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Abstract: The problem of determining the joint probability distribution of extreme values associated with a vector of stationary Gaussian
random processes is considered. A solution to this problem is developed by approximating the multivariate counting processes associat
with the number of level crossings as a multivariate Poisson random process. This, in turn, leads to approximations to the multivariate
probability distributions for the first passage times and extreme values over a given duration. It is shown that the multivariate extreme
value distribution has Gumbel marginal and the first passage time has exponential marginal. The acceptability of the solutions develope
is examined by performing simulation studies on bivariate Gaussian random processes. lllustrative examples include a discussion on tt
response analysis of a two span bridge subjected to spatially varying random earthquake support motions.
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Introduction Bergman 1985 In the context of reliability analysis of dynamical
systems, the determination of the probability distribution of ex-
The study of probability distribution of first passage times and treme values enables the treatment of a time-variant reliability
extreme values of random processes lies at the heart of the subjegtroblem as a problem in time-invariant reliability analy@iéad-
of random vibrations. These studies find extensive applications insen et al. 1986; Melchers 190 he underlying principle of this
the development of response spectrum based methods in earthapproach lies in the fact that the distribution of the extreme values
qguake engineering, gust factor approach in wind engineering, andof random processes over a specified duration of time is closely
in reliability analysis of random dynamical systems in general. In related to their mean level crossing rates. Outcrossing rates of
the context of Gaussian random processes, one of the commonlyector random processes have been studied in the context of prob-
used approaches to study first passage failures is based on thiems in load combination@Naess 198Pand in structural reliabil-
assumption that the number of times a specified level is crossedity (Veneziano et al. 1977; Ditlevsen 1984; Wen and Chen 1989;
can be modeled as a Poisson counting process. This leads to exHagen and Tvedt 1991; Hagen 1992he focus of many of these
ponential models for the first passage times and Gumbel modelsstudies has been in determining the probability of exceedance of
for the extremes over a specified duration. Results based on thigshe sum of the component processes, and the outcrossing event
assumption, and further refinements to this approach, are widelyhas been formulated as a scalar process outcrossing. The present
discussed in many standard random vibration textbooks: see, forpaper, however, addresses the problem of determining the joint
example, the books by Lifl1967); Nigam (1983; and Lutes and probability distribution function(PDPF of the extremes of the
Sarkani(1997). An alternative approach, that is applicable to ran- component processes. In this context, it is of interest to note that,
dom processes that possess Markov property, has also been den the mathematical literature, the problem of extreme value dis-
veloped. Here, one studies the backward Kolmogorov equationtributions has received wide research attention: see, for example,
governing the transition probability density function and the as- the books by Galambogl978; Castillo (1988; and Kotz and
sociated generalized Pontriagin-Vi6PV) equations governing  Nadarajah(2000. The focus of these studies has been on devel-
the moments of the first passage times: see the paper by Robertgping asymptotic forms of extreme value distributions for a se-
(1986 for a review of literature on this topic. Attempts to solve quence of scalar and vector random variables. In the latter case,
backward Kolmogorov equations and the GPV equations usingone often considers a sequence of random variables, such as
the finite-element method have also been repot8gencer and (X }¥ | and{Y}¥,, such thatX;s are identical and independently
distributed (i.i.d.), Y;s are i.i.d., andX; being correlated to;.
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distributions for a vector of Gaussian/non-Gaussian random pro-Johnson and Kot£1969 for these details and also for a list of
cesses, using a geometric approach based on directional extremeseferences to the original work. In the context of the present
In this paper, however, the development of multivariate extreme study, it is important to note that the parameters\,, and\; are,
value distributions is based on the use of multipoint random pro- as yet, unknowns to be determined. It can also be shown that the
cesses to model the level crossing statistics of the vector parentcovariance ofN;(«4,0,T) andNy(a,,0,T) is equal ton;. Based
process. Based on this, the joint distribution of first passage timeson this, we get the equation

is derived which, in turn, is further applied to derive the multi-

variate extreme value distributions. Specifically, it is shown that, 10 11 (Ny(a3,0,T))
if the level crossings of the vector random process are modeled as 01 1iny(= (Na(t2,0,T)) 2
a multivariate Poisson process, the vectors of extreme values turn 0 0 1f|Ag CoV[N;(a,0,T),Ny(ct,,0,T)]

out to be mutually dependent random variables with Gumbel mar-
ginals. The mutual dependency characteristics here are related t
the mutual cross correlations that exist among the components o
the parent vector Gaussian random process. The theoretical pre
dictions on multivariate distribution of first passage times and T
Ni(()ti,O,T) = J

ere(-) denotes the mathematical expectation operator. It is well
nown that the counting proceds(a;,0,T) is related to the par-
ent proces(t) through the relatiorfNigam 1983

extreme values for bivariate Gaussian random processes are com- 3[Xi(t) = i X (HULXi(1) ]dt 3)
pared with corresponding results from Monte Carlo simulations.
The illustrative examples include the study of an idealized model Here, U(.) is the Heaviside function. From EB), one gets

of a two-span bridge structure subjected to differential random 05 )
earthquake loads. (Ni(;,0,T)) = T/(2m) (N 5/No )™~ eXH = 0.507/Ng ] 4)

Where)\2i and )\Oi:spectral spectral moments given by

0

Problem Statement X, :J oIS (0)do, | =0,1,2 5)
Consider{xi(t)}!‘:l to be a vector of zero-mean, stationary, Gauss- -
ian random processes with a specified power spectral densityHere, Sj(w) is the auto-PSD function oX(t). Using a similar
(PSD matrix S(w) and covariance matriR(t). Associated with counting procedure, as defined in Eg), one can also derive
each ofX(t), we defineN;(«;,0,T) to be the number of times a CoMNLN,]
level «; is crossed in the interval O 8, T;(«;) to be the time b2
required forX;(t) to cross levelo; for the first time, andX, =(Ny(a1,0,T)Ny(0,0,T)) = (N3 (g, 0,T)){Ny(x5,0,T))
=maxy<<7X(t) to be the maximum oX;(t) in the time interval 0
to T. Clearly, for a giveni, Ni(;,0,T), Tt (ey), and X, are all
random variables. As is well-known, one class of acceptable ap-
proximations foﬁ\li(ai_,O,T),Tfi(ai),andei hypothesize that, for o "yt write the characteristic function df;(ay,0,T) and
a giveni, Ni(«;,0,T) is a Poisson random variabl&; (o) is an Ny(ct,,0,T) as

. . . 2\&2,Y,
exponential random variable, and, is a Gumbel random
variable (Lin 1967; Nigam 1983; Lut(—is and Sarkani 1997 D 15wy, 0,) = (eXHiwgNg +io,N,])
For the vector random proces§X(t)}c;, it is clear that - . :
N={Nj(a;,0, T}, Te={Tp () K ande:{Xm}ikﬂ are all vec- (@xflioy(Uy+ Ug) +iwg(Uz + Ug)D
tors of random variables. The problem on hand consists of deter- =(exdio;Ui]){exfiw Uzl exdi(o; + w)Us])
mining the joint PDFsPy (1), PTf(’E), and PXmG() for N, T;, and (6)
Xm respectively. We propose to develop these joint PDFs by gen-
eralizing the classical Poisson approximation used for modeling
level crossings of scalar Gaussian random processes.

where, CoY-] denotes the covariance function. The details of this
derivation have been provided in Appendix I.
To construct the bivariate PDF df(«;,0,T) andN,(a,,0,T),

For a Poisson random variabldj, with parameten,, it can be
shown thatexdioU;])=exd —-\;lexd\; exgfiow}] (Srinivasan and
Mehata 1978 Thus Eq.(6) can be written as

D 15(wg,0,) =exg— (N + N+ Ng) + Nq explimy) + N\, explio,)
+ g expli(w; + wy)}] (7)

Here, we hypothesize thél,(«;,0,T)}; constitutes a vector of  In the present study, we accept this condition as the definition of
multivariate Poisson random variables. To clarify this notion, we a bivariate Poisson process. The associated bivariate Poisson
begin by considering the case kf2. For this case, we define  probability mass function can be shovidohnson and Kotz 1969

Approximation for Number of Level Crossings

three mutually independent Poisson random variafalgs ; with to be given by
parameters\;, A,, and\3, respectively. Introducing the transfor- . _
 tons PL(N,=j) N (N,=1)]
Ni(a3,0,T) =U;+ Uz = 1/(47T2)f f D 5(wq, wp)exXfl— i (w1] + wal) Jdw,dw,
NZ(O(ZyO,T) = U2 + U3 (1) min(j’l) - . .
. . =exd~ (A + A2+ hg)] 2 ASTNDAG - - itit}
it can be shown thatl;(«,,0,t) andN,(«,,0,T) are Poisson ran- i-0

dom variables with parameter®;+\;) and (A,+\3), respec- )
tively. It may be noted that this construct for multivariate Poisson
random variables has been discussed in the existing literature; seé¢t is to be noted that, as one might expebt(c;,0,T) and
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N,(a,,0,T) here, have Poisson marginals. Fer0 andl=0, one the assumption that the multivariate Poisson distribution model is
gets valid. Thus the condition in Eq14) is always satisfied. This has
been illustrated further in the numerical examples to follow. Fur-

PN =0) N (N;=0)] = exrl~ (A + X2+ As)] ©) thermore, it must be emphasized in this conteF;(t that the assump-
The above result can easily be generalized for the kas2. The tion that the number of level crossings being Poisson distributed
number of mutually independent Poisson random variables can bes not always valid. Crame(1966 has shown that this assump-
generalized to be given bgk+Ck, whereCK denotes combination  tion is asymptotically exact when the threshold levels increase to
of k random variables takem at a time. Thus, fok=3, consider infinity. However, as pointed out by Vanmarck&975, for bar-

six mutually independent Poisson random Variamgsle with rier levels of practical interest, this assumption results in errors
parameters)\i}iﬁzl and define whose size and effect depend strongly on the bandwidth of the
processe$Vanmarcke 197R For wide-band processes, the Pois-
Ni(og,0,T) =Ug + Uy + Us son approximation makes no allowance for the time the processes
spend above the threshold levels while for narrow-band processes
Na(etz,0,T) = Uz + Uy + Ug (10 the level crossings tend to occur in clumps. The multivariate mod-
els for joint level crossings, extreme value distributions, and first
N3(a3,0,T) = U3+ Ug + Ug passage times developed in this paper are thus not free of these
The equations relating\;}°.; to the moments ofN;(«;,0,T)}2, limitations.
can be shown to be given by
i T ( ) . . . .
10011 0[N (Ny(a1,0,T)) Approximation for the First Passage Time
01010 1||x; (Na(a2,0,T)) - T . .
00101 1llx N 0T The probability distribution of the first passage times for a vector
¢S =X (N3(2t5,0.T)) random process is related to the probability of the number of level
00010 OffN CoV[Ny(a1,0,T),Ny(t,0,T)] crossings being zero and is given by the relation
0000 1 0[] CoV[N;(a3,0,T),N3(ae3,0,T)] k k
00000 1){x) [COMNy(ez0.T)Ng(et3,0.T)] PLM Ty () > t;]= PLM {Ni(et;,0,t) = 0}] (15
L J i=1 i=1
(1D The joint PDF for first passage times can therefore be easily con-

As in the case ok=2, one can show that the joint characteristic

) - structed in terms of the parameters of the joint PDF for a number
function of N1, N,, andNjs is given by

of level crossings. For example, the joint PDF of first passage

D101, 9, 03) time PTfle2<(o,o> (t;,1,) for a bivariate random process, under the
6 3 assumption thaP[T; =0]=0, for (i=1,2), is given by
=exp - 21 Aj+ 21 Aj explim;) + Ag expli(wg + wy + w3)} PTfle2|(o,o>(t1:t2) =1+ expd— {{Nz(ag,0,t)) + (Np(ap,0,15))
1= 1=
- CO\{N]_(OL]_, Oltl)! N2(0L2, O!tZ)]})
+ hs expli(w; + wg)} + Ag expli(w, + wg)} (12) — exp— (Na(0;, 0,t))] — exp— (Ny(0t,0.,1))]
o (16)
from which, it can further be shown that
. If the conditionsP[Tfi:O]:O (i=1,2) are not satisfied, Eq16) is
modified as
P[N;=0NN,=0NN3=0]=exp - 2\ (13)
j=1 P{[Ts (o) <ti] N [Ty (ar) < to]}
It is to be noted that fok>2, the formulation requires the nu- = prlez(o,o) +{1 ‘PTfleZ(O'0)}PTf1Tf2|<o,0)(t1,tz) (17)

merical evaluation of a set of double integrédee Appendix )l
and at no stage does the order of the integrals to be evaluatedrhe procedure of computations faX,(ca,0,t;)), (Ny(ay,0,t,)),
become more than two. In general, the number of such integralsand CoyN;(a;,0,t;),N,(a,,0,t,)] is essentially the same as out-

that need to be evaluated@ for single sided thresholds an€% lined in Appendix I. A modification in the formulation is, how-
when two sided thresholdef the type «; < X;(t)<q;] are con- ever, required as, #t,, the details of which have been worked
sidered(see Appendix )L out in Appendix Il. The joint PDF for first passage times can be

It must be noted, however, that there is a limitation on the constructed fok> 2 following similar arguments outlined in this
applicability of the joint multivariate Poisson distribution section.

(Johnson and Kotz 1969For example, for the applicability of a The marginal distribution for first passage time is given by
bivariate Poisson distribution for two Poisson distributed random Pr, (tl):PTf T (t1,%0). Whent,=o, for a given levek,, there are
variablesN; andN, infinite number of crossings of,(t), from which it follows that
CO”{N]_,Nz] - )\3()\3_'_ )\1)—1/2()\3_'_ )\2)—1/2 <N2(a2,0,t2)>:°°. ThUS, from Eq(16), we get
< \g{Ag + min(hy,\p)} 7 (14 PTflez(tl’w) =1+exg—(Ny(ag,0,ty)) —=+c]
where \;=parameters of the three mutually independent Poisson —exfd— (N;(a,0,t)))] — exd — ]

random variablegU,}2,, defined in Eq.(1) and corf-] denotes

correlation coefficient. However, in this study, we adopt an in- =1-exd— (Ny(ag,0,t1))], (18)
verse approach whereby the parameterare determined from  where c=Co\N;(ay,0,t;),Nx(a,0,t,)]. The marginal distribu-
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tion function, PTf (t1), is therefore seen to be exponential, which
1
conforms to the existing studies in the literature.

Approximation for Extreme Value Distribution

Extreme values of random processes, defined g
:ma>g)<t<tixi(t) (i=1,... k), are random variables and their joint
probability distribution function is related to their first passage
times through the relation

k k
P[q X < )] = P{q [Tr () > t;]} (19

i= i=
wheret;=T for (i=1, ... k). Using Eqgs.(15 and(19), the joint
extreme value distribution function can be expressed in terms of
the probability distributions of zero crossings of their respective
levels «;, for a vector of random processes. Thus for a
k-dimensional vector of Gaussian random proce@(ﬁs)}ik:l, the
joint probability distribution of extremes is given by

k(k+1)/2

where{\} &% are the parameters @+C5=k(k+1)/2 mutu-
ally independent Poisson random variabjeigh™"2.

The marginal extreme value distribution function is related
to the joint distribution through the reIationPXm_(ai)
:mel...xm...xmk(oo, . ,Q,...,2). Thus, for a bivariate extreme
value distribution, the marginal distribution is given by
Px_ (a1)=Px_x_(ay,%). For thresholda,=, the number of
level crossinészforxz(t) is zero, from which it follows that
(Ny(0,0,t,))=0 and Co{N;(a;,0,t;),Ny(,0,t,)]=0. The ex-
pression for the bivariate extreme value distribution, in terms of
the statistics ofN;(«;,0,t;), is obtained from Eqs(20) and (2),
and substitutingx,=, we get

k(k+1)/2

me‘.. (()Ll, ...,()Lk):eX - 2 N
i=1

X,
M

(20)

melxmz(al,oo) = exp{~ (Ny(az,0.ty)) = (Na(a2,0.t5))
+ CO\I{N]_(OL]_, Ovtl)v NZ(OOI Oxt2)]}

=exfg - (Ny(ay,0,t))] (21)

The above result, along with E@4), shows that the marginal
distribution Py _ (a7) is Gumbel, which conforms to the existing
results in random vibration literature. This also satisfies the re-
quirement for multivariate extreme value distribution functions
which specifies that the marginals should be nondegengfate

and Nadarajah 2000

Numerical Examples

Two numerical examples are considered to illustrate the salient
features of the proposed model. A detailed parametric study is
first carried out on two mutually correlated, stationary, Gaussian
random processes in order to study the effect of correlation of the
parent processes on the joint distribution functions for first pas-

3.8

3.6

3.4

3.2

28

Normalized threshold, X2

26

24
Full line: Analysis

22r Dotted line: Monte Carlo

25 3 3.5

Normalized threshold, X,

Fig. 1. Level curves ofPx_x (x1,Xp) for the bivariate stationary,
1

Gaussian random proceééxarﬁple 3}, ¢=0.50; the numbers on the
figure indicate probability levels

analytical results for the two examples are compared with those
obtained from full scale Monte Carlo simulations.

Example 1: A Two-Dimensional Vector Random
Process

Consider two jointly stationary, zero mean, Gaussian random pro-
cesses(y(t) andX,(t) with specified autocorrelation functions

Rua(7) = ST exd - at?] (22)

Roo(7) = S exf — Br?] (23

respectively, witha,>0. The auto-PSD 0K,(t) and X,(t) are
obtained from the Wiener—Khintchine relations and are denoted
by S;1(w) andS,,(w). The cross-PSE,,(w) is given by

S12(@) = €(00)|Sy(@) Syaw) | exrliv(w)] (24)

where vy(w)=phase spectrum and(w)=coherence spectrum,
which takes values if0,1]. We assume(w) to have a constant
valuec, such that Bsc=<1, for all ® andy(w)=w/{ with {\=8.
Clearly, if c=0, X;(t) and X,(t) are independent and, i€=1.0,
they are fully coherenta and B are taken to be 100 and 150,
respectively, ands;, and S, are assumed to be equal @. The
bandwidth of the processe§(t) and X,(t), measured in terms of
the spectral parameteq,:[l—)\jzll()\jo)\jz)]o‘?’ (Vanmarcke 1972
are, respectively, 0.6030 and 0.6032. It must be notedgthetes
values in[0,1], with small values denoting narrow-band processes
and relatively large values denoting wide-band processes. The
cross-correlation function is the Fourier transformSf(w) and

is shown to be of the form

Ryo(7) = V26§ Sexpl- 2B (v -~ 1)
[+ B)2TH(aB)O P L + 1/B)°%  (25)

The effect of coherence on the bivariate extreme value distribu-

sage time and extreme values. The second example deals with thd0n 1S studied by assumingto have values equal to 0.05, 0.50,

response analysis of a two-span bridge subjected to spatially vary-

ing random earthquake support motions. The motivation for this

and 0.95, respectively. Contour plots B&mx (X1,%p), that is,

plots of the relation betweexy andx,, suchlthalmeX (X1,%p)

study is to demonstrate the effectiveness of the proposed theory ir=p, for different values op, are shown in Fig. 1 for the bivariate

reliability calculations for real life engineering structures. The

extreme value distribution oX;(t) and X,(t), whenc=0.50 and
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Fig. 2. Comparison of the conditional probability distribution Fig. 3. Level curves for the bivariate first passage tifi¢ 1, (t1,t2)
function (PDF) Py 1x, (1| X, =3) with the univariate PDPx,_ (x,) for bivariate stationary, Gaussian random processes#@.95 and
normalized thresholds; =3 andx,=2 (Example }; the numbers on
the figure indicate probability levels

T=10 s. Henceforth in this paper, the plots of this type are re-

ferred to as level curves. The analytical predictions are validated are compared with those obtained from Monte Carlo simulations.
with those obtained from Monte Carlo simulations. Based on the Here, the spectral decomposition method is once again used to
known PSD matrix ofX,(t) and X,(t), an ensemble of 5,000 digitally simulate an ensemble of 5,000 samples of the time his-
samples for the vector stationary, Gaussian processes are digitallyories. In each of these samples, the time length of the sample is
simulated using the well-known spectral decomposition method. increased until the specified threshold is crossed for the first time.
From each of these samples, the extremes, @) andX,(t), over The resulting ensemble of first passage times, so obtained, is pro-
the specified duration, are detected. The resulting ensemble ofcessed subsequently to estimate the joint PDlFfofadef2 The
extreme values is processed subsequently to estimate the joinhumber of termsN,, considered in the spectral expansion in the
PDF. The analytical results are observed to be in fairly good simulation procedure depends on the time length of the process,
agreement with those obtained from Monte Carlo simulations, T, and the spectral bandwid#),=(w,~w;) and is given byNq
especially in the higher end of the probability distribution func- =A_T/2w. In this example, we consides,=0 and w;=30 Hz.

tion. This is to be expected since the assumption of Poisson crossThe close agreement that is observed to exist between the predic-
ing is more realistic toward the tails of the probability distribution tions serves to illustrate the acceptability of the proposed model.
functions. The joint PDFPXmlxmz(XllXZ) was found to be signifi-  The conditional distribution for first passage tirfe, |7, (tlle2

cantly dependent on the parametethus, for instance, the value  =6) is compared with the univariate PDF for first |10assage time
of Px., X (3,3) for c=0.05, 0.050, and 0.95, was observed to be whenc=0.95 in Fig. 4. Once again, a good agreement is observed

0. 5614 0.5638, and 0.6542; the corresponding results from the
Monte Carlo simulations were 0.5737, 0.5867, and 0.6748. A
comparison of the conditional d|str|but|oﬁx sz(x1|Xmz X)

with the univariate probability distribution func’uorﬁ’X (x), is 0.81

shown in Fig. 2, when(m2—3 and for various values cu:‘1 As the 0.8l
coherence between the parent random processes weaken, the cor
ditional distribution is observed to approach the univariate PDF,
as expected, and the differences almost vanish wiwe.05. 0.6k
Similar plots were constructed fof,, =2.0 andX,,,=2.5 and an
examination of these figurgsiot shown hererevealed that the o 05p
impact of linear dependence is negligible for valuescef0.5, 0.4}
indicating that the dependence is unimportant unless the pro-
cesses are highly coherent. It is of interest to note that Ditlevsen 0.3
(1979, in his studies on the series system reliability of structures 0.2
under random static loads, observed a similar insensitivity on the
system reliability when the correlation coefficients between the 0.1

performance functions of the various failure modes were below 0 : : : .
0.5. 0 20 40 60 80 100

Similar studies on the bivariate distribution function for first Y s

passage times have also been carried out. Fig. 3 illustrates th
level curves for the bivariate PDF for first passage times
Pr. 7, (t1,t) whenc=0.95 and the normalized threshokisand

172

X, are taken to 3 and 2, respectively. The analytical predictions

F

—_ PIT;<T, | T, = 6] (Analysis)
1 2
__ P['I'f1s T1] (Analysis)
* P[Ths T, |Tf2=6] (Simulation) i
o P[T<T,](Simulation)

e;:ig. 4. Comparison of the conditional probability distribution
function (PDF for first passage timePr r, (tl|Tf2:6) and the
1 2
univariate PDFPr, (ty); (Example 1
1
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between the analytical and simulation results. The difference in 4
the probability levels between the conditional distribution and the
univariate PDF can be attributed to the coherence between the
parent random processes. 3.6
The applicability of the proposed bivariate Poisson model used «<*

8

in this example is checked for the condition given in Egl). For 3 34
€=0.05, \;, N\, and A5 are 0.0075, 0.0092, and 1.172@0°°, g 3.2f
respectively, and correspondingly, divy,N,]=1.4093x 10 is = 3
less than the upper bound 1.55970°“ For ¢=0.50, \, E

=0.0074, A\,=0.0091, \;=1.8076xX 1074, the upper bound is § 2.8f
0.0239 and cofN;,N,]=0.0216. Similarly, forc=0.95, the three 2 26

parameterg\;}2, are, respectively, 0.0035, 0.0052, and 0.0040,
corfN;,N,]=0.4802 which is less than the bound 0.5314. These 2.4f  Dashed line: Analysis
observations conform to the expectation that, in our study, Eq.

. - . . o]  Dotted line: Simulation
(14) is always satisfied since the study employs an inverse ap-
proach to determine parametdis} ;. 2 5 : - )

Normalized threshold, 51
Example 2: Two Span Bridge under Seismic
Excitations Fig. 5. Level curves forP, , (31,8, for stationary, Gaussian

1
A two-span bridge, idealized as a two-span Euler—Bernoulli beam r_andor_n p'rocessesl(t)'gnd A(t) (Example 2; the numbers on the
figure indicate probability levels

with three supports, with the beams assumed to be continuous

over the interior support, is considered. The structure is taken to

have a constant mass per unit lengthand flexural rigidityEl,

such thatEl/m=40.50x 10° m*/s% The spans are assumed to be Ax(t) andA,(t), respectively. For the dynamic analysis, the damp-

of length 55 and 45 m, respectively. The structure is discretized ing is assumed to be viscous and proportional. The mass and

into 40, two-noded beam elements, with one translational and onestiffness proportionality constants are adjusted such that the

rotational degree of freedom per node. A free vibration analysis damping is 5% in the first two modes and are, respectively, taken

revealed that the first five natural frequencies of the structure areto be 0.4939 8" and 2.9960< 10° s. Since the excitations at the

3.79, 6.70, 14.68, 22.37, and 32.49 Hz, respectively. supports are stationary, Gaussian random processes and linear

The bridge is assumed to be subjected to spatially varying structural behavior are assumel(t) and A,(t), for larget, are

earthquake accelerations with zero mean. Only the transversedlso jointly stationary, Gaussian random processes whose auto-

component of the earthquake accelerations at the three support®SD functions[S; 4, (w) and Sy ,,(w)] and cross-PSD function

are considered in the analysis and is specified throughk® 6  [Sy,a,(w)] are obtained as finear combinations & (i,j

PSD matrix. The auto-PSD functions for the accelerations at the=1,2,3. The coherence spectrum fa andA, is expressed as

ith support,S;, are assumed to be of the form V()= Sy,a,(©)/[Sy () Sy a,(0)]%° and was observed to take
values over a range of about 0.2-1.0, as frequency was varied

Si(®) = S,0Q; + 40 {(QF - 0?)? + 4mi Q)P (26) over 0—40 Hz. The spectral shape factaysfor A(t) and A(t)

are, respectively, 0.3216 and 0.3424. The threshold displacements

for the random processes, and A, are normalized with respect

to their respective standard deviations and the normalized thresh-

~(1.72,1.59,1.5PHz and (n,m,,15)=(0.60,0.55,0.50 The olds are varied from 2 to 4. The level curves for the bivariate

. extreme value distribution$, . (8;,8,) obtained from the
accelerations at all the supports are assumed to have the samé ) o my2m, B
measure of intensit$, =0.014 nt/s* (i=1,2,3. The coherency analysis are shown in Fig. 5. The extreme value distributions were
function of the ground accelerations between any two supports determined for time duration$=9 s. The procedure to obtain

whereS§,=measure of the intensity of the ground acceleration and
(); andr; are parameters dependent on the local soil conditions at
the ith support. It is assumed that(Qq,Q,,Q5)

I,j#1 (j,1=1,2,3 is of the form(Der Kiureghian 1995 results from Monte Carlo simulations is the same as that used in
' o Example 1. Here, 1,000 samples of time historiesAgft) and
Yil(w) = yj1 (o) lexdi®; ()] (27) A,(t) are digitally simulated based on the knowledge of a PSD

matrix of A4(t) and A,(t). This leads to an ensemble of 1,000
realizations of extremes and the first passage times, which, in
turn, are processed to estimate the desired joint PDFs. The level
|W(m)|:tanr{(al+a2[)jl)[exp{(bl+bZDjl)f}+1/3f°]+0,35} curves for the extreme value distributions obtained from the
(28) analysis are observed to bear a close resemblance to those ob-
tained from Monte Carlo simulations. The parameters considered
. . . in using the spectral decomposition method for simulating time
®jy(w) = —ilogihy (w)exfid; (w)] +[1 —hy(w)]Jexdio(w)]} histories arew,;=0.1 rad/s,w,=250 rad/s, andN;=358. As ex-
where ¢j(w)=wD;/V, hj(w)={1 +(f/19%71, a,=2.535, a, pected, the agreement is observed to be better at the higher end of
=-0.0118b,=-0.115,b,=-8.37x 10 ¢=-0.878,V=500 m/s, the joint distribution function where the assumption of Poisson
andD; is the distance between suppojtand|. crossings is more realistic. Fig. 6 compares the conditional PDF
The structure is analyzed separately for the dynamic and pseu-Pa,, Am2(81|Amz:82) with the univariate PDFP,  (3,) for nor-
dostatic components of the midpoint displacements at the two malized threshol@,=3.2. The analytical predictions can be seen
spans. The safety of the bridge structure is assumed to be definedo be in close agreement with those obtained from Monte Carlo
through the dynamic components of the midpoint displacements, simulations on 1,000 samples, especially at higher threshold lev-

and in the present study, the parametefgw)| and ®;(w) are
modeled as per Abrahamson et @991 and are given by
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1 ' , y the previous example, we see that the inverse approach adopted in
ool == _ this study to determine the parametgrslways satisfies the con-
s dition given in Eq.(14).
0.8} W |
07} Y .
06l /, | Conclusions
9
hadl //" 1 Approximations for the joint probability distribution functions for
lo.4- . _ the number of level crossings, the first passage times, and the
9 _ extreme values associated with a vector of mutually correlated,
03} 2N g%}%::ig:)"a'y"ca') y stationary, Gaussian random processes have been developed. The
02 0/ " p[shAf&g] (Simulation) . proposed approximations predict that for mutually correlated par-
. o P[s,] (Simulation) ent processes, their respective number of level crossings, their
0 8 ] first passage times, and their extreme values are also correlated.
== s s . These predictions have been validated by Monte Carlo simula-
25 ed 35 4 tions carried out on the examples considered in this paper. The
Normalized threshold, 3,

multivariate extreme value distribution inherits the inaccuracies
Fig. 6. Comparison of the conditional probability distribution ~@ssociated with the marginal distributions, as reported in the lit-
function (PDP) Py s (81|Am2:3-2) and the univariate PDE era_ture, when Ievel_ crossings are mod_eled as P0|s_so_n random
Ps (3)) (Example 2 variables. The marginal distributions derived from the joint prob-
m ability distribution functions for first passage times and extreme
values are found to be exponential and Gumbel, respectively, and
these confirm the existing studies in the literature on scalar ran-

els. The difference in the probability levels between the condi- 40M Processes. Existing studies on outcrossings involving the
tional PDF and the univariate PDF is again due to the coherenceVector random process essentially formulate the problem as an

between the parent random procesag) andA,(t). The bivari- outcrossing of a scalar random process. In this context, the pro-
ate PDF for first passage timeBy, , (t1.t,), is constructed for posed method can be viewed as an alternative approach where the

joint outcrossings of vector random processes have been studied.
The proposed multivariate extreme value distribution functions
' have applications in reliability analyses of structural systems with
! o ) multiple limit states. Further work involving extension of the pro-
carried out on 1,000 samples, are shown in Fig. 7. It is observedposed method to problems involving nonstationary and non-

that the analytical predictions are in close agreement with the g5ssian random processes is currently being pursued by the
predictions based on Monte Carlo simulations at higher threshold yresent writers.

levels. For the bivariate Poisson distribution used in this example,

the parameters,, \,, and\,, respectively, turn out to be 0.0108,

0.0145, and 2.8508 10°°. Using these values in E¢l4), we get

corfN;,N,]=0.0023 and the upper bound is 0.0026. Thus, as in Acknowledgment

0=<t,, t,=<40 s. The normalized thlrezsholﬁ§ andd, were taken

to be 3 and 2, respectively. The level curves for the joint PDF

Pr, T, (t;,t,) obtained from both analysis as well as simulations
1.'2

The work reported in this paper forms a part of the research
project entitled “Seismic probabilistic safety assessment of

40 . , . . . . .
I I ! ! ! nuclear power plant structures,” funded by the Board of Research
sk ! Y ! ! ! o.8 1 in Nuclear Sciences, Department of Atomic Energy, Government
i | 1 ' ' 1 | of India.
! ! ! | ! ! ( I
S 1 O O I I A |
1 ! 1 I | I | |
25 : : : | : | 06 | Full 'iine' Analysis
i 1 1 I ] ] I | ’ i A enle I
: E : : : 05 : :Dashed Iine::SimuIation PP
=20 | o 110.4 1 ) | | b . . . . . .
] ] I I ! ! ! (Ni(a1,0,T)Ny(ap,0,T)) is obtained as a six-dimensional integral
sp i | es ! ! ! . and if only level crossings with positive slopes are considered,
{1 | t ! 1 ' v ) one gets
1 i 1 1 1 1 \ W
10F 1} 0. ! \ 4
1 1
|
5| ] T T ro» e o %
. <NIN§>:I f f j f f {XXBXq = 1 ]8[ %, = ez ]
0 L L ' ' 1 L L 0 0 -0 J -0 JQ 0
0 5 10 15 20 25 30 35 40 o o
T X P XXX X1 X, X1, Xo; 11, T) Yl Xy X0 X dXodt it
Fig. 7. Level curves for the joint probability distribution function for (29

first passage timdDTf T (t;,tp) for the two stationary, Gaussian

random processed, ahdzAz (Example 2; the numbers on the figure

. - Here, N denotes crossing of level with positive slope. The
indicate probability levels

inner four integrals can be simplified and written as
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|(t1:t2):f f X1XaPx X%, %, (01, 02, X1, Xo; b, 1) A A
o Jo

(30)

For stationary random process¥g(t;) and Xy(t,), I(t;,ty)=1(t,
-t,). Substitutingr=t,—t,; in Eq. (30) leads to the simplification

-
(NING) = j (T~ Dl (g 31
T

can be shown thaty x x x,(@1,a2,%1,%;t1,t5) in Eq. (32) can be

replaced apy, (ay) Py, () P, (X1)Px,(Xz). This facilitates a closed

form solution of Eq.(29) and it can be shown thafN;N,)

=(N1)(N,), where(N;) corresponds to the form given in E@).
When level crossings with negative slopes are also included,

N;=N"+N;. Here, N[ denotes the crossing of levek-with a

negative slope. ThuéN;N,)=(N7NZ)+(N;N5)+(N7NZ)+ (N N5).

The evaluation of each of these expectations requires the solution

of a six-dimensional integration of the form given in H9).

The domain of integration with respect xpdepends on whether

If X4(t) and X,(t) are assumed to be stationary Gaussian random the level crossing considered is with a positive slope or negative

processes, the four-dimensional joint  pdfpy x.x,x,
(a1,00,X1,%;t,t,) is also Gaussian and is of the form

pxlxz).(lj(z(al,(12,)-(1,).(2;':1,':2) = 1/(41T2|A|0'5)6X[i— OE{Z,A_]'Z}]

(32
whereZ' =[aja,%%,]" and
s r() 0 r'(r)
|rn s -r'(r) 0
A= 0O -r'(m) m -r"(7) (33
r'(r) 0 -r'(r) my,

Hel’e, S].:<X§(tl)>1 82:<X§(t2)>1 ml:<xi(tl)>1 m2:<x%(t2)>! r(T)
=(X1(t)Xa(tp)), and (IXT(ty) ! HTIX5(tp)/ gy =(=1)Mar™"/ gz,
Using arguments provided in Cramer and Leadbet867), Eq.
(32 can be simplified to get

Px XX %o (01, 02, X, X5 b, 1)
= 1/(4m?A|*exd — 0.5(by + byX; + byX, + bykd
+ bk + bsXiio) ], (34)
where

bo = {My1af + (Mg + Mooz + Maga3}/|A|
by ={(M3y+ Myg)as + (Mgz+ Magapl/|A
by ={(My1+ Mygay + (Myz+ Mag)apl|Al
bs = Ms/|A|
by = Mad|A|

bs = {Mgs+ Myg/|A| (35

|A| denotes the determinant oA and M; (i,j=1,...,9
=cofactors ofA. After substituting Eq(34) in Eq. (32), the re-
sulting integral was evaluated symbolically usiM@\PLE, to get

I(r) = ext{~ by 2)/(4112/A[25)
XJ Xol o(%o)ex~ 0.5(b,%, + by5G) Jdi, (36)
0

where
lo(%o) = (1 + 0.626 (%) exp(0.125@2(x,)}
x{erf[0.353@&(X,)] — 1})/bs (37)
and c(X,) =(b;+bsX,)/ (by)?®. Eq. (31), together with Eq.(36),

thus leads to a double integral which needs to be evaluated nu-

merically. Also, if the processes are uncorrelatgd) =0, and it

slope and is eithdi0, +«] or [-e,0]. The joint pdf, given by Eq.
(34), is an odd function with respect g, and hence four inte-
grals of the form given by Eq.29) need to be evaluated to de-
termine(N;N;). On the other hand, for a scalar stationary Gauss-
ian random process, the joint pgfx(x,x) is an even function in

X. Thus(N")=(N/), and(N;) is obtained by multiplying the right-
hand side of Eq(4) by a factor of 2.

Appendix I

Whent, #t,#t, the expression fofN;(a;,0,t;)N,(ap,0,t,)), as
given in Eq.(31), needs to be modified. Following similar argu-
ments as in deriving the expressions in E2fl), we get

-t 0
A, = f {t; =[]+ |t ~t[}1 (r)dr + f il (r)d

i
=t tj_tl

Y
+f (t—ol(n)dr if t;<t;
0

0 it
:f (ti—|'r)|('r)d”r+f il (t)dr
Ti

0

+fj (t—Dl(ndr if ;> (38)
ot

it
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