Yeo et al. [34] illustrate the use
of regularization methods in context of damage detection in
structures using static test data. Hjelstad and Shin [14] discuss
a parameter grouping scheme that enables the identification
of the location of structural damage. Paola and Bilello [25]
note that a variation in the bending stiffness of a linear elastic
beam can be modeled as a superimposed curvature depending
on the variation of the flexural rigidity and the applied
bending moment. An integral equation based formulation is
subsequently proposed for damage detection in such beams.
Nejad et al. [24] employ a nonlinear optimization scheme to
detect changes in the elastic properties of structures based
on static test data. The objective function here is defined in
terms of load vectors of damaged and undamaged structures.
These authors also propose schemes for the selection of the
measurement and driving points that enhance the performance
of the damage detection algorithm.

In a condition assessment study of existing engineering
structures, it is typically possible to measure the structural
response to both statically or dynamically applied loads. Thus,
for instance, in the context of the condition assessment of
railway bridges, it is possible to measure the structural response
when a wagon formation with a known weight distribution can
be made to roll across the bridge in a quasi-static manner:
this leads to the measurement of influence lines for response
quantities such as the strains and displacements at various
points on the bridge. Similarly, by parking a wagon on the
bridge at a set of specific positions, and, by varying the payload
of the wagon, it is possible to measure the response as a
function of incrementally varied static load. By allowing a
relatively light vehicle to run on the bridge at various velocities
the dynamic response of the bridge could be measured.
Alternatively, the frequency response functions (FRFs) of the
bridge structure can be measured by using modal shakers
or an automated sledge hammer. The collection of vibration
signatures when operating trains pass the bridge provides data
on dynamics of the bridge–train interacting system. The free
vibration decay that follows the exit of the trains provides
useful data for the estimation of the modal characteristics of
the bridge. These data would invariably be spatially incomplete
and corrupted by measurement noise. One of the challenges that
have to be faced in the problem of the condition assessment of
existing bridges, in this context, lies in the ability to handle and
assimilate a large amount of noisy measurements in the problem
of the identification of system parameters. Specifically, it needs
to be appreciated that a part of the data originates from static
structural behavior, in which case, the governing equilibrium
equations are algebraic in nature; and, conversely, the data
from vibration behavior are associated with a set of differential
equations in time. The motivation for the present study lies in
these considerations and we propose a strategy to assimilate
data from diverse testing procedures in a unified manner within
the framework of dynamic state estimation procedures. To
achieve this, we introduce an artificial independent variable
related to the problem on hand and ‘sequence’ the estimation
procedure into a recursive format. The process equations
consists of statements that the structural parameters are
invariant with respect to the independent variable and the
measurement equations are formulated based on the governing
equations of equilibrium. A Neumann’s expansion of the
structural dynamic/static stiffness matrices is further carried
out to linearize the measurement equations with respect to
the structural parameters of interest. Furthermore, the benefits
of adopting a global iteration strategy are also demonstrated.
Illustrative examples on the identification of the properties
of an inhomogeneous beam (involving 32 system parameters)
and the identification of the axial stiffness of elements in a
truss structure (involving 25 system parameters) using noisy
synthetic data are presented and the methods are shown to
perform satisfactorily.
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2. Measurement models based on finite element analysis

We illustrate the strategy adopted in this study via typical
examples as shown in Fig. 1.

Fig. 1a and b respectively show an inhomogeneous beam
subjected to the action of a set of slowly moving loads and a set
of static loads whose magnitude can be varied incrementally.
The slowly moving loads can be interpreted as constant static
loads whose point of application is varied incrementally so that
they do not induce any dynamic action in the structure. Fig. 1c
illustrates the scheme for the measurement of elements of the
FRF matrix. Similar problems for the case of a truss structure
are shown in Fig. 1d and e. These structures are taken to behave
linearly under the action of the applied loads. We consider the
finite element (FE) model for a linear structure with a N × N
reduced global stiffness matrix K ,mass matrix M and damping
matrix C . Let θ be the d × 1 vector of system parameters that
we are interested in determining. The elements of θ are taken
to collectively contain parameters related to the mass, damping
and stiffness properties of the structure. If the FE model is made
up of Ne elements, the structural matrices can be written as

K =
Ne∑

e=1

Āt
e Ke Āe; M =

Ne∑
e=1

Āt
e Me Āe;

C =
Ne∑

e=1

Āt
eCe Āe

(1)

where the subscript e denotes the structural matrices for the
eth element in the global coordinate system, the superscript t
denotes the matrix transpose, Āe denotes the N × ne nodal
connectivity matrix for the eth element that relates ue, the ne×1
nodal displacement vector of the eth element, with the N × 1
global displacement vector u through the relation ue = Āeu.
We assume that it is possible to measure the strain response and
(or) the displacement response of the structure at a set of points.
The problem in hand consists of estimating elements of θ based
on these measurements. The study allows for the measurements
being noisy and for the underlying mathematical models being
inaccurate. We outline the proposed strategy for structural
system identification by considering the case of measurements
under slowly moving loads, incrementally varied static loads,
and FRF measurements separately and also consider the case
when all these data are available simultaneously.

2.1. Measurement model for structure under moving loads

The equation of equilibrium can be written in terms of the
structural flexibility matrix S = K−1 as u = SF where F
is the vector of equivalent nodal forces. If we now consider
the structure to be acted upon by a static force P whose
point of application is varied incrementally (see Fig. 1a), the
equilibrium equation can be written as

u(a) = S(θ)F(a)+ ξ̃ (a). (2)

Here ξ̃ (a) denotes a random process evolving in a that repre-
sents the effect of unmodeled aspects of structural mechanical
behavior. The source of this term, for instance, could be origi-
nating from idealizations made in the form of constitutive laws
(e.g., assumption of isotropy, homogeneity, and linearity), pos-
tulated displacement fields (e.g., Euler–Bernoulli’s beam hy-
pothesis) or in modeling of joint flexibility and boundary con-
ditions. If we measure only a q × 1 subset of u(a), the model
for the measurement could be written as

y j (a, θ) =
N∑

i=1

S j i (θ)Fi (a)+ ξ̃ j (a)+ ξ̄ j (a);

j = 1, . . . , q. (3)

Here ξ̄ (a) is a q × 1 vector random process evolving in the
parameter a that models the measurement noise associated with
the measurement of

{
y j (a, θ)

}q
j=1. The range of values taken

by a is given by 0 to L = L B + LV (see Fig. 1a).
In addition to displacements, if a set of strain components,

denoted by {εi }
s
i=1 are also measured, a model for these

measurements can also be obtained in terms of the system
flexibility matrix. For the purpose of illustration we consider
the truss structure shown in Fig. 1b and consider the eth
element as in Fig. 2. Let εe denote the axial strain in this
element measured in the element local coordinate system. The
element stiffness matrix in the global coordinate system, Ke, is
related to the matrix in the local coordinate system through the
transformation matrix Te via the relation Ke = T t

e K (l)
e Te where

K (l)
e =

Ae Ee

Le

[
1 −1
−1 1

]
and Te =

[
cosφ sinφ 0 0

0 0 cosφ sinφ

]
. (4)

The element displacement vector in global coordinates given
by u(g)e is related to the global displacement vector u through
the relation u(g)e = Āeu. The element displacement vector in
local coordinates is thus given by u(l)e = Teu(g)e = Te Āeu.
Furthermore, the axial strain is related to the vector u(l)e through

the relation εe =

[
−1
L

1
L

] {
u(l)e

}
. Thus the measurement

equation for the strain here can be written as

εe(a, θ) = BeTe Āeu + µ̃(a). (5)

Here µ̃(a) is a random process that models the measurement
noise associated with the strain measurement and Be =[
−1
L

1
L

]
. By combining Eq. (2) with Eq. (5) we can write

εe(a, θ) = BeTe Āe

{
S(θ)F(a)+ ξ̃ (a)

}
+ µ̃e(a). (6)

This form of equation can be could be derived for any given
strain component in a given structure. We rewrite Eqs. (3) and
(6) as

y j (a, θ) =
N∑

i=1

S j i (θ)Fi (a)+ ξ j (a); j = 1, 2, . . . , q

εe (a, θ) = BeTe Āe S (θ) F(a)+ µe(a); e = 1, 2, . . . , s (7)
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Fig. 1. Example structures considered in the study; (a) beam subjected to quasi-static moving loads; (b) beam subjected to incrementally varied static loads; (c)
beam subjected to harmonic excitation; (d) truss structure under study; (e) loading configuration for incrementally varied static load; all dimensions in m.
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Fig. 2. Axially deforming truss element.

where ξ j (a) = ξ̃ j (a) + ξ̄ j (a) and µe(a) = BeTe Āe ξ̃ (a) +
µ̃e(a).

2.2. Measurement model for structure under incrementally
varied static load

The above formulation has been presented for the case of
structure subjected to a static load whose point of application is
incrementally varied. Similar measurement equations can also
be obtained if the points of application of the loads are held
fixed and their magnitude varied in increments; see Fig. 1b and
e. If α is the parameter that characterizes the load increments,
the measurement equations here would be identical to Eq. (7)
except that the parameter a is replaced by α and, accordingly,
we get the equations

z j (α, θ) =

N∑
i=1

S j i (θ)Fi (α)+ ς j (α); j = 1, 2, . . . , q

γe (α, θ) = BeTe Āe S (θ) F(α)+ ρe(α); e = 1, 2, . . . , r (8)

where z and γ represent, respectively, the displacement and
strain components.

2.3. Measurement model for FRFs

The equation of dynamic equilibrium in the steady state,
expressed in the frequency domain, is given by

U (ω, θ) = Ξ (ω, θ) F(ω)+ ϑ̃(ω) (9)

where Ξ (ω, θ) =
[
−ω2 M + iωC + K

]−1
is the structural

receptance matrix and ϑ̃ (ω) is a N × 1 complex valued vector
random process evolving in parameter ω which represents the
effect of mathematical inaccuracies in the formulation of the
above model. By writing U = U R

+ iU I and separating the
real and imaginary parts, we can rewrite the above equations as{

U R(ω)

U I (ω)

}
=

[
K − ω2 M −ωC
ωC K − ω2 M

]−1 {
F R(ω)

F I (ω)

}
+

{
ϑ̃ R(ω)

ϑ̃ I (ω)

}
. (10)
This equation is further written in the form

U R (ω, θ)

= Ξ R (ω, θ) F R (ω)− Ξ I (ω, θ) F I (ω)+ ϑ̃ R (ω)

U I (ω, θ)

= Ξ R (ω, θ) F I (ω)+ Ξ I (ω, θ) F R (ω)+ ϑ̃ I (ω) . (11)

Here the superscripts R and I denote, respectively, the real and
imaginary parts. As before, if we now assume that we measure
only a q × 1 subset of displacement dofs, the above equation
can be recast as

V R
i (ω, θ) =

N∑
l=1

[
Ξ R

l (ω, θ) F R
l (ω)− Ξ I

l (ω, θ) F I
l (ω)

]
+ ϑ̃ R

i (ω)+ ϕ
R
i (ω)

V I
i (ω, θ) =

N∑
l=1

[
Ξ R

l (ω, θ) F I
l (ω)+ Ξ I

l (ω, θ) F R
l (ω)

]
+ ϑ̃ I

i (ω)+ ϕ
I
i (ω) ; i = 1, 2, . . . q. (12)

Here ϕR
i (ω) and ϕ I

i (ω) are random processes that account
for noise in measuring V R

i (ω) and V I
i (ω) respectively. In

the further work we write ϑ R
i (ω) = ϑ̃ R

i (ω) + φR
i (ω) and

ϑ I
i (ω) = ϑ̃

I
i (ω) + φ

I
i (ω). In formulating the above equations,

it is assumed that we are measuring the displacement response.
However if quantities such as mobility or accelerance are
measured, the function Ξ (ω) can be replaced by jωΞ (ω)

or −ω2Ξ (ω) respectively, and the model for measurement
would be similar to that provided in Eq. (12). Following the
steps outlined in Section 2.1 it is also possible to derive the
expressions for real and imaginary parts of FRFs associated
with the strain measurements and these can be shown to be
given by

χ R
e (ω, θ)

= BeTe Āe

[
Ξ R (ω, θ) F R (ω)− Ξ I (ω, θ) F I (ω)

]
+ λR

e (ω); e = 1, 2, . . . , r

χ I
e (ω, θ)

= BeTe Āe

[
Ξ R (ω, θ) F I (ω)+ Ξ I (ω, θ) F R (ω)

]
+ λI

e (ω); e = 1, 2, . . . , r. (13)

Here λR
e (ω) and λI

e (ω) are two random processes which
represent the combined effect of measurement noise and
modeling errors: see Eq. (7).

3. Identification problem

The identification problem on hand consists of determining
the d × 1 vector θ of system parameters based on the
information contained in measurements as in Eqs. (7), (8), (12)
and (13). The objective of the present study is to develop a
strategy to enable the application of dynamic state estimation
methods to solve this problem. To achieve this, we first need
to address two issues: firstly, the definition of an independent
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variable, and, secondly, the formulation of a process equation.
When measurements are available from only one source of
experimentation, namely, testing under moving loads or testing
under incrementally varied static loads, the parameters a
or α could serve as the independent variable. Similarly, if
measurements are available only on FRFs, the parameter ω can
serve as the independent variable. In each of these situations the
process equation could be formulated by stating the fact that the
variables {θ}di=1 are independent of the relevant independent
variable. However, when results from more than one test are
available, it is not obvious which parameter would serve as the
independent variable. To address this difficulty we introduce
a dummy independent variable τ such that 0 ≤ τ ≤ 1 and
parameterize a, α and ω in terms of τ as

a =
τ

L
; α = (αmax − αmin) τ + αmin

and ω = (ωmin − ωmax) τ + ωmin (14)

so that, as τ is varied between 0 and 1, the parameters a, α, and
ω vary across their respective range of values of 0 to L , αmin
to αmax, and ωmin to ωmax. The process equation states now
the fact that θ is independent of τ and, accordingly, we get the
equations

dθi

dτ
= 0; i = 1, 2, . . . d; θi (0) = θi0. (15)

It may be noted that the process equation is free from noise
terms since, the statement that θ is independent of τ , does
not contain any modeling approximations. To develop the
identification procedure, we discretize τ using τk = k∆τ ; k =
0, 1, 2, . . . , nτ so that nτ∆τ = 1. This automatically implies
that the parameters a, α and ω are also discretized into nτ states
across their respective range of values. The process equation
and the measurement equations can now be written in the
discretized form respectively as follows:

θi,k+1 = θi,k; i = 1, 2, . . . , d; k = 1, 2, . . . nτ (16)

y j

(τk

L
, θk

)
=

N∑
i=1

Si j (θk)Fi

(τk

L

)
+ ξ j

(τk

L

)
;

j = 1, 2, . . . , q

εe

(τk

L
, θk

)
= BeTe Āe S (θk) F

(τk

L

)
+ µe

(τk

L

)
;

e = 1, 2, . . . , r

z j [(αmax − αmin) τk + αmin, θk]

=

N∑
i=1

Si j (θk)Fi ((αmax − αmin) τk + αmin)

+ ς j ((αmax − αmin) τk + αmin) ; j = 1, 2, . . . , q

γe [(αmax − αmin) τk + αmin, θk]

= BeTe Āe S (θk) F ((αmax − αmin) τk + αmin)

+ ρe ((αmax − αmin) τk + αmin) ; e = 1, 2, . . . , r

V R
i ((ωmax − ωmin)τk + ωmin, θk)

=

N∑
l=1

[
Ξ R

l ((ωmax − ωmin)τk + ωmin, θk) F R
l (ω)
−Ξ I
l ((ωmax − ωmin)τk + ωmin, θk)

× F I
l ((ωmax − ωmin)τk + ωmin)

]
+ϑ R

i ((ωmax − ωmin)τk + ωmin)

V I
i ((ωmax − ωmin)τk + ωmin, θk)

=

N∑
l=1

[
Ξ R

l ((ωmax − ωmin)τk + ωmin, θk) F I
l (ω)

+Ξ I
l ((ωmax − ωmin)τk + ωmin, θk)

× F R
l ((ωmax − ωmin)τk + ωmin)

]
+ϑ I

i ((ωmax − ωmin)τk + ωmin) i = 1, 2, . . . q

χ R
e ((ωmax − ωmin)τk + ωmin, θk)

= BeTe Āe[Ξ R ((ωmax − ωmin)τk + ωmin, θk)

× F R ((ωmax − ωmin)τk + ωmin)

−Ξ I ((ωmax − ωmin)τk + ωmin, θk)

× F I ((ωmax − ωmin)τk + ωmin)]

+ λR
e ((ωmax − ωmin)τk + ωmin); e = 1, 2, . . . , r

χ I
e ((ωmax − ωmin)τk + ωmin, θk)

= BeTe Ae[Ξ R ((ωmax − ωmin)τk + ωmin, θk)

× F I ((ωmax − ωmin)τk + ωmin)

+Ξ I ((ωmax − ωmin)τk + ωmin, θk)

× F R ((ωmax − ωmin)τk + ωmin)]

+ λI
e ((ωmax − ωmin)τk + ωmin); e = 1, 2, . . . , r. (17)

The above equations are in a form that is amenable for
solution via the dynamic state estimation methods with Eq.
(16) representing the set of process equations and Eq. (17) the
measurement equations. Each of the random vector quantities
ξ j,ς j , µe, ρe, ϑ

R
i , ϑ

I
i , λ

R
i and λI

i evolve in τk and are taken
to have zero mean and Gaussian distribution. For distinct
values of τk , these variables are taken to be independent;
however, for a given value of τk , these variables are, in
general, correlated and the associated covariance matrix
is taken to be known. Clearly, the process equations are
linear and noise free and the measurement equations are
nonlinear in the state variables {θi }

d
i=1. The problem in

hand consists of determining the posterior probability density
function p

(
θk |y1:k, ε1:k, z1:k, γ1:k, V R

1:k, V I
1:k, χ

R
1:k, χ

I
1:k

)
where

the subscript 1:k denotes the measurements ‘up to’ τ = τk .
As is well known, in problems of dynamic state estimation,
when process and measurement equations are linear in the state
variables, and, when the noises are additive and Gaussian, the
Kalman filter provides the exact solution. Clearly, in the present
context we do not have this advantage, and, therefore, we need
to resort to alternative strategies. One possibility is to employ
Monte Carlo simulation based filtering strategies, and, the other
is to linearize the measurement equations and apply the Kalman
filter in an iterative manner. We explore in this study the second
alternative.
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Ψ(θ) = Ψ0(θ0)+∆Ψ (∆θ)

Ψ0 =


Ne∑

s=1

Āt
eT t

e

(
Ke0 − ω

2 Me0

)
Te Āe −ω

Ne∑
s=1

Āt
eT t

e Ce0Te Āe

ω

Ne∑
s=1

Āt
eT t

e Ce0Te Āe

Ne∑
s=1

Āt
eT t

e

(
Ke0 − ω

2 Me0

)
Te Āe



∆Ψ =


Ne∑

s=1

Āt
eT t

e

(
∆Ke0 − ω

2∆Me0

)
Te Āe −ω

Ne∑
s=1

Āt
eT t

e ∆Ce0Te Āe

ω

Ne∑
s=1

Āt
eT t

e ∆Ce0Te Āe

Ne∑
s=1

Āt
eT t

e

(
∆Ke0 − ω

2∆Me0

)
Te Āe


Box I.
4. Solution by linearization, Kalman filtering and global
iterations

The nonlinearity in the measurement equation (17) arises
due to the nonlinear dependence of the flexibility matrix S (θ)
and FRF matrix Ξ (ω, θ) on θ . With a view to developing an
approximate strategy to solve the state estimation problem, we
linearize S (θ) and Ξ (ω, θ) around an initial guess θ0 on θ so
that the resulting problem becomes amenable for solution via
Kalman filtering. To achieve this, we note that S (θ) = K−1 (θ)

and Ξ (ω, θ) =
[
−ω2 M + iωC + K

]−1
with the structural

matrices M, K and C assembled as in Eq. (1). In Eq. (1) it has
been assumed that the matrices Te and Āe do not depend upon
the system parameter vector θ . With an initial guess θ = θ0, we
can write K (i)

e = K (l)
e0 +∆K (l)

e which leads to

K (θ) = K0(θ0)+∆K (∆θ)

K0 =

Ne∑
e=1

Āt
eT t

e K (l)
e0 Te Āe

∆K =
Ne∑

e=1

Āt
eT t

e ∆K (l)
e0 Te Āe. (18)

Now, using the Neumann expansion, we can write

S (θ) = K−1 (θ) = [K0 +∆K ]−1

≈ K−1
0 (θ0)− K−1

0 (θ0)∆K (∆θ) K−1
0 (θ0) . (19)

Similar expansion for the matrix (see Eq. (10))

Ψ (ω) =

[
K − ω2 M −ωC
ωC K − ω2 M

]
(20)

leads to[
Ξ R

−Ξ I

Ξ I Ξ R

]
= Ψ−1(ω, θ) = [Ψ0 +∆Ψ ]−1

≈ Ψ−1
0 (ω, θ0)−Ψ−1

0 (ω, θ0)∆Ψ (ω,∆θ)Ψ−1
0 (ω, θ0). (21)

For the values of Ψ(θ),Ψ0 and ∆Ψ , see Box I.
We further introduce the notations[

Ξ R
0 −Ξ I

0
Ξ I

0 Ξ R
0

]
= Ψ−1

0 (ω, θ0)
[
∆Ξ R

0 −∆Ξ I
0

∆Ξ I
0 ∆Ξ R

0

]
= −Ψ−1

0 (ω, θ0)∆Ψ (ω,∆θ)Ψ−1
0 (ω, θ0). (22)

It may be noted that ∆K and ∆Ψ in these equations depend
linearly on ∆θ . Consequently, S (θ) and Ξ (ω, θ), as given
by the above equations, become linear in ∆θ while remaining
nonlinear in θ0. With this assumption in place, the process
equations are given by

∆θi,k+1 = ∆θi,k; i = 1, 2, . . . , d; k = 0, 1, 2, . . . nτ (23)

and, similarly, the measurement equations are obtained for k =
1, 2, . . . , nτ as

ỹ jk = y j

(τk

L
, θk

)
−

N∑
i=1

K−1
0i j (θ0k)Fi

(τk

L

)
= −

N∑
i=1

K−1
0i j (θ0k)∆K 0i j (∆θ0k)K

−1
0i j (θ0k)Fi

(τk

L

)
+ ξ j

(τk

L

)
; j = 1, 2, . . . , q

ε̃ek = εe

(τk

L
, θk

)
− BeTe Āe K−1

0 (θk) F
(τk

L

)
= −BeTe Āe K−1

0 (θk)∆K (∆θk) K−1
0 (θk) F

(τk

L

)
+µe

(τk

L

)
; e = 1, 2, . . . , r

z̃ik = z j [(αmax − αmin) τk + αmin, θk]

−

N∑
i=1

K−1
0i j (θ0k)Fi ((αmax − αmin) τk + αmin)

= −

N∑
i=1

K−1
0i j (θ0k)∆K 0i j (∆θ0k)K

−1
0i j (θ0k)

× Fi ((αmax − αmin) τk + αmin)

+ ς j ((αmax − αmin) τk + αmin) ; j = 1, 2, . . . , q

γ̃ek = γe [(αmax − αmin) τk + αmin, θk]

− BeTe Āe K−1
0 (θk)

× F ((αmax − αmin) τk + αmin)

= −BeTe Āe K−1
0 (θk)∆K (∆θk) K−1

0 (θk)

× F ((αmax − αmin) τk + αmin)
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+ ρe ((αmax − αmin) τk + αmin) ; e = 1, 2, . . . , r

Ṽ R
i (τk) = V R

i ((ωmax − ωmin)τk + ωmin, θk)

−

N∑
l=1

[
Ξ R

0l ((ωmax − ωmin)τk + ωmin, θk)

× F R
l (ω)− Ξ I

0l ((ωmax − ωmin)τk + ωmin, θk)

× F I
l ((ωmax − ωmin)τk + ωmin)

]
=

N∑
l=1

[
∆Ξ R

l ((ωmax − ωmin)τk + ωmin, θk)

× F R
l (ω)−∆Ξ I

l ((ωmax − ωmin)τk + ωmin, θk)

× F I
l ((ωmax − ωmin)τk + ωmin)

]
+ϑ R

i ((ωmax − ωmin)τk + ωmin)

Ṽ I
i (τk) = V I

i ((ωmax − ωmin)τk + ωmin, θk)

−

N∑
l=1

[
Ξ R

0l ((ωmax − ωmin)τk + ωmin, θk)

× F R
l (ω)+ Ξ I

0l ((ωmax − ωmin)τk + ωmin, θk)

× F I
l ((ωmax − ωmin)τk + ωmin)

]
=

N∑
l=1

[
∆Ξ R

l ((ωmax − ωmin)τk + ωmin, θk)

× F R
l (ω)+∆Ξ I

l ((ωmax − ωmin)τk + ωmin, θk)

× F I
l ((ωmax − ωmin)τk + ωmin)

]
+ϑ I

i ((ωmax − ωmin)τk + ωmin) ; i = 1, 2, . . . q

χ̃ R
e ((ωmax − ωmin)τk + ωmin, θk)

− BeTe Āe[Ξ R
0 ((ωmax − ωmin)τk + ωmin, θk)

× F R ((ωmax − ωmin)τk + ωmin)

−Ξ I
0 ((ωmax − ωmin)τk + ωmin, θk)

× F I ((ωmax − ωmin)τk + ωmin)]

= BeTe Āe[∆Ξ R ((ωmax − ωmin)τk + ωmin, θk)

× F R ((ωmax − ωmin)τk + ωmin)

−∆Ξ I ((ωmax − ωmin)τk + ωmin, θk)

× F I ((ωmax − ωmin)τk + ωmin)]

+ λR
e ((ωmax − ωmin)τk); e = 1, 2, . . . , r (24)

χ̃ I
e ((ωmax − ωmin)τk + ωmin, θk)

− BeTe Āe[Ξ R
0 ((ωmax − ωmin)τk + ωmin, θk)

× F R ((ωmax − ωmin)τk + ωmin)

+Ξ I
0 ((ωmax − ωmin)τk + ωmin, θk)

× F I ((ωmax − ωmin)τk + ωmin)]

= BeTe Āe[∆Ξ R ((ωmax − ωmin)τk + ωmin, θk)

× F R ((ωmax − ωmin)τk + ωmin)

−∆Ξ I ((ωmax − ωmin)τk,+ωmin, θk)

× F I ((ωmax − ωmin)τk + ωmin)]

+ λI
e ((ωmax − ωmin)τk + ωmin); e = 1, 2, . . . , r.
Here ỹik, ε̃ik, z̃ik , γ̃ik , Ṽ R
ik , Ṽ I

ik, χ̃
R
ek, and χ̃ I

ek represent the so
called pseudo-measurements. In the above equations both the
process equations and the measurement equations have become
linear in the new state variables {∆θi }

d
i=1, and, consequently,

the state estimation problem is now amenable for solution via
the Kalman filter method. The above equations can be cast in
the canonical format as

∆θk+1 = I∆θk; k = 0, 1, 2, . . . , nτ
yk = Hk∆θk + υk; k = 1, 2, . . . , nτ . (25)

Here I is the d×d identity matrix and dimension of yk , Hk and
υk depend upon the details of measurements available. Apart
from the guess to be made on the initial state of the state vector
∆θ and its covariance at k = 0, the implementation of the
Kalman filter also requires a guess to be made on θ0. With
these initial guesses in place, the filter provides the estimate
of the expected value and covariance of ∆θ conditioned on
the measurements made. To enhance the performance of the
identification procedure, an additional step involving a global
iteration is also employed in the present study. Here, the guess
on θ0 is updated at the end of a given cycle of filtering and is
used as the starting guess for the next cycle of filtering. This
global iteration loop is repeated till a satisfactory convergence
on the expected value of ∆θ is obtained. We close this section
with the following remarks:

1. The above formulation has been presented for the case
in which the structural displacement and strain responses
to quasi-static moving loads, incrementally varied static
loads and dynamic loads have been measured. When one or
more of these measurements are not available the relevant
equation in the measurement equations can be eliminated.
The process equation would remain unchanged.

2. The formulation has been presented with the assumption
that the variables a, α and ω have been discretized into
equal number of divisions. It is often possible in practice
that this may not be true. This variation can be incorporated
into the proposed formulation by modifying the linearized
measurement models by inserting zeros in the relevant rows
of Hk matrix in Eq. (25). This aspect would be illustrated
later in this paper through an example.

5. Numerical results

For the purpose of illustration of the procedure formulated
in the previous section we consider two example structures as
shown in Fig. 1. Fig. 1a–c show a one-span beam structure with
span L B = 20 m and with ten sections of equal length and with
varying flexural rigidity. The support condition of the beam is
taken to lie between states of being completely fixed and hinged
and this is reflected by the inclusion of two rotary springs at the
two ends. The flexural rigidity of the beam sections {E Ii }

10
i=1,

the spring constants at the ends Kθ1 and Kθ2, and the mass per
unit length of the elements {mi }

10
i=1 are taken to be the unknown

system parameters to be identified. Furthermore, the structure
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damping matrix is constructed as

C =
Ne∑

e=1

pe Āt
e Me Āe. (26)

If pe is independent of e, then the above model implies a mass-
proportional damping matrix for the entire structure; if this is
not so, then, damping matrix would be non-proportional in na-
ture and the damping matrix is parameterized in terms of the
variables {pe}

Ne=10.
e=1 . Thus the vector θ here consists of 32 el-

ements given by θ =
{
{E Ii }

10
i=1 , {mi }

10
i=1 , {p}

10
i=1 , Kθ1, Kθ2

}
.

The beam is taken to be acted upon by quasi-static moving loads
(Fig. 1a) with Pi = 300 kN, i = 1, 2, . . . , 6, Lv = 8 mm,
l1 = 1 m, l2 = 1 m, l3 = 4 m, l4 = 1 m, and l5 = 1 m. Thus
the parameter a takes value from a = 0 to a = 28 m. For the
case of incrementally varied static loads (Fig. 1b), it is assumed
that Pi0=300 N, l1 = 1 m, l2 = 1 m, l3 = 4 m, l4 = 1 m,
and l5 = 1 m. Here we take α to vary from α = 1 to 4. For
the case of dynamic load (Fig. 1c) it is assumed that x1 = 2 m
and driving frequency is varied from 5.0 to 900.0 rad/s at 1500
equidistant points. In all the loading cases it is assumed that the
displacement response at xl = 2l m; l = 1, 2, . . . 9. are mea-
sured. Measurements on rotations at the support are also made
but are not used in the identification steps: instead, these data
are used at a later stage to check the performance of identifi-
cation process. Synthetic measurements on the beam response
to the three loading scenarios are generated by using FEM and
these responses are seeded by samples of noise processes to
represent measurement noise and modeling errors. The various
noise processes are taken to have zero mean and standard devi-
ations in the range of 1%–4% of maxima of respective response
quantities in the absence of noise. In the illustrative examples
the noise components are taken to be uncorrelated: it may how-
ever be noted that any information that might be available on
correlations could be very well incorporated into the analysis.

In the second example, the 25 member truss structure shown
in Fig. 1d and e is considered. Here Young’s moduli of the
25 members are taken to be the parameters to be identified.
The area of cross section of the members is taken to be
0.15600E−02 m2. The loading scenario is taken to consist
of two cases: in the first case, a load P = 10 kN traverses
the truss on its lower chord in a quasistatic manner, and, in
the second case, static loads, as shown in Fig. 1e, are varied
incrementally over range of P = 5–17 kN in 61 equal steps. In
the first loading case the variable a is discretized into 61 values
distributed equally over the truss span of 60 m. Measurements
are assumed to be made on axial strains of each of the truss
member and also on transverse displacement at a few points
on the lower chord, namely, L1, L2, L3, L4 and L5 (see
Fig. 1d). For the case of the incrementally varied static loads
the standard deviation of the noise processes in the member
strains are taken to be 6.34, 4.24, 1.83, 5.03, 2.85, 5.36, 0.19,
6.66, 1.31, 7.60, 0.54, 6.65, 1.28, 7.62, 0.27, 4.96, 2.72, 5.44,
1.89, 4.90, 4.49, 1.68, 0.47, 0.39, 1.40 µ strain. Similarly,
for the case of quasi-static moving loads these quantities are
taken to be 0.89, 0.59, 0.46, 0.63, 0.44, 0.65, 0.20, 0.76, 0.33,
0.85, 0.22, 0.75, 0.31, 0.86, 0.20, 0.62, 0.42, 0.67, 0.45, 0.69,
0.63, 0.27, 0.23, 0.19, 0.22. µ strain. The standard deviation
of the noise in displacement responses at L1, L2, L3, L4, and
L5 are taken to be respectively 1.0E−04× (0.4343, 0.6748,
0.7974, 0.6566, 0.4146) m for both the loading scenarios. All
the noise processes are assumed to be mutually uncorrelated.
The performance of the identification algorithm is examined
by using synthetically generated measurements on strains and
displacements by solving the underlying finite element model.
The reference values of the Young’s modulus for the members
are taken to be respectively given by E = 2.0E+11× [0.85,
0.90, 1.15, 1.10, 0.85, 0.90, 1.15, 1.10, 0.85, 0.90, 1.15, 1.10,
0.85, 0.90, 1.15, 1.10, 0.85, 0.90, 1.15, 1.10, 0.85, 0.85, 0.90,
1.15, 1.10] N/m2.

5.1. Studies on the beam structure

The identification problem is solved for the following cases:
case 1: the beam response to the action of moving loads
(Fig. 1a) is assumed to be available, case 2: the beam response
to the action of incrementally varied static loads (Fig. 1b) is
assumed to be available, case 3: the beam response to the action
of unit harmonic load (Fig. 1c) is assumed to be available,
case 4: the responses to action of moving loads (Fig. 1a) and
incrementally varied static load (Fig. 1b) are available, and
case 5: the responses to the action of moving loads (Fig. 1a),
incrementally varied static loads and under the action of unit
harmonic load are available.

Tables 1 and 2, respectively, show the expected value
and standard deviation of the system parameters after the
measurements have been assimilated. Table 3 summarizes
the estimates of the first six undamped natural frequencies
of the system from the known numerical model and from
the identified model. The system parameters here have been
parameterized in the form

E Ii = E I 0
i (1+ γ̃i ); i = 1, 2, . . . , 10

mi = m0
i (1+ α̃i ); i = 1, 2, . . . , 10

pi = p0
i (1+ β̃i ); i = 1, 2, . . . , 10

Kθ1 = K 0
θ1(1+ γ̃11)

Kθ2 = K 0
θ2(1+ γ̃12) (27)

and the results of the identification studies have been reported
in terms of the parameters α̃, β̃, and γ̃ . In the numerical
work it is assumed that E I 0

i = 1.0E+11 N m2, m0
i =

4625 kg/m, p0
= 1.3507E+003 N s/m/kg for all values of i

and K 0
θ1 = 4.0E+11 N m/rad, and K 0

θ2 = 4.0E+11 N m/rad.
The standard deviation of the noise in the nine displacement
terms are taken to be as follows: response under moving loads:
1.0E−5× (0.0191 0.0557 0.0928 0.1138 0.1293 0.1167 0.0944
0.0544 0.0193) m; response under incrementally varied static
loads: 1.0E−5× (0.0729 0.2167 0.3642 0.4711 0.5113 0.4656
0.3568 0.2101 0.0707) m, and, response under unit harmonic
load: 1.0E−10× (0.1347 0.2536 0.3040 0.3097 0.2748 0.2223
0.1427 0.0754 0.0232) m. Clearly, for cases 1, 2 and 4,
only the stiffness properties of the system could be identified
while, for cases 3 and 5, it is possible to identify the mass,
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Table 1
Studies on the beam structure shown in Fig. 1a–c; results on the expected values of the system parameters after the measurements have been assimilated

Element Reference values Case (1) Case (2) Case (3) Case (4) Case (5)
α β γ γ γ α β γ γ α β γ

1 1.0000 0.8000 0.9100 0.9008 0.9084 1.0416 0.7643 0.9021 0.9010 1.0416 0.7659 0.9021
2 0.9600 1.0000 0.9300 0.9285 0.9126 0.9465 1.0112 0.9258 0.9267 0.9463 1.0108 0.9257
3 0.9400 0.9500 0.9700 0.9709 0.9772 0.9415 0.9374 0.9678 0.9705 0.9417 0.9377 0.9678
4 0.9300 0.8800 1.0000 0.9990 1.0022 0.9293 0.8818 1.0026 1.0007 0.9287 0.8815 1.0026
5 1.0000 0.9600 1.0000 1.0017 0.9968 0.9855 0.9513 0.9996 1.0008 0.9856 0.9512 0.9995
6 0.9100 1.0000 0.9400 0.9348 0.9449 0.9184 1.0037 0.9357 0.9348 0.9182 1.0038 0.9356
7 0.8900 0.9200 1.0000 0.9994 0.9936 0.8686 0.9182 1.0018 1.0004 0.8681 0.9182 1.0017
8 1.0000 1.0000 0.9900 0.9861 1.0013 1.0134 0.9999 0.9911 0.9858 1.0132 0.9994 0.9910
9 0.9500 1.0000 0.9500 0.9514 0.9408 0.9382 1.0043 0.9474 0.9510 0.9385 1.0045 0.9473

10 1.0000 0.9000 0.9600 0.9591 0.9628 1.0221 0.8897 0.9592 0.9589 1.0207 0.8888 0.9592
kθ1 1.08 1.0748 1.0446 1.0715 1.0740 1.0717
kθ2 1.05 1.0499 1.0322 1.0475 1.0504 1.0472
Table 2
Studies on the beam structure shown in Fig. 1a–c; results on the standard deviation of the system parameters after the measurements have been assimilated

Element no. Case (1) Case (2) Case (3) Case (4) Case (5)
1.0e−3 1.0e−3 1.0e−3 1.0e−3 1.0e−4 1.0e−3 1.0e−3 1.0e−3 1e−4
γ γ α β γ γ α β γ

1 0.1948 0.2169 0.5869 0.2894 0.1338 0.1442 0.5867 0.2875 0.1313
2 0.2867 0.6086 0.1946 0.1069 0.0544 0.2527 0.1945 0.1065 0.0490
3 0.4180 0.9165 0.1486 0.0876 0.1072 0.3892 0.1485 0.0873 0.1068
4 0.3701 0.4570 0.1478 0.0923 0.1927 0.2713 0.1473 0.0921 0.1917
5 0.3821 0.4048 0.1633 0.1110 0.2510 0.2957 0.1632 0.1108 0.2483
6 0.3831 0.4046 0.1919 0.1351 0.2585 0.2954 0.1918 0.1348 0.2563
7 0.3708 0.4540 0.2357 0.1605 0.2119 0.2692 0.2355 0.1602 0.2106
8 0.4159 0.9156 0.3018 0.2050 0.1780 0.3869 0.3017 0.2046 0.1752
9 0.2887 0.6075 0.5028 0.3320 0.1168 0.2534 0.5027 0.3316 0.1141

10 0.1932 0.2140 1.8110 1.1626 0.1203 0.1421 1.8102 1.1613 0.1196
kθ1 0.4886 0.7940 0.2962 0.4053 0.2872
kθ2 0.4871 0.7927 0.3285 0.4035 0.3241
damping and stiffness properties. This needs to be borne
in mind while interpreting results given in Tables 1 and 2.
Fig. 3 shows the plots of percentage errors in determination
of system parameters. It is observed from this figure that the
identification procedure generally performs better for stiffness
parameters than for damping and mass parameters with the
poorest performance being for damping properties for elements
at the ends of the beam. The rotary springs at the two ends of
the beam are identified satisfactorily for all the cases. In any
case, the highest error in all the cases is found to be less than
5%. The measures of errors shown in Fig. 3 are expected to
depend upon the details of the noise processes, selection of
points of driving and measurements, and relative completeness
of measurements and further studies are required to clarify
these dependencies and, especially, the one with respect to
the placement of driving and sensing. The estimates of the
system natural frequencies (Table 3) from alternative cases of
identification show satisfactory match with the corresponding
reference values. To get an idea on how the estimated structure
predicts the structural responses that have not been included
in identification procedure, we have shown in Figs. 4–6 the
plots of estimated rotation at x = 20 m along with the
corresponding measurements from the reference structure. The
mutual agreement from the two sets of results is observed to be
Table 3
Natural frequencies of the beam structure shown in Fig. 1a

Mode Reference (rad/s) Case (3) (rad/s) Case (5) (rad/s)

1 251.28 250.67 251.30
2 697.23 695.98 697.28
3 1352.31 1351.12 1352.27
4 2265.78 2259.81 2265.90
5 3384.93 3381.47 3385.13
6 4717.16 4725.00 4717.40

satisfactory. Fig. 7 illustrates the evolution of expected value
and standard deviation of one the system parameters (mass
per unit length for element 1 for case 5) with respect to the
independent variable τ . The estimate of the expected value is
observed to approach the reference value as the assimilation of
the measurement data progresses.

5.2. Studies on the truss structure

In these studies axial strains and transverse displacements
at a few nodes are measured under the action of quasi-
static moving loads and incrementally varied static loads.
Consequently, the focus here is on estimating static stiffness
characteristics and, accordingly, the Young’s moduli of the 25
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Table 4
Studies on the truss structure shown in Fig. 1d and e; results on the expected values of the system parameters after the measurements have been assimilated

Element no. Reference value Case (1) Case (2) Case (3) Case (4)

10e11 N/m2 10e11 N/m2 10e11 N/m2 10e11 N/m2 10e11 N/m2

1 1.7 1.65570 1.655313 1.65683 1.66261
2 1.8 1.76116 1.764855 1.77453 1.77330
3 2.3 2.26559 2.280273 2.29481 2.28362
4 2.2 2.18756 2.178025 2.17170 2.19794
5 1.7 1.64235 1.617774 1.60353 1.65082
6 1.8 1.79566 1.786872 1.78474 1.81866
7 2.3 2.24714 2.226546 2.27677 2.22454
8 2.2 2.17005 2.184549 2.18969 2.19129
9 1.7 1.62487 1.601980 1.61286 1.63443

10 1.8 1.78256 1.776963 1.78035 1.78502
11 2.3 2.22153 2.240927 2.23553 2.24994
12 2.2 2.17579 2.170359 2.16925 2.18938
13 1.7 1.66630 1.573046 1.56950 1.62296
14 1.8 1.78746 1.782681 1.77947 1.80113
15 2.3 2.26181 2.239440 2.21516 2.23517
16 2.2 2.18222 2.185361 2.18689 2.19990
17 1.7 1.66998 1.687667 1.68909 1.70115
18 1.8 1.77862 1.766943 1.76393 1.77549
19 2.3 2.25698 2.249946 2.24678 2.27105
20 2.2 2.18227 2.185153 2.18634 2.19410
21 1.7 1.66661 1.658105 1.64643 1.67437
22 1.7 1.64540 1.668449 1.69380 1.68984
23 1.8 1.77789 1.809138 1.79956 1.80822
24 2.3 2.30184 2.315315 2.30793 2.31692
25 2.2 2.18033 2.154755 2.14808 2.17429
members are taken as system parameters to be identified. The
identification problem here is solved for the following cases:
case 1: the truss response to the action of a quasi-static moving
load applied on the lower chord of the truss (Fig. 1d) is assumed
to be available, case 2: the truss response to the action of
incrementally varied static loads (Fig. 1e) is assumed to be
available, case 3: the responses to action of the moving load
as in Case 1 and incrementally varied static load (Fig. 1e) are
available, and case 4: the responses to action of moving load
as in Case 1 and incrementally varied static load (Fig. 1e) are
available; the range of parameter a is discretized into 60 equally
spaced values while the range of α is discretized into 30 equally
spaced values.

Tables 4 and 5 summarize the results of the estimation of
the 25 system parameters. Fig. 8 shows the percentage errors
in the system parameters as a function of the element number.
The highest error is observed to be about 8% for the cases
when measurement data from quasistatic moving load test and
incrementally varied static load test are used separately in the
identification process (Cases 1 and 2). When the results from
the tests are pooled together, the error is observed to reduce
to about 6%. Fig. 9a and b show the estimates of some of
the response quantities, namely, displacement at U2 on the
top chord and the reaction at the right support, which have
been computed using the expected values of the identified
system parameters. These estimates have also been compared
with the corresponding measurements and are seen to display
satisfactory mutual agreement. These measured data, it may
be noted, have not been used in the system identification
procedure.
6. Discussion and conclusions

A systematic framework that employs Kalman filtering
and Neumann expansion for the structural static and (or)
dynamic stiffness matrices has been proposed to identify mass,
stiffness and damping parameters of linear structural systems.
Measurement data are taken to be available from multiple
static and (or) dynamic load tests. In static tests the point
of application of the load and (or) the magnitude of the
load are incrementally varied and measurements are made on
displacements and (or) strains at a set of points on the structure.
In dynamic tests the FRFs associated with these response
variables are taken to be measured. The proposed method has
been shown to perform satisfactorily in the two numerical
examples considered. Some of the features of the proposed
procedure are as follows:

1. The independent variable is artificial in nature which
helps to assimilate the measurements from more than one
testing episode in a pseudo-sequential manner. The specific
sequence in which the data can be arranged itself is not
unique but this does not pose any conceptual difficulty
in the implementation of the identification method. The
identification procedure here is implemented essentially in
an off-line manner.

2. The process equations are statements of fact that the system
parameters to be identified are independent of point of
application, magnitude and frequency of the applied loads.
Consequently, the process equations are taken to be free
from noise.
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Fig. 3. Percentage errors in the system parameters estimated; (a) element
flexural rigidity; (b) damping parameters; (c) mass parameter.

3. The measurement equations are derived based on the
mechanics of the problem and the effects of measurement
noise and modeling errors are subsumed into a set of noise
processes which are taken to be made up of a sequence
of zero mean, independent Gaussian random variables with
Fig. 4. Studies on the beam structure shown in Fig. 1a–c; rotation response at
x = 20 m under the action of quasi-static moving loads; the measured data here
has not been used in the identification process.

Fig. 5. Studies on the beam structure shown in Fig. 1a–c; load–displacement
curve for rotation at x = 20 m; the measured data here has not been used in the
identification process.

known covariance matrix. Furthermore, the noise processes
are taken to be additive in nature.

4. The measurement equations are essentially algebraic in
nature. This anyway is expected to be the case for statically
loaded structures. However, by also treating the frequency
as a parameterized independent variable, we obtain the
measurement model under dynamic loads also as a set of
algebraic equations.

5. In Kalman filter based approaches reported in the existing
literature, especially for the problems of state and system
identification for vibrating systems, the process equation
is derived from the mechanics of the problem with the
system parameters to be identified treated as auxiliary state
variables. Thus the problem of estimating states (related to
system response) and identification of system parameters
become mutually coupled. In the present study, however, the
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Fig. 6. Studies on the beam structure shown in Fig. 1a–c; Nyquist’s plot for the
FRF of rotation at x = 20 m; the measured data here has not been used in the
identification process.

Fig. 7. Studies on the beam structure shown in Fig. 1a; Case 5; evolution of
expected value and standard deviation of mass per unit length in element 2.

problem of the identification of system parameters is treated
independent of the problem of estimation of system states.

6. The identification procedure here directly leads to the
estimation of spatial model parameters. This is in contrast
to identification methods based on the experimental modal
analysis procedures [8] in which the eigenparameters of the
system are identified first by curve-fitting strategies and the
spatial models are deduced subsequently.

7. One of the problems in system identification is associated
with spatial incompleteness of measurements that lead
to a mismatch of sizes of experimental models and
computational models [9]. This problem is tackled
in the existing literature by using model reduction
or expansion techniques. Alternatively, the unmeasured
states are estimated within the framework of dynamic
state estimation methods. The present approach employs
Neumann’s expansion technique to approximately obtain
Fig. 8. Percentage errors in the system parameters estimated.

Fig. 9. Studies on the truss structure (Fig. 1d; Case 4); (a) displacement at
node U2 on the upper chord under the action of quasi-static moving load; (b)
Reaction at the right hand support under the action of incrementally varied static
load. Note that the measured data here have not been used in the identification
process.

the inverse of the structural static/dynamic stiffness matrix,
circumventing the need for these intermediate steps. This
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Table 5
Studies on the truss structure shown in Fig. 1d and e; results on the
standard deviation of the system parameters after the measurements have been
assimilated

Element no. Case (1) Case (2) Case (3) Case (4)

10e8 N/m2 10e8 N/m2 10e8 N/m2 10e8 N/m2

1 1.96660 2.88460 1.29000 1.53140
2 1.97260 2.84850 1.27390 1.51940
3 2.33550 3.13000 1.39980 1.61070
4 1.51290 2.18230 0.97600 1.13540
5 3.01950 4.09910 1.83320 2.07200
6 1.79720 2.57070 1.14960 1.33990
7 4.11630 8.70950 3.89510 3.93890
8 1.29630 1.75420 0.78440 0.92300
9 3.79450 5.62880 2.51730 2.83760

10 1.43610 1.87280 0.83750 0.98920
11 4.00620 5.65930 2.53090 2.73910
12 1.25900 1.72880 0.77320 0.90800
13 3.65090 5.33110 2.38420 2.71080
14 1.40290 1.84560 0.82540 0.97360
15 4.03580 8.48300 3.79370 3.84140
16 1.45620 2.11520 0.94600 1.10240
17 2.85230 3.88680 1.73820 1.97560
18 1.78560 2.54450 1.13800 1.33240
19 2.25410 3.05430 1.36590 1.58280
20 1.55650 2.26950 1.01490 1.20690
21 2.08510 3.01240 1.34710 1.60670
22 3.28670 5.29260 2.36700 2.53220
23 3.41620 7.01500 3.13720 3.17300
24 3.08760 6.28840 2.81230 2.85040
25 2.93040 4.79060 2.14240 2.28370

would mean that any refinement in the size of the underlying
FE model for the structure does not increase the size of
the state vector, thereby resulting in significant reduction in
computational effort. Here, the unmeasured states, if desired,
could be approximated in a subsequent stage following the
system identification step.

8. As has been noted already, the identification procedure here
is implemented in an off-line manner. This also permits
the implementation of an additional global iteration step
in which the initial assumptions on the characteristics of
the system parameter can be successively be refined. In the
numerical work it has been found that this global iteration
step leads to useful improvements to the values of the
parameter identified. In most of the calculations it was noted
that about 3–5 global iterations steps lead to convergent
results on the moments of the system parameters.

9. The present authors are currently working on addressing the
following research issues:
(a) If the linearization step employed in the proposed

study is not used, the resulting measurement model
becomes nonlinear in nature. The associated state
estimation problem can then be solved by using Monte
Carlo filtering methods [7]. The application of these
methods also would enable the treatment of structural
nonlinearities. It is to be noted that the question of
characterizing the extent of errors resulting from the
linearization step has not been addressed in the present
study: this requires further research.
(b) The identification procedure in this study has been
illustrated using synthetically generated structural
response data. The robustness of the proposed method
needs to be examined when the data originate from
laboratory/field measurements.

(c) The assumption of Gaussian white noise models for
measurement and modeling errors is one of the basic
assumptions in the theory of Kalman filtering. Non-
white noise models could be accommodated in the
formulation by treating such processes as outputs
of white noise driven dynamical systems. Also, the
mathematical developments in the area of dynamic state
estimation methods (encompassing the various particle
filtering methods) indeed permit non-Gaussian models
for these errors. However, arriving at parameters of these
noise models remains as one of the difficult questions
in the area of structural system identification. This is
particularly true for the case of characterization of un-
modeled dynamics where the epistemic uncertainties
need to be quantified.
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