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Abstract: The problem of determining the joint probability distribution of extreme values associated with a vector of stationary G
random processes is considered. A solution to this problem is developed by approximating the multivariate counting processes
with the number of level crossings as a multivariate Poisson random process. This, in turn, leads to approximations to the m
probability distributions for the first passage times and extreme values over a given duration. It is shown that the multivariat
value distribution has Gumbel marginal and the first passage time has exponential marginal. The acceptability of the solutions
is examined by performing simulation studies on bivariate Gaussian random processes. Illustrative examples include a discus
response analysis of a two span bridge subjected to spatially varying random earthquake support motions.
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Introduction

The study of probability distribution of first passage times
extreme values of random processes lies at the heart of the s
of random vibrations. These studies find extensive applicatio
the development of response spectrum based methods in
quake engineering, gust factor approach in wind engineering
in reliability analysis of random dynamical systems in genera
the context of Gaussian random processes, one of the com
used approaches to study first passage failures is based
assumption that the number of times a specified level is cro
can be modeled as a Poisson counting process. This leads
ponential models for the first passage times and Gumbel m
for the extremes over a specified duration. Results based o
assumption, and further refinements to this approach, are w
discussed in many standard random vibration textbooks: se
example, the books by Lin~1967!; Nigam ~1983!; and Lutes an
Sarkani~1997!. An alternative approach, that is applicable to r
dom processes that possess Markov property, has also be
veloped. Here, one studies the backward Kolmogorov equ
governing the transition probability density function and the
sociated generalized Pontriagin–Vitt~GPV! equations governin
the moments of the first passage times: see the paper by R
~1986! for a review of literature on this topic. Attempts to so
backward Kolmogorov equations and the GPV equations u
the finite-element method have also been reported~Spencer an
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Bergman 1985!. In the context of reliability analysis of dynamic
systems, the determination of the probability distribution of
treme values enables the treatment of a time-variant relia
problem as a problem in time-invariant reliability analysis~Mad-
sen et al. 1986; Melchers 1999!. The underlying principle of th
approach lies in the fact that the distribution of the extreme va
of random processes over a specified duration of time is cl
related to their mean level crossing rates. Outcrossing rat
vector random processes have been studied in the context of
lems in load combinations~Naess 1989! and in structural reliabi
ity ~Veneziano et al. 1977; Ditlevsen 1984; Wen and Chen 1
Hagen and Tvedt 1991; Hagen 1992!. The focus of many of thes
studies has been in determining the probability of exceedan
the sum of the component processes, and the outcrossing
has been formulated as a scalar process outcrossing. The p
paper, however, addresses the problem of determining the
probability distribution function~PDF! of the extremes of th
component processes. In this context, it is of interest to note
in the mathematical literature, the problem of extreme value
tributions has received wide research attention: see, for exa
the books by Galambos~1978!; Castillo ~1988!; and Kotz and
Nadarajah~2000!. The focus of these studies has been on de
oping asymptotic forms of extreme value distributions for a
quence of scalar and vector random variables. In the latter
one often considers a sequence of random variables, su
hXiji=1

k and hYiji=1
k , such thatXis are identical and independen

distributed ~i.i.d.!, Yis are i.i.d., andXi being correlated toYi.
Questions on joint probability distribution ofXm=max1øiøksXid
andYm=max1øiøksYid are asked and specifically, conditions un
which Xm andYm are mutually independent have been studied
one might expect, the studies on sequence of vector random
ables are relatively of recent origin and are less straightforw
These books also contain extensive surveys of related lite
from mathematical statistics and probability.

A knowledge of the joint PDF of extreme values associ
with a vector of mutually correlated stationary Gaussian ran
processes is necessary for the reliability analysis of structura
tems, characterized by multiple limit states in series config

tions. Leira ~1994, 2003! developed multivariate extreme value
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distributions for a vector of Gaussian/non-Gaussian random
cesses, using a geometric approach based on directional ext
In this paper, however, the development of multivariate extr
value distributions is based on the use of multipoint random
cesses to model the level crossing statistics of the vector p
process. Based on this, the joint distribution of first passage
is derived which, in turn, is further applied to derive the mu
variate extreme value distributions. Specifically, it is shown
if the level crossings of the vector random process are mode
a multivariate Poisson process, the vectors of extreme value
out to be mutually dependent random variables with Gumbel
ginals. The mutual dependency characteristics here are rela
the mutual cross correlations that exist among the compone
the parent vector Gaussian random process. The theoretica
dictions on multivariate distribution of first passage times
extreme values for bivariate Gaussian random processes are
pared with corresponding results from Monte Carlo simulati
The illustrative examples include the study of an idealized m
of a two-span bridge structure subjected to differential ran
earthquake loads.

Problem Statement

ConsiderhXistdji=1
k to be a vector of zero-mean, stationary, Ga

ian random processes with a specified power spectral de
~PSD! matrix Ssvd and covariance matrixRstd. Associated with
each ofXistd, we defineNisai ,0 ,Td to be the number of times
level ai is crossed in the interval 0 toT, Tfi

said to be the time
required for Xistd to cross levelai for the first time, andXmi
=max0øtøTXistd to be the maximum ofXistd in the time interval 0
to T. Clearly, for a giveni, Nisai ,0 ,Td, Tfi

said, and Xmi
are all

random variables. As is well-known, one class of acceptabl
proximations forNisai ,0 ,Td, Tfi

said, andXmi
hypothesize that, fo

a given i, Nisai ,0 ,Td is a Poisson random variable,Tfi
said is an

exponential random variable, andXmi
is a Gumbel random

variable ~Lin 1967; Nigam 1983; Lutes and Sarkani 199!.
For the vector random processhXistdji=1

k , it is clear tha
N=hNisai ,0 ,Tdji=1

k , T f =hTfi
saidji=1

k , andXm=hXmi
ji=1
k are all vec

tors of random variables. The problem on hand consists of d
mining the joint PDFsPNsñd, PT f

st̃d, and PXm
sx̃d for N, T f, and

Xm, respectively. We propose to develop these joint PDFs by
eralizing the classical Poisson approximation used for mod
level crossings of scalar Gaussian random processes.

Approximation for Number of Level Crossings

Here, we hypothesize thathNisai ,0 ,Tdji=1
k constitutes a vector o

multivariate Poisson random variables. To clarify this notion
begin by considering the case ofk=2. For this case, we defin
three mutually independent Poisson random variableshUiji=1

3 with
parametersl1, l2, andl3, respectively. Introducing the transfo
mations

N1sa1,0,Td = U1 + U3

s1d
N2sa2,0,Td = U2 + U3

it can be shown thatN1sa1,0 ,td andN2sa2,0 ,Td are Poisson ran
dom variables with parameterssl1+l3d and sl2+l3d, respec
tively. It may be noted that this construct for multivariate Pois

random variables has been discussed in the existing literature; see
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.
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Johnson and Kotz~1969! for these details and also for a list
references to the original work. In the context of the pre
study, it is important to note that the parametersl1, l2, andl3 are,
as yet, unknowns to be determined. It can also be shown th
covariance ofN1sa1,0 ,Td andN2sa2,0 ,Td is equal tol3. Based
on this, we get the equation

31 0 1

0 1 1

0 0 1
45l1

l2

l3
6 = 5 kN1sa1,0,Tdl

kN2sa2,0,Tdl
CovfN1sa1,0,Td,N2sa2,0,Tdg

6 s2d

Here^·& denotes the mathematical expectation operator. It is
known that the counting processNisai ,0 ,Td is related to the pa
ent processXistd through the relation~Nigam 1983!

Nisai,0,Td =E
0

T

dfXistd − aigẊistdUfẊistdgdt s3d

Here,Us·d is the Heaviside function. From Eq.~3!, one gets

kNisai,0,Tdl = T/s2pdsl2i
/l0i

d0.5expf− 0.5ai
2/l0i

g s4d

wherel2i
andl0i

=spectral spectral moments given by

l j i
=E

−`

`

v jSiisvddv, j = 0,1,2 s5d

Here, Siisvd is the auto-PSD function ofXistd. Using a simila
counting procedure, as defined in Eq.~3!, one can also derive

CovfN1,N2g

= kN1sa1,0,TdN2sa2,0,Tdl − kN1sa1,0,TdlkN2sa2,0,Tdl

where, Cov@·# denotes the covariance function. The details of
derivation have been provided in Appendix I.

To construct the bivariate PDF ofN1sa1,0 ,Td andN2sa2,0 ,Td,
we first write the characteristic function ofN1sa1,0 ,Td and
N2sa2,0 ,Td as

F12sv1,v2d = kexpfiv1N1 + iv2N2gl

= kexpfiv1sU1 + U3d + iv2sU2 + U3dgl

= kexpfiv1U1glkexpfiv2U2glkexpfisv1 + v2dU3gl

s6d

For a Poisson random variableUi, with parameterli, it can be
shown thatkexpfivUigl=expf−ligexpfli exphivjg ~Srinivasan an
Mehata 1976!. Thus Eq.~6! can be written as

F12sv1,v2d = expf− sl1 + l2 + l3d + l1 expsiv1d + l2 expsiv2d

+ l3 exphisv1 + v2djg s7d

In the present study, we accept this condition as the definitio
a bivariate Poisson process. The associated bivariate P
probability mass function can be shown~Johnson and Kotz 196!
to be given by

PfsN1 = jd ù sN2 = ldg

= 1/s4p2dE
−p

p E
−p

p

F12sv1,v2dexpf− isv1j + v2ldgdv1dv2

= expf− sl1 + l2 + l3dg o
i=0

mins j ,ld

sl1
s j−idl2

sl−idl3
i d/hs j − id!sl − id! i!j

s8d
It is to be noted that, as one might expect,N1sa1,0 ,Td and
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N2sa2,0 ,Td here, have Poisson marginals. Forj =0 andl =0, one
gets

PfsN1 = 0d ù sN2 = 0dg = expf− sl1 + l2 + l3dg s9d

The above result can easily be generalized for the casek.2. The
number of mutually independent Poisson random variables c
generalized to be given byC1

k+C2
k, whereCn

k denotes combinatio
of k random variables takenn at a time. Thus, fork=3, conside
six mutually independent Poisson random variableshUiji=1

6 with
parametershliji=1

6 and define

N1sa1,0,Td = U1 + U4 + U5

N2sa2,0,Td = U2 + U4 + U6 s10d

N3sa3,0,Td = U3 + U5 + U6

The equations relatinghliji=1
6 to the moments ofhNisai ,0 ,Tdji=1

3

can be shown to be given by

3
1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

45
l1

l2

l3

l4

l5

l6

6 =5
kN1sa1,0,Tdl
kN2sa2,0,Tdl
kN3sa3,0,Tdl

CovfN1sa1,0,Td,N2sa2,0,Tdg
CovfN1sa1,0,Td,N3sa3,0,Tdg
CovfN2sa2,0,Td,N3sa3,0,Tdg

6
s11d

As in the case ofk=2, one can show that the joint characteri
function of N1, N2, andN3 is given by

F123sv1,v2,v3d

= expF− o
j=1

6

l j + o
j=1

3

l j expsiv jd + l4 exphisv1 + v2 + v3dj

+ l5 exphisv1 + v3dj + l6 exphisv2 + v3djG s12d

from which, it can further be shown that

PfN1 = 0 ù N2 = 0 ù N3 = 0g = expF− o
j=1

6

l jG s13d

It is to be noted that fork.2, the formulation requires the n
merical evaluation of a set of double integrals~see Appendix I!
and at no stage does the order of the integrals to be eva
become more than two. In general, the number of such inte
that need to be evaluated isC2

k for single sided thresholds and 4C2
k

when two sided thresholds@of the type −ai øXistdøai# are con
sidered~see Appendix I!.

It must be noted, however, that there is a limitation on
applicability of the joint multivariate Poisson distributi
~Johnson and Kotz 1969!. For example, for the applicability of
bivariate Poisson distribution for two Poisson distributed ran
variablesN1 andN2

corrfN1,N2g = l3sl3 + l1d−1/2sl3 + l2d−1/2

ø ul3hl3 + minsl1,l2dj−1u s14d

whereli =parameters of the three mutually independent Poi
random variableshUiji=1

3 , defined in Eq.~1! and corr@·# denotes
correlation coefficient. However, in this study, we adopt an

verse approach whereby the parametersli are determined from
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the assumption that the multivariate Poisson distribution mod
valid. Thus the condition in Eq.~14! is always satisfied. This h
been illustrated further in the numerical examples to follow.
thermore, it must be emphasized in this context that the ass
tion that the number of level crossings being Poisson distrib
is not always valid. Cramer~1966! has shown that this assum
tion is asymptotically exact when the threshold levels increa
infinity. However, as pointed out by Vanmarcke~1975!, for bar-
rier levels of practical interest, this assumption results in e
whose size and effect depend strongly on the bandwidth o
processes~Vanmarcke 1972!. For wide-band processes, the P
son approximation makes no allowance for the time the proc
spend above the threshold levels while for narrow-band proc
the level crossings tend to occur in clumps. The multivariate m
els for joint level crossings, extreme value distributions, and
passage times developed in this paper are thus not free of
limitations.

Approximation for the First Passage Time

The probability distribution of the first passage times for a ve
random process is related to the probability of the number of
crossings being zero and is given by the relation

Pfù
i=1

k

Tfi
said . tig = Pfù

i=1

k

hNisai,0,tid = 0jg s15d

The joint PDF for first passage times can therefore be easily
structed in terms of the parameters of the joint PDF for a nu
of level crossings. For example, the joint PDF of first pas
time PTf1

Tf2
ss0,0ddst1,t2d for a bivariate random process, under

assumption thatPfTfi
=0g=0, for si =1,2d, is given by

PTf1
Tf2

us0,0dst1,t2d = 1 + exps− hkN1sa1,0,t1dl + kN2sa2,0,t2dl

− CovfN1sa1,0,t1d,N2sa2,0,t2dgjd

− expf− kN1sa1,0,t1dlg − expf− kN2sa2,0,t2dlg

s16d

If the conditionsPfTfi
=0g=0 si =1,2d are not satisfied, Eq.~16! is

modified as

PhfTf1
sa1d , t1g ù fTf2

sa2d , t2gj

= PTf1
Tf2

s0,0d + h1 − PTf1
Tf2

s0,0djPTf1
Tf2

us0,0dst1,t2d s17d

The procedure of computations forkN1sa1,0 ,t1dl, kN2sa2,0 ,t2dl,
and CovfN1sa1,0 ,t1d ,N2sa2,0 ,t2dg is essentially the same as o
lined in Appendix I. A modification in the formulation is, ho
ever, required ast1Þ t2, the details of which have been work
out in Appendix II. The joint PDF for first passage times can
constructed fork.2 following similar arguments outlined in th
section.

The marginal distribution for first passage time is given
PTf1

st1d=PTf1
Tf2

st1,`d. Whent2=`, for a given levela2, there are

infinite number of crossings ofX2std, from which it follows tha
kN2sa2,0 ,t2dl=`. Thus, from Eq.~16!, we get

PTf1
Tf2

st1,`d = 1 + expf− kN1sa1,0,t1dl − ` + cg

− expf− kN1sa1,0,t1dlg − expf− `g

= 1 − expf− kN1sa1,0,t1dlg, s18d
where c=CovfN1sa1,0 ,t1d ,N2sa2,0 ,t2dg. The marginal distribu-
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tion function,PTf1
st1d, is therefore seen to be exponential, wh

conforms to the existing studies in the literature.

Approximation for Extreme Value Distribution

Extreme values of random processes, defined asXmi
=max0,t,ti

Xistd si =1, . . . ,kd, are random variables and their jo
probability distribution function is related to their first pass
times through the relation

Pfù
i=1

k

sXmi
ø aidg = Phù

i=1

k

fTfi
said . tigj s19d

where ti =T for si =1, . . . ,kd. Using Eqs.~15! and ~19!, the joint
extreme value distribution function can be expressed in term
the probability distributions of zero crossings of their respec
levels ai, for a vector of random processes. Thus fo
k-dimensional vector of Gaussian random processeshXistdji=1

k , the
joint probability distribution of extremes is given by

PXm1
¯Xmk

sa1, . . . ,akd = expF− o
i=1

ksk+1d/2

liG s20d

wherehliji=1
ksk+1d/2 are the parameters ofC1

k+C2
k=ksk+1d /2 mutu-

ally independent Poisson random variableshUiji=1
ksk+1d/2.

The marginal extreme value distribution function is rela
to the joint distribution through the relationPXmi

said
=PXm1

¯Xmi
¯Xmk

s` , . . . ,ai , . . . ,`d. Thus, for a bivariate extrem

value distribution, the marginal distribution is given
PXm1

sa1d=PXm1
Xm2

sa1,`d. For thresholda2=`, the number o

level crossings forX2std is zero, from which it follows tha
kN2s` ,0 ,t2dl=0 and CovfN1sa1,0 ,t1d ,N2s` ,0 ,t2dg=0. The ex
pression for the bivariate extreme value distribution, in term
the statistics ofNisai ,0 ,tid, is obtained from Eqs.~20! and ~2!,
and substitutinga2=`, we get

PXm1
Xm2

sa1,`d = exph− kN1sa1,0,t1dl − kN2sa2,0,t2dl

+ CovfN1sa1,0,t1d,N2s`,0,t2dgj

= expf− kN1sa1,0,t1dlg s21d

The above result, along with Eq.~4!, shows that the margin
distribution PXm1

sa1d is Gumbel, which conforms to the existi

results in random vibration literature. This also satisfies the
quirement for multivariate extreme value distribution functi
which specifies that the marginals should be nondegenerate~Kotz
and Nadarajah 2000!.

Numerical Examples

Two numerical examples are considered to illustrate the sa
features of the proposed model. A detailed parametric stu
first carried out on two mutually correlated, stationary, Gaus
random processes in order to study the effect of correlation o
parent processes on the joint distribution functions for first
sage time and extreme values. The second example deals w
response analysis of a two-span bridge subjected to spatially
ing random earthquake support motions. The motivation for
study is to demonstrate the effectiveness of the proposed the

reliability calculations for real life engineering structures. The

JO
analytical results for the two examples are compared with t
obtained from full scale Monte Carlo simulations.

Example 1: A Two-Dimensional Vector Random
Process

Consider two jointly stationary, zero mean, Gaussian random
cessesX1std andX2std with specified autocorrelation functions

R11std = S1
2 expf− at2g s22d

R22std = S2
2 expf− bt2g s23d

respectively, witha ,b.0. The auto-PSD ofX1std and X2std are
obtained from the Wiener–Khintchine relations and are den
by S11svd andS22svd. The cross-PSDS12svd is given by

S12svd = csvduS11svdS22svdu0.5expfigsvdg s24d

where gsvd=phase spectrum andcsvd=coherence spectrum
which takes values in@0,1#. We assumecsvd to have a consta
valuec, such that 0øcø1, for all v andgsvd=v /c with c=8.
Clearly, if c=0, X1std and X2std are independent and, if,c=1.0,
they are fully coherent.a and b are taken to be 100 and 15
respectively, andS1 and S2 are assumed to be equal toÎ2. The
bandwidth of the processesX1std andX2std, measured in terms
the spectral parameter,q=f1−l j1

2 / sl j0
l j2

dg0.5 ~Vanmarcke 1972!,
are, respectively, 0.6030 and 0.6032. It must be noted thatq takes
values in@0,1#, with small values denoting narrow-band proce
and relatively large values denoting wide-band processes
cross-correlation function is the Fourier transform ofS12svd and
is shown to be of the form

R12std = Î2cS1S2exph− 2abstc − 1d2/

fsa + bdc2gj/hsabd0.25s1/a + 1/bd0.5j s25d

The effect of coherence on the bivariate extreme value dis
tion is studied by assumingc to have values equal to 0.05, 0.
and 0.95, respectively. Contour plots ofPXm1

Xm2
sx1,x2d, that is,

plots of the relation betweenx1 and x2, such thatPXm1
Xm2

sx1,x2d
=p, for different values ofp, are shown in Fig. 1 for the bivaria

Fig. 1. Level curves ofPXm1
Xm2

sx1,x2d for the bivariate stationar

Gaussian random process~Example 1!, c=0.50; the numbers on th
figure indicate probability levels
extreme value distribution ofX1std and X2std, whenc=0.50 and

URNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005 / 715
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T=10 s. Henceforth in this paper, the plots of this type are
ferred to as level curves. The analytical predictions are valid
with those obtained from Monte Carlo simulations. Based on
known PSD matrix ofX1std and X2std, an ensemble of 5,00
samples for the vector stationary, Gaussian processes are di
simulated using the well-known spectral decomposition met
From each of these samples, the extremes ofX1std andX2std, over
the specified duration, are detected. The resulting ensemb
extreme values is processed subsequently to estimate the
PDF. The analytical results are observed to be in fairly g
agreement with those obtained from Monte Carlo simulati
especially in the higher end of the probability distribution fu
tion. This is to be expected since the assumption of Poisson c
ing is more realistic toward the tails of the probability distribut
functions. The joint PDFPXm1

Xm2
sx1,x2d was found to be signifi

cantly dependent on the parameterc; thus, for instance, the valu
of PXm1

Xm2
s3,3d for c=0.05, 0.050, and 0.95, was observed to

0.5614, 0.5638, and 0.6542; the corresponding results from
Monte Carlo simulations were 0.5737, 0.5867, and 0.674
comparison of the conditional distributionPXm1

Xm2
sx1uXm2

=x2d
with the univariate probability distribution function,PXm1

sx1d, is

shown in Fig. 2, whenXm2
=3 and for various values ofc. As the

coherence between the parent random processes weaken, t
ditional distribution is observed to approach the univariate P
as expected, and the differences almost vanish whenc=0.05.
Similar plots were constructed forXm2

=2.0 andXm2
=2.5 and an

examination of these figures~not shown here! revealed that th
impact of linear dependence is negligible for values ofc,0.5,
indicating that the dependence is unimportant unless the
cesses are highly coherent. It is of interest to note that Ditle
~1979!, in his studies on the series system reliability of struct
under random static loads, observed a similar insensitivity o
system reliability when the correlation coefficients between
performance functions of the various failure modes were b
0.5.

Similar studies on the bivariate distribution function for fi
passage times have also been carried out. Fig. 3 illustrate
level curves for the bivariate PDF for first passage ti
PTf1

Tf2
st1,t2d whenc=0.95 and the normalized thresholdsx1 and

Fig. 2. Comparison of the conditional probability distributi
function ~PDF! PXm1

uXm2
sx1uXm2

=3d with the univariate PDFPXm1
sx1d
x2 are taken to 3 and 2, respectively. The analytical predictions

716 / JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005
t

n-

are compared with those obtained from Monte Carlo simulat
Here, the spectral decomposition method is once again us
digitally simulate an ensemble of 5,000 samples of the time
tories. In each of these samples, the time length of the sam
increased until the specified threshold is crossed for the first
The resulting ensemble of first passage times, so obtained, i
cessed subsequently to estimate the joint PDF ofTf1

andTf2
. The

number of terms,Ns, considered in the spectral expansion in
simulation procedure depends on the time length of the pro
T, and the spectral bandwidthdv=svu−vld and is given byNs

=DvT/2p. In this example, we considervu=0 and vl =30 Hz.
The close agreement that is observed to exist between the p
tions serves to illustrate the acceptability of the proposed m
The conditional distribution for first passage timePTf1

uTf2
st1uTf2

=6d is compared with the univariate PDF for first passage
whenc=0.95 in Fig. 4. Once again, a good agreement is obse

Fig. 3. Level curves for the bivariate first passage timePTf1
Tf2

st1,t2d
for bivariate stationary, Gaussian random processes forc=0.95 and
normalized thresholdsx1=3 andx2=2 ~Example 1!; the numbers o
the figure indicate probability levels

Fig. 4. Comparison of the conditional probability distribut
function ~PDF! for first passage timePTf1

uTf2
st1uTf2

=6d and the

univariate PDFPTf
st1d; ~Example 1!
1
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between the analytical and simulation results. The differenc
the probability levels between the conditional distribution and
univariate PDF can be attributed to the coherence betwee
parent random processes.

The applicability of the proposed bivariate Poisson model
in this example is checked for the condition given in Eq.~14!. For
c=0.05, l1, l2, and l3 are 0.0075, 0.0092, and 1.1776310−6,
respectively, and correspondingly, corrfN1,N2g=1.4093310−4 is
less than the upper bound 1.5597310−4. For c=0.50, l1

=0.0074, l2=0.0091, l3=1.8076310−4, the upper bound
0.0239 and corrfN1,N2g=0.0216. Similarly, forc=0.95, the thre
parametershliji=1

3 are, respectively, 0.0035, 0.0052, and 0.00
corrfN1,N2g=0.4802 which is less than the bound 0.5314. Th
observations conform to the expectation that, in our study
~14! is always satisfied since the study employs an inverse
proach to determine parametershliji=1

3 .

Example 2: Two Span Bridge under Seismic
Excitations

A two-span bridge, idealized as a two-span Euler–Bernoulli b
with three supports, with the beams assumed to be contin
over the interior support, is considered. The structure is tak
have a constant mass per unit lengthm and flexural rigidityEI,
such thatEI /m=40.503106 m4/s2. The spans are assumed to
of length 55 and 45 m, respectively. The structure is discre
into 40, two-noded beam elements, with one translational an
rotational degree of freedom per node. A free vibration ana
revealed that the first five natural frequencies of the structur
3.79, 6.70, 14.68, 22.37, and 32.49 Hz, respectively.

The bridge is assumed to be subjected to spatially va
earthquake accelerations with zero mean. Only the trans
component of the earthquake accelerations at the three su
are considered in the analysis and is specified through a36
PSD matrix. The auto-PSD functions for the accelerations a
ith support,Sii , are assumed to be of the form

Siisvd = S0i
Vi

2sVi + 4hi
2v2d/hsVi

2 − v2d2 + 4shiVivd2j s26d

whereS0=measure of the intensity of the ground acceleration
Vi andhi are parameters dependent on the local soil conditio
the ith support. It is assumed that sV1,V2,V3d
=s1.72,1.59,1.52d Hz and sh1,h2,h3d=s0.60,0.55,0.50d. The
accelerations at all the supports are assumed to have the
measure of intensityS0i

=0.014 m2/s4 si =1,2,3d. The coherenc
function of the ground accelerations between any two suppoj ,
l, j Þ l s j , l =1,2,3d is of the form~Der Kiureghian 1996!

g jlsvd = ug jlsvduexpfiF jlsvdg s27d

and in the present study, the parametersug jlsvdu and F jlsvd are
modeled as per Abrahamson et al.~1991! and are given by

ug jlsvdu = tanhhsa1 + a2Djldfexphsb1 + b2Djldfj + 1/3fcg + 0.35j

s28d

F jlsvd = − i loghhjlsvdexpfif jlsvdg + f1 − hjlsvdgexpfiusvdgj

where f jlsvd=vDjl /V, hjlsvd=h1+sf /19d4j−1, a1=2.535, a2

=−0.0118,b1=−0.115,b2=−8.37310−4, c=−0.878,V=500 m/s
andDjl is the distance between supportsj and l.

The structure is analyzed separately for the dynamic and
dostatic components of the midpoint displacements at the
spans. The safety of the bridge structure is assumed to be d

through the dynamic components of the midpoint displacements,

JO
e

D1std andD2std, respectively. For the dynamic analysis, the da
ing is assumed to be viscous and proportional. The mass
stiffness proportionality constants are adjusted such tha
damping is 5% in the first two modes and are, respectively, t
to be 0.4939 s−1 and 2.9960310−5 s. Since the excitations at t
supports are stationary, Gaussian random processes and
structural behavior are assumed,D1std and D2std, for large t, are
also jointly stationary, Gaussian random processes whose
PSD functions@SD1D1

svd and SD2D2
svd# and cross-PSD functio

fSD1D2
svdg are obtained as linear combinations ofSij si , j

=1,2,3d. The coherence spectrum forD1 andD2 is expressed a
ugsvdu=SD1D2

svd / fSD1D1
svdSD2D2

svdg0.5 and was observed to ta
values over a range of about 0.2–1.0, as frequency was v
over 0–40 Hz. The spectral shape factors,q, for D1std andD2std
are, respectively, 0.3216 and 0.3424. The threshold displace
for the random processesD1 andD2 are normalized with respe
to their respective standard deviations and the normalized th
olds are varied from 2 to 4. The level curves for the bivar
extreme value distributionsPDm1

Dm2
sd1,d2d obtained from th

analysis are shown in Fig. 5. The extreme value distributions
determined for time durationsT=9 s. The procedure to obta
results from Monte Carlo simulations is the same as that us
Example 1. Here, 1,000 samples of time histories ofD1std and
D2std are digitally simulated based on the knowledge of a
matrix of D1std and D2std. This leads to an ensemble of 1,0
realizations of extremes and the first passage times, whic
turn, are processed to estimate the desired joint PDFs. The
curves for the extreme value distributions obtained from
analysis are observed to bear a close resemblance to tho
tained from Monte Carlo simulations. The parameters consid
in using the spectral decomposition method for simulating
histories arevl =0.1 rad/s,vu=250 rad/s, andNs=358. As ex
pected, the agreement is observed to be better at the higher
the joint distribution function where the assumption of Pois
crossings is more realistic. Fig. 6 compares the conditional
PDm1

Dm2
sd1uDm2

=d2d with the univariate PDFPDm1
sd1d for nor-

malized thresholdd2=3.2. The analytical predictions can be s
to be in close agreement with those obtained from Monte C

Fig. 5. Level curves forPDm1
Dm2

sd1,d2d for stationary, Gaussia

random processesD1std and D2std ~Example 2!; the numbers on th
figure indicate probability levels
simulations on 1,000 samples, especially at higher threshold lev-
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els. The difference in the probability levels between the co
tional PDF and the univariate PDF is again due to the cohe
between the parent random processesD1std andD2std. The bivari-
ate PDF for first passage times,PTf1

Tf2
st1,t2d, is constructed fo

0ø t1, t2ø40 s. The normalized thresholdsd1 andd2 were taken
to be 3 and 2, respectively. The level curves for the joint P
PTf1

Tf2
st1,t2d obtained from both analysis as well as simulati

carried out on 1,000 samples, are shown in Fig. 7. It is obse
that the analytical predictions are in close agreement with
predictions based on Monte Carlo simulations at higher thres
levels. For the bivariate Poisson distribution used in this exam
the parametersl1, l2, andl3, respectively, turn out to be 0.010
0.0145, and 2.8506310−5. Using these values in Eq.~14!, we get
corrfN1,N2g=0.0023 and the upper bound is 0.0026. Thus, a

Fig. 6. Comparison of the conditional probability distributi
function ~PDF! PDm1

uDm2
sd1uDm2

=3.2d and the univariate PD

PDm1
sd1d ~Example 2!

Fig. 7. Level curves for the joint probability distribution function f
first passage timePTf1

Tf2
st1,t2d for the two stationary, Gaussi

random processes,D1 andD2 ~Example 2!; the numbers on the figu
indicate probability levels
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the previous example, we see that the inverse approach ado
this study to determine the parametersli always satisfies the co
dition given in Eq.~14!.

Conclusions

Approximations for the joint probability distribution functions
the number of level crossings, the first passage times, an
extreme values associated with a vector of mutually correl
stationary, Gaussian random processes have been develope
proposed approximations predict that for mutually correlated
ent processes, their respective number of level crossings,
first passage times, and their extreme values are also corre
These predictions have been validated by Monte Carlo sim
tions carried out on the examples considered in this paper
multivariate extreme value distribution inherits the inaccura
associated with the marginal distributions, as reported in th
erature, when level crossings are modeled as Poisson ra
variables. The marginal distributions derived from the joint p
ability distribution functions for first passage times and extr
values are found to be exponential and Gumbel, respectively
these confirm the existing studies in the literature on scalar
dom processes. Existing studies on outcrossings involving
vector random process essentially formulate the problem
outcrossing of a scalar random process. In this context, the
posed method can be viewed as an alternative approach whe
joint outcrossings of vector random processes have been st
The proposed multivariate extreme value distribution funct
have applications in reliability analyses of structural systems
multiple limit states. Further work involving extension of the p
posed method to problems involving nonstationary and
Gaussian random processes is currently being pursued b
present writers.
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Appendix I

kN1sa1,0 ,TdN2sa2,0 ,Tdl is obtained as a six-dimensional integ
and if only level crossings with positive slopes are conside
one gets

kN1
+N2

+l =E
0

TE
0

TE
−`

` E
−`

` E
0

` E
0

`

hẋ1ẋ2dfx1 − a1gdfx2 − a2g

3pX1X2Ẋ1Ẋ2
sx1,x2,ẋ1,ẋ2;t1,t2djdx1dx2dẋ1dẋ2dt1dt2

s29d

Here, Ni
+ denotes crossing of levela with positive slope. Th
inner four integrals can be simplified and written as



n

dom
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ded,
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ative
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-
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-
tions

g

s.”

tics

to-
Ist1,t2d =E
0

` E
0

`

ẋ1ẋ2pX1X2Ẋ1Ẋ2
sa1,a2,ẋ1,ẋ2;t1,t2ddẋ1dẋ2

s30d

For stationary random processesX1st1d and X2st2d, Ist1,t2d= Ist2
− t1d. Substitutingt= t2− t1 in Eq. ~30! leads to the simplificatio

kN1
+N2

+l =E
−T

T

sT − utudIstddt s31d

If X1std andX2std are assumed to be stationary Gaussian ran
processes, the four-dimensional joint pdfpX1X2Ẋ1Ẋ2
sa1,a2, ẋ1, ẋ2; t1,t2d is also Gaussian and is of the form

pX1X2Ẋ1Ẋ2
sa1,a2,ẋ1,ẋ2;t1,t2d = 1/s4p2uDu0.5dexpf− 0.5hZ8D−1Zjg

s32d

whereZ8=fa1a2ẋ1ẋ2g8 and

D = 3
s1 rstd 0 r8std

rstd s2 − r8std 0

0 − r8std m1 − r9std
r8std 0 − r9std m2

4 s33d

Here, s1=kX1
2st1dl, s2=kX2

2st2dl, m1=kẊ1
2st1dl, m2=kẊ2

2st2dl, rstd
=kX1st1dX2st2dl, and k]X1

mst1d /]t1
m]X2

nst2d /]t2
nl=s−1dm]rm+n/]tm+n.

Using arguments provided in Cramer and Leadbetter~1967!, Eq.
~32! can be simplified to get

pX1X2Ẋ1Ẋ2
sa1,a2,ẋ1,ẋ2;t1,t2d

= 1/s4p2uDu0.5dexpf− 0.5sb0 + b1ẋ1 + b2ẋ2 + b3ẋ1
2

+ b4ẋ2
2 + b5ẋ1ẋ2dg, s34d

where

b0 = hM11a1
2 + sM21 + M12da1a2 + M22a2

2j/uDu

b1 = hsM31 + M13da1 + sM32 + M23da2j/uDu

b2 = hsM41 + M14da1 + sM42 + M24da2j/uDu

b3 = M33/uDu

b4 = M44/uDu

b5 = hM33 + M44j/uDu s35d

uDu denotes the determinant ofD and Mij si , j =1, . . . ,4d
=cofactors ofD. After substituting Eq.~34! in Eq. ~32!, the re-
sulting integral was evaluated symbolically usingMAPLE, to get

Istd = expf− b0/2g/s4P2uDu0.5d

3E
0

`

ẋ2I0sẋ2dexpf− 0.5sb2ẋ2 + b4ẋ2
2dgdẋ2 s36d

where

I0sẋ2d = s1 + 0.6267csẋ2dexph0.1250c2sẋ2dj

3herff0.3536csẋ2dg − 1jd/b3 s37d

and csẋ2d=sb1+b5ẋ2d / sb3d0.5. Eq. ~31!, together with Eq.~36!,
thus leads to a double integral which needs to be evaluate

merically. Also, if the processes are uncorrelated,rstd=0, and it

JO
can be shown thatpX1X2Ẋ1Ẋ2
sa1,a2, ẋ1, ẋ2; t1,t2d in Eq. ~32! can be

replaced aspX1
sa1dpX2

sa2dpẊ1
sẋ1dpẊ2

sẋ2d. This facilitates a close

form solution of Eq. ~29! and it can be shown thatkN1N2l
=kN1lkN2l, wherekNil corresponds to the form given in Eq.~4!.

When level crossings with negative slopes are also inclu
Ni =Ni

++Ni
−. Here, Ni

− denotes the crossing of level −a with a
negative slope. ThuskN1N2l=kN1

+N2
+l+kN1

+N2
−l+kN1

−N2
+l+kN1

−N2
−l.

The evaluation of each of these expectations requires the so
of a six-dimensional integration of the form given in Eq.~29!.
The domain of integration with respect toẋi depends on wheth
the level crossing considered is with a positive slope or neg
slope and is eitherf0, +`g or f−` ,0g. The joint pdf, given by Eq
~34!, is an odd function with respect toẋi, and hence four inte
grals of the form given by Eq.~29! need to be evaluated to d
terminekNiNjl. On the other hand, for a scalar stationary Ga
ian random process, the joint pdfpXẊsx, ẋd is an even function i
ẋ. ThuskNi

+l=kNi
−l, andkNil is obtained by multiplying the righ

hand side of Eq.~4! by a factor of 2.

Appendix II

When t1Þ t2Þ t, the expression forkN1sa1,0 ,t1dN2sa2,0 ,t2dl, as
given in Eq.~31!, needs to be modified. Following similar arg
ments as in deriving the expressions in Eq.~31!, we get

lNiNj
=E

−ti

t j−ti

htj − utu + utj − tiujIstddt +E
t j−ti

0

tjIstddt

+E
0

t j

sti − tdIstddt if tj ø ti

=E
Ti

0

sti − utudIstddt +E
0

t j−ti

tiIstddt

+E
t j−ti

t j

stj − tdIstddt if tj . ti s38d
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