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The problem of characterizing response variability and assessing reliability of vibrating
skeletal structures made up of randomly inhomogeneous, curved/straight Timoshenko
beams is considered. The excitation is taken to be random in nature. A frequency-domain
stochastic "nite element method is developed in terms of dynamic sti!ness coe$cients of the
constituent stochastic beam elements. The displacement "elds are discretized by using
frequency- and damping-dependent shape functions. Questions related to discretizing the
inherently non-Gaussian random "elds that characterize beam elastic, mass and damping
properties are considered. Analytical methods, combined analytical and simulation-based
methods, direct Monte Carlo simulations and simulation procedures that employ
importance sampling strategies are brought to bear on analyzing dynamic response
variability and assessment of reliability. Satisfactory performance of approximate solution
procedures outlined in the study is demonstrated using limited Monte Carlo simulations.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Problems of response analysis and reliability assessment of structural dynamical systems,
characterized by spatially inhomogeneous random properties, are currently receiving wide
research attention [1, 2]. In addition to the discretization of displacement and force "elds,
this class of problems requires discretization of structure property random "elds [3}5]. This
results in the replacement of continuously parametered, spatially varying random "elds by
a set of equivalent random variables. Consequently, the structural matrices become
functions of these random variables. Subsequent solution steps are carried out in
a probabilistic framework and typically involve eigenvalue analysis, uncoupling of
equations of motion, forced response characterization and reliability estimation. This
requires application of perturbation/Neumann series expansions or Monte Carlo
simulation techniques that result in the determination of measures of response variability
and structural reliability [6}8].
Recently, Manohar and Adhikari [9] and Adhikari and Manohar [10, 11] adopted the

dynamic sti!ness matrix approach for analyzing dynamic response of skeletal structures
made up of randomly inhomogeneous Euler}Bernoulli beams. These authors employed
frequency-dependent shape functions to discretize both the displacement "elds and the
structure property random "elds. These shape functions were also dependent on the mass
and sti!ness properties of the system. This leads to a new form of frequency-dependent
weighted integrals in contrast to the weighted integral approach proposed earlier [12}15] in
the context of static problems. More importantly, the proposed method eliminated the need
022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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for performing the di$cult task of stochastic eigenvalue analysis before the dynamic
response could be determined. The use of frequency-dependent shape functions ensured
that the discretization scheme adapted itself to the driving frequency ranges, thereby,
relieving the dependency of mesh size in relation to the excitation frequency. The studies by
Manohar and Adhikari were limited to the estimation of measures of response variability
and could handle only Gaussian models for structural property random "elds.
Subsequently, Manohar et al. [16] employed extensive Monte Carlo simulations to
examine the dependence of response variability in skeletal structures on the choice of
probability density function (pdf) and auto-correlation function models.
In this study, the earlier formulations of Manohar and Adhikari are extended to include

the following new features:

1. Development of stochastic dynamic sti!ness matrix for randomly inhomogenous
circular/straight Timoshenko beams.

2. Use of frequency-dependent shape functions that are additionally dependent on
damping; this enables treatment of damping characteristics in a more systematic
manner.

3. The structure property random "elds are modelled as being non-Gaussian.
Speci"cally, it is assumed that the structural properties, such as mass and Young's
modulus, have bounded ranges which ensure that these quantities do not assume
negative values. The information available on these random "elds is taken to be
limited to the range, mean and covariance functions. Based on this information, a "rst
order non-Gaussian pdf is obtained by invoking the principle of maximum entropy.
This, in conjunction with the knowledge on covariance functions, is further employed
to develop Nataf's models for the random "elds [17, 18].

3. An alternative random "eld discretization scheme, based on weighted integral
approach and optimal linear expansion (OLE) [19], is used to discretize the system
property random "elds. This study also clari"es a few aspects relating to discretization
of non-Gaussian random "elds using OLE.

5. Finally, measures on reliability are estimated by using the results on "rst passage
failure of randomly excited systems and also by using importance sampling-based
Monte Carlo simulations.

2. RANDOMLY INHOMOGENEOUS CURVED TIMOSHENKO BEAM ELEMENT

The "eld equations governing the motion of an inhomogeneous circular Timoshenko
beam (Figure 1) and the set of admissible boundary conditions are determined by applying
Hamilton's principle [20] and are reproduced here as follows:

� (�)A (�)R
��=

�t�
#c

�
(�)

�=
�t

!

�
�� ��

kM A (�)G (�)
R �

�=
�� �#�

E(�)A (�)
R �=

!

�
�� ��

kM A (�)G(�)
R

#

E (�)A(�)

R �<�#
�

��
[(kM A (�)G (�))�]"0, (1)

�(�)A(�)R
��<

�t�
#c

�
(�)

�<
�t

!

�
�� ��

E (�)A(�)

R �
�<
�� �#

�
�� ��

kM A(�)G(�)
R �<�

#

�
�� ��

E(�)A (�)

R
#

kM A(�)G(�)
R �=�!kM AG(�)�"0, (2)



(a) (b)

b
d φ

φ φ= 0 φ φ= f

Radius = R

ψ
v

w

Figure 1. Inhomogeneous curved Timoshenko beam element: (a) front view, (b) cross-sectional view; E(�), G(�),
�(�), b(�), d(�), c

�
(�), c

�
(�) and c

�
(�) are random "elds.
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In these equations, E and G are, respectively, Young's and shear modulus, kM is the shape
factor, � is the mass density, b and d are, respectively, the breadth and depth of the
cross-section, A"bd is the area of the cross-section, I" �

��
bd� is the moment of inertia

about the axis of rotation, R is the radius of curvature and c
�
, c

�
and c
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are the viscous

damping coe$cients along the radial, tangential and rotational displacements respectively.
Equations (1}3) represent a set of linear partial di!erential equations in the spatial
co-ordinate� and time t, with=,< and�, respectively, denoting the radial, tangential and
rotational displacements. Furthermore, the stress resultants, namely, bending moment (M),
shear force (S) and axial force (F) are obtained, respectively, as
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In these equations, the subscript 0 indicates the nominal values, 0(�
�
�1 (k"1,2, 8) are

deterministic constants denoting the strength of the randomness and f
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that the sample realizations of the beam have su$ciently smooth behaviour so that the
various stress resultants and boundary conditions (such as those at the free edge) are
satisfactorily described. The third condition is required for the development of the
procedure used in this study. It may be noted that these conditions impose restrictions
essentially on the covariance model of the random "elds. Furthermore, since the quantities
on the right hand-side of equation (7) denote strictly positive physical parameters, f
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mutually dependent as might be expected. It is to be noted that the nominal cross-section of
the beam is taken to be rectangular. By virtue of stochastic perturbations impressed on b (�)
and d (�), the sample realization of beam cross-section depart from strict rectangular shape.
On account of this, the beam displacements=, < and� can be expected to get coupled to
the twisting of the beam. This secondary coupling e!ect, however, is not considered in this
study.
In order to postulate models for probability distribution, it is assumed that the
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Using variational calculus, it can be shown that the resulting optimal pdf has the form
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These equations are solved iteratively to obtain Y
��
.

3. FORMULATION OF DYNAMIC STIFFNESS MATRIX

Figure 2 shows a circular curved Timoshenko beam element in which harmonic
displacements �
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Figure 2. Displacement and force boundary conditions for formulation of the dynamic sti!ness matrix for
curved Timoshenko beam element.
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(k"1,2,6) where i"�!1 and � is the driving frequency. The dynamic sti!ness matrix
D (�) for the beam element relates these displacements � (�) and forces F (�) through the
equation

D(�)� (�)"F (�). (16)

Clearly, for a damped beam element with stochastic inhomogeneities in the beam
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It may be noted that the coe$cients of these equations are complex valued and are also
random in nature. The determination of D (�) requires the solution of equations (20}22)
under two sets of boundary conditions given by
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Thus, equations (20}22), together with the boundary conditions in equations (23) and (24),
constitute a set of stochastic boundary value problems. An exact solution to this problem is
currently not feasible. To proceed further, it is essential to either employ an approximate
procedure or resort toMonte Carlo simulations. In this study, Galerkin's method is used to
seek approximate solutions and these are validated using Monte Carlo simulations.

3.1. DISCRETIZATION OF DISPLACEMENT FIELDS

The "rst step in the implementation of Galerkin's method is to represent the displacement
"elds as
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(k"1,2,6) are the displacement shape functions. In this study, the shape functions are
derived by solving the "eld equations (20}22) with the beam properties taken to be
independent of � and equal to their nominal values, i.e., E
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The uncoupling of the "eld equations [22] and the corresponding formulation of the shape
functions is described in Appendix A. The shape functions derived in this manner are
functions of frequency and damping, and are thus complex valued. A distinct feature of
these shape functions is that the spatial variations of these functions adapt themselves to the
frequency of harmonic excitations and possess the well-known property: N
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illustrated in Figure 3. It can be seen from this "gure that at zero excitation frequency, the
shape function resembles the corresponding static shape function.

3.2. DISCRETIZATION OF RANDOM FIELDS

One of the key steps in the application of "nite element method to problems involving
stochastic inhomogeneities is the discretization of the system property random "elds. In the
present study, two alternative schemes are considered for this purpose.

3.2.1. =eighted integral approach

In this method, the random "elds are discretized implicitly using the same shape
functions that have been used in discretizing the displacement "elds (section 3.1). This
typically results in integrals of the form
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Clearly, for a "xed �,W
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(�) is a random variable. Furthermore, in the present study, since

the shape functions are complex valued, the weighted integrals, for a "xed �, in turn,
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become complex valued random variables. It may be noted that, for static applications, the
weighted integrals are real valued with dependency on frequency being of no relevance
[14, 15]. If G[ f

�
(�),2, f

	
(�)] is a Gaussian "eld, it follows that W

��
(�) is a Gaussian

random variable. However, Gaussian models for strictly positive quantities such as density
and elastic rigidities are inappropriate, especially, if measures on structural reliability are to
be estimated. On the other hand, if G[ f

�
(�),2, f

	
(�)] is non-Gaussian; in general, it is not

possible to obtain the probability distribution ofW
��
(�) [23]. However, the moments of the

weighted integrals can be obtained in terms of moments of G[ f
�
(�),2, f

	
(�)] [24].

3.2.2. Optimal linear expansion

In this method, the choice of the shape functions used for discretizing the structure
property random "elds are divorced from any considerations on discretization of
displacement "elds. Here, a random "eld is represented by

fI (�)"
�
�
���

S
�
(�) f (�

�
), �

�
)�)�

�
, (29)

where S
�
(�) are deterministic functions, n is the number of nodal points and f (�

�
) are

random variables. Following Li and Der Kiureghian [19], S
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is minimized, subject to the constraint that ��
�
	"0. This leads to the solution
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Noting that B
��

"B
��
, it may be veri"ed by direct substitution that, S

�
(�

�
)"�

��
(k"1,2, n) is a solution of equation (33). Furthermore, since the rank of the coe$cient
matrix in the above equation is n, the solution S

�
(�

�
)"�

��
is the only solution. This

property is illustrated in Figure 4 where the "rst six shape functions are obtained for
a random "eld with covariance function of the form R

��
(�)"exp[!���], with �"7)3,

which is used in the examples considered later in the paper. The property that S
�
(�

�
)"�

��
is

clearly evidenced in this "gure. As a consequence of this property, it follows that the "rst
order pdf of fI (�) matches exactly with the corresponding pdf of f (�) for �"�

�
(l"1,2, n).

This implies that the mean square error ���
�
	 becomes zero at �"�

�
(l"1,2, n). The

choice of n is made by requiring that the global error 
�
�

(�

���
�
	d� remains less than the

prescribed limit. Figure 5 shows the PDF of fI (�) at �"�
�
obtained using Monte Carlo

simulations with 500 number of samples. The plot is displayed on a normal probability
paper. For the purpose of comparison, the PDF of a normal variate with the same mean
and standard deviation as that of fI (�

�
) is also shown in this graph. The non-Gaussian

feature of fI (�
�
) is clearly discernible from this "gure. A similar plot for a point � that does

not coincide with any of �"�
�
(l"1,2, n) is shown in Figure 6. Here, fI (�) is obtained as

a weighted sum of n non-Gaussian random variables. Notwithstanding this summation, the
PDF of fI (�) is observed to remain non-Gaussian. Some of these features appears to have
not been appreciated in the earlier work of Li and Der Kiureghian [19].
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3.3. ELEMENTS OF THE STOCHASTIC DYNAMIC STIFFNESS MATRIX

In conjunction with the displacement shape functions and the representation of the
displacement "elds as in equations (17}19), the expressions for the total beam kinetic energy
T and strain energy U can be formulated. It can be shown that the kinetic energy is given
by

T"

1

2

�
�
���

�
�
���

zR
�
(t) zR

�
(t)�

��
(�), (34)

where

�
��
"�	

��
#�


��
#��

��
(35)

and

�	
��
"�

�
�

(�

R� (�)A(�)N
�
(�,�)N

�
(�,�) d�, (36)

�

��
"�

�
�

(�

R� (�)A (�)P
�
(�,�)P

�
(�,�) d�, (37)

��
��
"�

�
�

(�

R�(�)I(�)Q
�
(�,�)Q

�
(�,�) d�. (38)

Similarly, the strain energy is given by

U"

1

2

�
�
���

�
�
���

z
�
(t)z

�
(t)�

��
(�), (39)
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where

�
��
"��

��
#��

��
#��

��
, ��

i�
"K�

��
!K�

��
!K


��
#K�

��
,

��
��
"S�

��
#S�

��
#S�

��
#S�

��
!R (S�

��
#S�

��
#S�

��
#S�

��
)#R�S�

��
(40)

��
��
"�

�
�

(�

EI (�)

R
Q�

�
(�,�)Q�

�
(�,�) d�, (41)

K�
��
"�

�
�

(�

EA(�)
R

P�
�
(�,�)P�

�
(�,�) d�, (42)

K�
��
"�

�
�

(�

EA(�)

R
N

�
(�,�)P�

�
(�,�) d� (43)

K

��
"�

�
�

(�

EA(�)

R
P�
�
(�,�)N

�
(�,�) d�, (44)

K�
��
"�

�
�

(�

EA(�)
R

N
�
(�,�)N

�
(�,�) d�, (45)

S�
��
"�

�
�

(�

kAG(�)

R
P
�
(�,�)P

�
(�,�) d�, (46)

S �
��
"�

�
�

(�

kAG(�)

R
N�

�
(�,�)P

�
(�,�) d�, (47)

S �
��
"�

�
�

(�

kAG(�)
R

Q
�
(�, �)P

�
(�,�) d� (48)

S �
��
"�

�
�

(�

kAG(�)

R
P
�
(�,�)N�

�
(�,�) d�, (49)

S �
��
"�

�
�

(�

kAG(�)

R
N�

�
(�,�)N�

�
(�,�) d� (50)

S �
��
"�

�
�

(�

kAG(�)
R

Q
�
(�,�)N�

�
(�,�) d�, (51)

S �
��
"�

�
�

(�

kAG(�)

R
P
�
(�,�)Q

�
(�,�) d�, (52)
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S�
��
"�

�
�

(�

kAG(�)

R
N�

�
(�,�)Q

�
(�,�) d�, (53)

S �
��
"�

�
�

(�

kAG(�)

R
Q

�
(�,�)Q

�
(�,�) d�. (54)

The energy dissipated is similarly obtained as

C"�
�

�

�
�
���

�
�
���

zR
�
(t)zR

�
(t)C

��
(�) dt, (55)

where

C
��
"C�

��
#C�

��
#C


��
,

C�
��
"c

�
(�)N

�
(�,�)N

�
(�,�), (56)

C�
��
"c

�
(�)P

�
(�,�)P

�
(�,�), (57)

C

��
"c

�
(�)Q

�
(�,�)Q

�
(�,�). (58)

The primes ( � ) in the above equations represent derivatives with respect to the spatial
co-ordinate �. The governing equations for the generalized co-ordinates z

�
(t) can now be

obtained using Lagrange's equations, the ( ) ) denoting the derivative with respect to time:

d

dt �
�L
�zR

�
�!

�L
�z

�

"Q�
��

#Q
��
, k"1,2, 6. (59)

Here, !Q�
��
are the damping forces, Q

��
are the generalized forces, and the Lagrangian is

given by L (t)"T (t)!U(t). The stochastic dynamic sti!ness matrix is formulated from
Lagrange's equation and is thus a function of random variables characterized by the set of
dynamic weighted integrals. This leads to the formal representation of discretized equations
of motion of the form

M (�)zK (t)#C (�)z� (t)#K (�)z(t)"f� (t). (60)

Here,M, C and K are, respectively, the generalized, frequency-dependent, complex valued,
stochastic mass, damping and sti!ness matrices. It must be emphasized that these are
signi"cantly di!erent from the sti!ness, consistent mass and damping matrices encountered
in traditional "nite element method. Since the de"nition of dynamic sti!ness matrix is
essentially with reference to harmonic nodal actions, the forcing function f� (t) in the above
equation is taken to be of the form f� (t)"F (�) exp[i�t]. Furthermore, given the fact that
the system is linear, it follows that the response vector z (t) would have the form
z(t)"Z(�) exp[i�t]. It can be shown that the forcing vector F (�) and the response vector
Z(�) are related to each other through the relation

D (�)Z(�)"F (�). (61)
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Here, D (�) is the 6�6 element dynamic sti!ness matrix with elements given by

D
��
(�)"[!��M

��
(�)#i�C

��
(�)#K

��
(�)], (62)

whileZ(�) and F (�) are, respectively, the vectors of the Fourier transforms of the unknown
displacements and applied random forces. Even though the quantities Z(�) and F (�) are,
respectively, termed as the Fourier transforms of the functions z(t) and f� (t), it must be noted
that, strictly speaking, Fourier transforms of samples of stationary random processes do not
exist. However, if the functions are de"ned as z (t)"z (t), f� (t)"f� (t) for 0(t(¹

�
and

z(t)"0, f� (t)"0, for t'¹
�
, where ¹

�
is a speci"ed value of time t, then, as ¹

�
PR, the

PSD functions of these random processes are well de"ned, although the sample Fourier
transforms do not exist [21].
Since the matrices M(�), C(�) and K(�) are symmetric, it follows that the dynamic

sti!ness matrix D(�) is also symmetric. The stochastic dynamic sti!ness matrix D (�) has
a deterministic and a random component and can be represented as

D (�)"D
�
(�)#D

�
(�), (63)

D
���
(�)"!��M

���
(�)#i�C

���
(�)#K

���
(�), (64)

D
���

"

�
�
���

�
�
���

W
��
. (65)

Here, the subscripts 0 and r, respectively, denote the deterministic and the random parts and
W

��
are the weighted integrals. SinceW

��
"W

��
, the summation in equation (65) occurs only

over 21 independent terms (X
�
). Accordingly, equation (65) is re-written in the form

D
��
"D

���
#

��
�
���

�
���
X

�
(k, l"1,2,6), (66)

�
���

"�
��

�
��

for p"q,

�
���

"�
��

�
��
#�

��
�
��
for pOq,

(67)

� being de"ned in Appendix A (see equation (A.24)) and

X
�
"W

��
, X

�
"W

��
, X

�
"W

��
, X

�
"W

��
, X

�
"W

��
,

X
�
"W

��
, X

�
"W

��
, X

	
"W

��
, X

�
"W

��
, X

��
"W

��
,

X
��

"W
��
, X

��
"W

��
, X

��
"W

��
, X

��
"W

��
, X

��
"W

��
,

X
��

"W
��
, X

��
"W

��
, X

�	
"W

��
, X

��
"W

��
, X

��
"W

��
, X

��
"W

��
. (68)

It is seen that the dynamic sti!ness matrix of the beam element is a function of the weighted
integrals X

�
(k"1,2,21). The stochastic inhomogeneity in this approximation is thus

completely characterized by a set of 21 random variables.
However, if OLE is used for discretizing the random "elds, equation (29) is substituted for

f
�
(�) (k"1,2,8) in equation (28). The elements of the stochastic dynamic sti!ness matrix
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are now typically of the form

W
��
"

�
�
���

f
�
(�

�
)�

�
�

�
�

S
�
(�)N

�
(�, �)N

�
(�,�)d�. (69)

It must be noted that the integrals appearing in the above equation are deterministic in
nature. While this scheme of discretization introduces into the formulation possibly a larger
number of random variables as compared to the weighted integral approach, its advantage
lies in that the random variables resulting from the discretization of the random "elds retain
the non-Gaussian probability distributions of the original random "elds. This, in turn, is of
signi"cance in reliability computations.

4. RESPONSE ANALYSIS

For response variability analysis, beam systems driven by stationary excitations are
considered. These systems, thus, have two sources of uncertainties; the "rst is due to the
stochastic spatial inhomogeneities of the beam properties, the second is due to the random
nature of the external loads. To illustrate the capabilities of the dynamic sti!ness matrix
approach outlined in the previous section, attention is focussed on the variability in the
response PSD due to the uncertainties in structural properties. As a "rst step, the structure
property random "elds are discretized and the structural uncertainties are manifested in
terms of a vector of random variables. The PSD of the response of the structure,
conditioned on these random variables, are evaluated using standard frequency-domain
random vibration analysis. The mean and the standard deviation of the response PSD,
conditioned on these random variables, are estimated. The response variability analysis is
carried out using the three di!erent methods that are to be explained in the following
section. It must be noted that the advantage of studying the variability of the response PSD
is that it permits a detailed examination of the variability as a function of frequency. Studies
on global measures, such as response variance, do not permit such a detailed examination.

4.1. METHOD 1: NEUMANN'S EXPANSION IN TERMS OF WEIGHTED INTEGRALS

In this method, the response PSD is computed by inverting the stochastic dynamic
sti!ness matrix using Neumann's expansion [25]. Assuming the excitation to be
a stationary random process, the unknown displacement vector Z(�) is given by

Z(�)"[ I!Q (�)#Q� (�)!2]D
�
�
(�)F (�), (70)

where Q (�)"D
�
�
(�)D

�
(�) and I is the identity matrix. This leads to the PSD matrix for

displacements, given by

S
��
(��X0)"[ I!Q (�)#Q�(�)!2]D
�

�
(�)S

��
(�)D!1* �

�
(�)

[ I!Q (�)#Q� (�)!2]D!1* �

�
(�) , (71)

where the operator (*) denotes complex conjugation and the superscript t denotes matrix
transpose. The PSD, obtained in equation (71), is conditioned on the system property
random variables X0 and hence is itself a random quantity. The variability of the response
PSD is estimated by taking expectations across the ensemble of samples and calculating its
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moments. Considering only one-term approximation in the series in equation (71), the "rst
two moments, mean (�) and variance (��) are, respectively, given by

�
��
"�S

����
(��X0 )	"

�
�

���

�
�
���

�
�

���

�
�
���

�H
��
H*

��
	D
�

���
(�)D!1*

0
��
(�)S

����
(�) (72)
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��
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�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
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��
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��
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�
���
(�)D!1*
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��
(�)D
�

���
(�)D!1*

0

�
(�)S

����
(�)S

����
(�)!�� (73)

where �H
��
H*

��
	 and �H

��
H*

��
H

��
H*

�

	 are given, respectively, by

�H
��
H*

��
	"�

��
�
��

#�Q
��
(�)Q

��
(�)	 , (74)
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��
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��
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	. (75)

The second, third and fourth order moments of the elements of Q can further be expressed,
respectively, in terms of the second, third and fourth order moments of the weighted
integralsW. Thus, it follows that, the evaluation of mean of S

��
(��X0) requires knowledge

of mean and covariance of f
�
(�) (k"1,2,8), while the evaluation of the variance of

S
��
(��X0) demands knowledge of upto fourth order moments. If more than one term is

retained in Neumann's expansion, the evaluation of the "rst two moments of S
��
(��X0)

would require still higher order moments of f
�
(�). Since the information on these higher

order moments are expected to be unavailable, and also for the sake of mathematical
expediency, a Gaussian closure assumption is invoked. This allows for the higher order
moments of the weighted integrals to be evaluated in terms of mean and covariance of f

�
(�).

It is to be noted that this method has three sources of errors arising from: (a) discretization
of the random "elds, (b) truncation of the Neumann's expansion and (c) Gaussian closure
approximation. The last of these errors would not be present if information on higher order
moments of f

�
(�) is available.

4.2. METHOD 2: REDUCED MONTE CARLO SIMULATIONS USING OLE

In this method, the random "elds f
�
(�) (k"1,2,8) are discretized using OLE. Samples

of the random variables obtained by discretizing the random "elds are simulated digitally
and this leads to sample realizations of dynamic sti!ness matrices. These matrices are
numerically inverted and an ensemble of response PSD, conditioned on the random
variables, is computed. Statistical processing on this ensemble leads to estimates of the
mean and variance of S

��
(��X0). The sources of errors in this method are those resulting
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from discretization of random "elds and the use of limited samples in estimates of mean and
variance of S

��
(��X0).

4.3. METHOD 3: FULL-SCALE MONTE CARLO SIMULATIONS

As has been noted, the methods described in the preceding two sections are approximate
in nature. These procedures can be validated by using results from detailed Monte Carlo
simulations. This requires the development of a numerical algorithm that generates the
sample solutions for the boundary value problem given in equations (20}24). A commonly
used strategy in numerical solution of linear boundary problems consists of converting the
boundary value problems into a larger class of equivalent initial value problems which, in
turn, are amenable for solutions using marching techniques such as Runge}Kutta
procedures [26]. Earlier, Manohar and Adhikari [9] have implemented this strategy in
their study on dynamic response variability of stochastic Euler}Bernoulli beams using
Monte Carlo simulations. In the present study, we follow a similar procedure for analyzing
equations (20}24). The details of this formulation are available in the thesis by Gupta [20]
and are not provided here. The sources of error in this approach, apart from those
associated with the Runge}Kutta integration scheme, are solely associated with the use of
limited number of samples in the estimation of response statistics. Moreover, the response
calculation procedure used here is independent of the procedure used in methods 2 and 3.
Thus, the results from this method can serve as an acceptable benchmark against which
other approximations can be compared.

5. BUILT-UP STRUCTURES

Themethods developed so far are now extended for computing the response variability of
built-up structures. The additional steps needed to characterize the dynamic response of
built-up structures are: (1) conversion of the element dynamic sti!ness matrix in local
co-ordinates into global co-ordinates, (2) assembling of element sti!ness matrices in global
co-ordinates to form the structure dynamic sti!ness matrix, (3) inversion of the random
structure dynamic sti!ness matrix leading to frequency-domain representation of response,
and (4) processing of the Fourier transform of the response variables to arrive at spectral
representations of the displacement responses, such as PSD representations. Steps (1) and
(2) essentially follow the same rules that are used in the traditional matrix methods of
structural analysis. Figures 7 and 8, respectively, show the co-ordinate systems adopted for
describing curved and straight beams. The superscripts g and l in these "gures denote,
respectively, the global and local directions. The element dynamic sti!ness matrix in global
co-ordinates D� (�) is related to the local dynamic sti!ness matrix by the well-known
relation

D� (�)"T�D� (�)T (76)

where T is the transformation matrix. The element dynamic sti!ness matrix, in terms of
deterministic and random components, is written as

D� (�)"D�
�
(�)#D�

�
(�). (77)

Here, D�
�
(�)"T�D�

�
T is the deterministic part of the element sti!ness matrix in the global

co-ordinates and D�
�
(�) is the corresponding random part. In the weighted integral



X

Y

1

1

2
3

3

4

5

4

6

6

g

g

g

g

l l

l

l

θ

Figure 7. Local and global co-ordinates of the curved beam element: superscript l, local axes; g, global axes.

O
X

Y1

2

3

4

5
6

1

3

4

6

l

l

l

l

g

g

g

g θ

Figure 8. Local and global co-ordinates of the straight beam element: superscript l, local axes, g, global axes.

1068 S. GUPTA AND C. S. MANOHAR
approach, equation (66) is written as

D�
��
"D�

���
#

��
�
���

;�
��
X

�
(k, l"1,2,6), (78)

where

;�
��

"

�
�

���

�
�
���

T
��

T
��
� �

��
. (79)

Here, the variable � �
��
has the same meaning as in equation (67). In the reducedMonte Carlo

simulation approach using OLE, a similar transformation is made.
Formulating the element sti!ness matrices in the global co-ordinate system, the matrices

are assembled to obtain the global dynamic sti!ness matrix. The rules for assembling the
global sti!ness matrix are identical to those used in the traditional "nite element analysis.
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This leads to the expression

K�(�)"
�
�
���

D�
�
(�), (80)

where K� (�) is the global dynamic sti!ness matrix, D� is the element sti!ness matrix in the
global co-ordinate system and m is the total number of "nite elements in the system. The
summation here implies the addition of the appropriate element sti!ness matrices at
relevant locations. The global system equation can be partitioned in the form

�
K�

��
(�) K�

��
(�)

K�
��
(�) K�

��
(�)� �

Z
�
(�)

Z
�
(�)�"�

F
�
(�)

F
�
(�)� (81)

where Z
�
(�) and Z

�
(�), respectively, denote the known and the unknown amplitudes of the

nodal harmonic displacements. Similarly, F
�
(�) and F

�
(�), respectively, denote the

unknown and the known amplitudes of the nodal harmonic forces. In this study, forcing is
assumed to be only through the applied nodal forces. Furthermore, it is assumed that the
prescribed forces constitute stochastic stationary Gaussian random processes. Accordingly,
the equation for the unknown displacements is obtained as

K
��
(�)Z

�
(�)"F

�
(�). (82)

The reduced global stochastic dynamic sti!ness matrix can be further written as

K
��
(�)"K

���
(�)#K

���
(�), (83)

where K
���
(�) is the deterministic part and K

���
(�) the stochastic part of the partitioned

matrix. To compute the variability in the response, the partitioned dynamic sti!ness matrix
K

��
(�) can be inverted using either Neumann expansion or reduced Monte Carlo

simulations described in section 4.

6. RELIABILITY ANALYSIS

The procedures developed in the earlier sections are now extended to estimate the failure
probabilities of inhomogeneous circular Timoshenko beam structures. Two forms of
random excitations are considered: the "rst consists of broadband point excitation and the
second, point harmonic excitation with Gaussian amplitude.

6.1. GAUSSIAN BROADBAND EXCITATIONS

For Gaussian broadband excitations, the structural response, conditioned on an n
�
�1

vector of random variables X0 , resulting from the discretization of structure property
random "elds, is Gaussian. Consequently, results from extreme value theory of Gaussian
random processes can be used to evaluate the conditional failure probability. If attention is
focussed on the kth displacement component z

�
(t), it is clear that the pdf of z

�
(t),

conditioned on X0 , is also Gaussian. Considering the maximum value z�� over a period of
time ¹, given by

z
��

" max
�����

�z
�
(t)�, (84)



1070 S. GUPTA AND C. S. MANOHAR
it can be shown that probability of z
��

(threshold value �, conditioned on X0 , is

P[z
��

���X0]"exp�-
1

2�
�zR

�
�X

�

�z
�
�x

�

¹ exp�!
��

2��z
�
�x

�
�� , (85)

where

�zR
�
�X

�
"�








��S
����
(��X0) d�, (86)

�z
�
�X

�
"�








S
����
(��X0) d� (87)

with S
����
(��X0 ) being computed using the procedures developed in the earlier sections. It

should be noted that, in deriving equation (85), it has been assumed that the level crossings
are independent and hence constitute a Poisson process [27]. The probability of failure,
conditioned on X0, is thus given by

Pf �X
�
"1!P [z

��
(��X0]. (88)

Consequently, the unconditional probability of failure is obtained as

P[z
��

'�]"�R �1!P [z
��

(���]�pX0 (�) d�"�1!P[z
��

(��X0]	 (89)

where pX0
(�) is the n

�
th order joint pdf of X0, R is the domain of integration spanned by

X0 and the expectation operator is across the ensemble of X0. It must be noted that since the
system property random "elds are modelled as non-Gaussian random "elds and as the
OLE scheme of discretization adopted in the study retain the non-Gaussian features of the
random "elds,X0 is non-Gaussian. Explicit evaluation of the above expectation still remains
a di$cult task. However, acceptable solutions can be obtained by using direct Monte Carlo
simulations.

6.2. RANDOM HARMONIC EXCITATIONS

Since the structure being considered is linear, the response of such systems to harmonic
excitations remains harmonic. Consequently, the reliability analysis becomes quasi-static in
nature, with the problem becoming frequency dependent instead of being time dependent.
The resulting reliability assessment problem is solved based on Monte Carlo simulations
that incorporate variance reduction techniques [28}32]. Here, the forcing function is taken
to be of the form F exp[i�t], where F is an (n

�
�1) vector of Gaussian random variables.

The kth displacement component, obtained from equation (61), is given by

Z
�
(�;X)"

n
�

�
���

D
�
��
(�;X0)F�

, (90)

where X is an extended vector of random variables, of dimensions (n
�
#n

�
)�1, de"ned by

X"[X0,F]. Here, X0 and F are assumed to be stochastically independent. If � is the
prescribed limit on �Z

�
(�;X)�, a performance function

g (X)"�! max
�

���
)�)�

���

(�Z
�
(�;X)�) (91)
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can be de"ned, so that the probability of failure is obtained in terms of an
(n

�
#n

�
)-dimensional integral as

P
�
"P[g (X))0]"�g (x))0

pX (x) dx , (92)

where pX (x) is the (n�
#n

�
)th order joint pdf of the extended vector of random variables X.

As closed-form solutions to this multidimensional integral is not possible, the evaluation of
P
�
is carried out by importance sampling-based simulations. This involves rewriting

equation (92) as

P
�
"�R�

I[g (x))0]
pX (x)

hX (x)
hX (x) dx"�I[g (X))0]

pX (X)

hX (X)	�X
. (93)

Here, I[ ) ] is an indicator function that is equal to 1 if g (X))0 and 0 otherwise, hX (x) is the
(n

�
#n

�
)th order importance sampling density function, � ) 	

�X
denotes expectation with

respect to hX (x) and R� is the region spanned by the random variables X.
In order to obtain a starting sampling function for a target threshold level �

�
, hX (x) is

usually assumed to be Gaussian and is centred around the design point obtained by
computing the reliability index [30, 31]. This study, however, avoids reliability index
calculations. Instead, a "rst guess of the sampling density function is obtained by "tting
a probability density function for the samples lying in the failure domain, obtained
from a pilot simulation run for a low threshold level �

�
. In the subsequent simulation cycles,

as � is varied in increments of d� towards the target threshold level, the sampling function
is modi"ed to re#ect the increase in knowledge of the failure domain resulting
from each simulation run. The details of the steps adopted in this sampling scheme are
outlined here:

1. As a starting point, � is "rst set to its lowest limit of interest, �
�
. A pilot simulation run

is carried out to generate N
�
samples of the (n

�
#n

�
)-dimensional vector random

variables X.
2. Let N

�
of these samples lie in the failure domain. Using these N

�
samples, the mean

and covariance matrices, respectively, of dimensions (n
�
#n

�
)�1 and (n

�
#n

�
)�

(n
�
#n

�
), conditioned on g (X))0, given by

���"�X�g(X))0	 , (94)

[C0]"��X!�� �X!��� �g(X))0	 (95)

are estimated.
3. The mean �

�
and variance ��

�
(k"1,2,n

�
) estimated from equations (94, 95), together

with the knowledge of the range (a
�
, b

�
) (k"1,2, n

�
) of the random variables

X
�
,2,X

��
, are used to construct the "rst order pdf's of these random variables, by

invoking the principle of maximum entropy. These "rst order pdf 's are of the form as
given in equation (12). The "rst order pdf 's of the remaining random variables
X

����
,2,X

��
are taken to be Gaussian with mean �

�
and variance ��

�
(k"n

�
#1,2, n

�
) estimated from equations (94, 95). Furthermore, the "rst order pdf

models are combined with the estimated covariance matrix [C0] to obtain an
(n

�
#n

�
)th order Nataf 's model for hX (x) (see equation (13)). It must be noted that

X0 and F do not remain uncorrelated when conditioned on the event [g(X))0].
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4. N
�
number of samples are generated using the sampling density hX (x). The failure

probability P
�
is estimated as an average, as described in equation (93).

5. Steps 2}5 are repeated till convergence in P
�
, corresponding to a particular threshold

level �
�
, is achieved. The number of samples N

�
in step 2 is now obtained from

simulations carried out in step 4.
6. Next, the failure surface is rede"ned by changing �

�
to �

���
"�

�
#d�. Since the

variance of the samples lying in the failure domain are small, the samples generated by
hX (x) do not fall in the new failure domain. This di$culty can be overcome by setting
the variance of the n

�
Gaussian random variables X

����
,2,X

��
to arbitrarily higher

values [32]. The "rst order pdf 's for these random variables are constructed using
these variances but without changing the mean computed from equation (94). A new
sampling density function hX (x) is computed by repeating step 3. Steps 2}5 are
repeated till convergence in P

�
, for the new threshold level �

���
, is achieved.

7. Steps 2}6 are repeated till the failure probability corresponding to the target threshold
level �

�
is estimated.

7. NUMERICAL EXAMPLES AND DISCUSSIONS

For illustration of the proposed methods, two structures are considered. The "rst is
a propped cantilever circular Timoshenko beam "xed at one end and hinged at the other
end and the second structure is as shown in Figure 13. In both these examples, the quantities
E(�), �(�), G(�), b(�), d(�), c

�
(�), c

�
(�) and c

�
(�) are modelled as mutually independent,

homogeneous, stochastic "elds. The quantities f
�
(�) (k"1,2,8) are taken to be bounded in

the region a
�
"!�3 and b

�
"�3 with �

�
"0)05 and � f

�
	"0. This would mean that the

mean values of the beam parameters E(�), G(�), �(�), b (�), d(�), c
�
(�), c

�
(�) and c

�
(�),

listed in equation (7), are equal to their respective nominal values E
�
, G

�
, �

�
, b

�
, d

�
, c

��
,

c
��
and c

��
. The parameters in the maximum entropy distribution in equation (12) are

obtained as �
��

"0)3596, �
��

"0)99�10
� and �
��

"0)1548 (k"1,,8). Furthermore, the
autocovariance for f

�
(�) (k"1,2,8) are all taken to be of the form R (�)"exp [!���].

This form of autocovariance satis"es all the requirements stated in equations (9}11). The
correlation length associated with this form of autocovariance function can be shown to be

given by �
�
��/� with � being the correlation parameter. In the numerical work, � is so

selected that this correlation length becomes 1/4th of the spatial extent of the associated
beam element. To determine the number of terms, n, needed to represent f

�
(�) by OLE, the

discretization error was computed as a function of the number of terms. It was observed
that the discretization error was 0)075, 0)016 and 0)004, respectively, for 5, 6 and 7 number of
terms. Figure 9 shows the covariance of fI (�) with n"6, compared with the target
covariance function of f

�
(�). In the numerical work, n is taken to be 6 and it was observed

that the global discretization error in this case is 0)016, which is considered acceptable.
Finally, the methods for estimating failure probabilities, described in section 6,
are illustrated by considering the propped cantilever circular Timoshenko beam subjected
to two alternative classes of excitations: broadband excitations and random harmonic
forces.

7.1. EXAMPLE 1: DETERMINISTIC CURVED TIMOSHENKO BEAM

A curved Timoshenko beam, "xed at one end and hinged at the other, with a span of 100m,
radius of curvature R"82)03 m and mean cross-sectional dimensions of 0)35 m�0)335 m
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is considered. Nominal values of the system properties are taken as follows:
E
�
"2)1�10�� N/m�, �

�
"2850 kg/m�, G

�
"8)0769���N/m�, and c

��
"c

��
"c

��
"

160 Ns/m. A harmonic bending moment exp[i�t] is applied at the hinged end and the
resultant rotation at the hinged end is computed using the following four independent
approaches: (1) direct dynamic sti!ness matrix method where the dynamic sti!ness matrix is
obtained in closed form by applying harmonic loads and displacements at the nodes and
subsequently eliminating the vector of constants required to satisfy the prescribed boundary
conditions [22]; (2) frequency-dependent shape functions to formulate the dynamic sti!ness
matrix which has been subsequently used to obtain the structural response (section 3.3); (3)
a commercial "nite element code, such as NISA; and (4) a numerical integration scheme
referred to in section 4.3. The 4th order Runge}Kutta numerical integration scheme, with
modi"cation due to Gill, was used with a step size 0)1 rad. The "nite element model used
comprised of 100 straight beam elements. Normal mode expansions considering 100 modes
were used for calculating the response of the structure. The response obtained by the four
methods are illustrated in Figure 10. The results are shown to be in reasonable mutual
agreement with each other. This provides the con"dence that the procedures developed are
correct and are implemented correctly. The frequency response function is observed to
consist of alternating sequences of resonant peaks and antiresonant dips as might be
expected in a direct receptance plot. The "rst few natural frequencies of the system are
observed to be at 3)3, 6)8, 12)5, 18)8, 27)3, 36)4 and 47)8 rad/s respectively. It was observed
that the convergence of "nite element results, especially at antiresonant frequencies, was
slow with respect to the number of "nite elements used.
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7.2. EXAMPLE 2: RANDOMLY INHOMOGENEOUS CURVED TIMOSHENKO BEAM

The nominal structure considered in example 1 is now perturbed by stochastic
inhomogeneities with properties as outlined in the opening of this section. A stationary
random bending moment, characterized by an input PSD, is applied at the hinged end and
the variability in the PSD of rotation at the hinged end is studied using the three methods
discussed in section 4. It must be noted that the reduced system dynamic sti!ness matrix has
only one entry, namely D

��
(�). Consequently, issues related to inversion of the dynamic

sti!ness matrix becomes trivially simple. The mean and the standard deviation of the
response PSD are plotted in Figures 11 and 12. The results from alternative methods are
observed to be in good agreement with each other. This lends credence to the
approximations made in the development of the proposed methods. A comparison with
Figures 11 and 12 reveal that the peaks and dips occur at the same frequencies as observed
in Figure 10 indicating that there are no appreciable changes in the natural frequencies due
to the uncertain #uctuations in the system parameters. It must be noted that an ensemble
size of 500 samples was used in the Monte Carlo simulations. Issues related to the inversion
of stochastic dynamic sti!ness matrix are illustrated in the example considered next.

7.3. EXAMPLE 3: BUILT-UP STRUCTURE

A built-up structure (Figure 13) is considered consisting of two unequal straight beams of
lengths 10 and 8m, respectively, and a curved semicircular beam with radius R"10m. The
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Figure 11. Example 2. Mean of PSD of response at node 5; !�!, method 1; �, method 2; ) ) ) ) ), method 3.
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assumed nominal values for all the three beam segments are: b
�
"0)3m, d

�
"0)1m,

E
�
"2)1�10��N/m�, �

�
"2850 kg/m�, G

�
"8)0769�10��N/m� and c

��
"c

��
"c

��
"

160 Ns/m. The stochastic variations are, again, as described in the opening of this section.
A steady state excitation force, characterized by an input PSD, is applied along d.o.f. 4. The
reduced global dynamic sti!ness matrix is of order 6�6. The variability in the PSD for the
response along d.o.f. 4 are estimated using the three methods discussed in section 4.
Figures 14 and 15 show that the results obtained by the three methods are in fairly good
agreement with each other. This example also validates the use of Neumann expansion
series with the attendant Gaussian closure approximations as means for estimating the
moments of inverse of a random matrix. It must be noted that in the numerical work,
a single-term approximation was considered in the Neumann expansion.

7.4. EXAMPLE 4: FIRST PASSAGE FAILURE FOR CURVED TIMOSHENKO BEAM

The propped cantilever circular Timoshenko beam considered in example 2 is now
assumed to be subjected to stationary broadband bending moment at the hinged end. For
the purpose of illustration, only mass distribution is considered to have random
#uctuations. This limited the number of correlated non-Gaussian random variables
entering the formulation to 6. The "rst passage failure probability, conditioned on X0, is
estimated for the rotation at the hinged end and the unconditional failure probability was
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Figure 13. Built-up structure comprising of straight and curved Timoshenko beam elements.
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determined by direct Monte Carlo simulations using 1000 samples. The variation of the
failure probability as a function of threshold level � is illustrated in Figure 16. The failure
probability curve for the corresponding beam, when the random #uctuations in the beam
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properties are neglected, is also shown in this "gure. It is seen that the e!ect of considering
system uncertainties is to reduce the probability of failure.

7.5. EXAMPLE 5: FAILURE PROBABILITY UNDER RANDOM HARMONIC EXCITATION

A harmonic bending moment F exp[i�t], with amplitude F modelled as a Gaussian
random variable, is assumed to act at the hinged end in the structure considered in the
previous example. As in the previous example, only mass is taken to be stochastic in nature.
The excitation moment F is modelled as a Gaussian random variable with mean 10 kNm
and standard deviation 10�0)05kNm. The performance function is as de"ned in equation
(91) with � taken to range from 0)0017 to 0)011 rad. The initial Monte Carlo simulation run
was performed for threshold value �"0)0017 rad with 1000 samples. The estimation of
failure probabilities for higher values of � subsequently employed importance sampling,
using non-Gaussian sampling functions. The number of samples for each simulation run
was taken to be 500. Figure 17 shows the resulting estimates of probability of failure as
a function of threshold value �. The graph also shows variation of P

�
with � when beam is

taken to be deterministic. The procedure has enabled calculation of P
�
as low as 10
�� with

the total number of simulation cycles for this level of P
�
being of the order of only about 10�.

The trend of variation of P
�
with � for the cases of deterministic beam and beam with

random properties is seen to be di!erent from what was observed in the previous example.
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For most values of �, but not for all �, it is observed that the e!ect of beam randomness is to
increase the P

�
.

8. CONCLUSIONS

A frequency-domain stochastic "nite element approach is outlined for the vibration
analysis of skeletal structures made up of randomly inhomogeneous, curved/straight
Timoshenko beams. The study extends deterministic dynamic sti!ness matrix methods to
problems of structural system stochasticity. Issues related to response variability analysis
and reliability assessments are addressed. The following are the major conclusions based on
this study. (1) The use of frequency-dependent shape functions relieves the dependence of
"nite element mesh size on frequency range of excitation. Also, the dependence of shape
functions on damping permits a satisfactory treatment of damping in dynamic response
analysis. (2) The optimal linear expansion scheme o!ers a powerful means to discretize
non-Gaussian random "elds, especially in studies involving reliability assessment. This
scheme retains at the nodal points the "rst order probability distribution characteristics and
covariance structure of non-Gaussian random "elds being discretized. (3) The weighted
integral approach for discretizing random "elds, in principle, is capable of taking into
account the non-Gaussian features of the random "elds provided descriptions of higher
order moments of these random "elds are available. The di$culties associated with
obtaining probability density function of the weighted integrals make this method of
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discretization to be of limited relevance in problems of reliability assessment. (4) Both
weighted integrals and optimal linear expansion schemes perform equally well, insofar as
problems of variability assessment are concerned. (5) For randomly driven systems, the
in#uence of system stochasticity on probability of failure is observed to depend on the
nature of excitation. For broadband excitations, the system randomness is observed to
lower the probability of failure, while for random harmonic inputs, the probability of failure
is seen in most but not all cases, to increase the probability of failure. It is felt that further
research is required to clarify this issue.
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APPENDIX A: FORMULATION OF SHAPE FUNCTIONS FOR DISPLACEMENTS

For the beam element with homogenous properties, equations (20}22) can be recast as

�
�

d�w

d��
#�

�
w#�

�

dw

d�
#�

�

d�
d�

"0, (A.1)

�
�

d�v

d��
#�

�
v#�

�

dw

d�
#�

�
�"0, (A.2)
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�
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�
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From equation (A.2), � can be expressed as

�"!

1

�
�
���

d�v

d��
#�

�
v#�

�

dw

d��. (A.4)

Consequently, the "rst and second derivatives of � with respect to � are obtained by
successive di!erentiations of equation (A.4). Substituting for � into equations (A.1) and
(A.3), � is eliminated and two coupled di!erential equations in w and v are obtained:

¸
�
w#¸

�
v"0, ¸

�
w#¸

�
v"0 (A.5, A.6)

where ¸
�
(i"1,2,4) are operators denoted by
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Equations (A.5}A.6) are now combined to obtain

(¸
�
¸
�
!¸

�
¸
�
)v"0, (A.8)

(¸
�
¸
�
!¸

�
¸

�
)w"0. (A.9)

Expanding equations (A.8}A.9), sixth order homogeneous ordinary di!erential equations in
w and v are obtained as follows:
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Thus, it may be noted that equations for w and v are now mutually uncoupled. It is also of
interest to note that the di!erential operators which act on w and v in equations (A.10) and
(A.11) are identical.
Assuming the solution of equation (A.10) to be of the form w"exp [��], characteristic

equation for � is obtained as

��K
�
#��K

�
#��K

�
#K

�
"0. (A.13)

An identical characteristic equation would also be obtained if a solution of the form
v"exp[��] is substituted into equation (A.11). Furthermore, the six roots of equation
(A.13), using symbolic math processing (MAPLE), are obtained as:
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Thus, the displacements v and w can now be expressed as summations of series as follows:

w (�)"
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���

g
�
exp[�

�
�], v (�)"

�
�
���

f
�
exp [�

�
�]. (A.17, A.18)
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Here g
�
and f

�
are constants of integration to be determined from the boundary conditions.

At this stage, it is seen that there are twelve integration constants that need to be
determined. These constants are however not mutually independent. Substituting equations
(A.17) and (A.18) into equation (A.8), it is possible to obtain the following relationship
between the constants of integration g

�
and f

�
:

f
�
"


�
g
�

(A.19)

where
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Substituting the expressions for the displacements w and v into equation (A.4), the
displacement � is expressed as

� (�)"
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�] (A.21)
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Thus, all the three displacements w, v and � can be represented in a series form. It must be
noted that this involves only six independent unknown constants of integration which can
be determined from the six boundary conditions. Thus, the solution of the problem is
exactly determinable.
The shape functions N

�
(�,�), P

�
(�,�) and Q

�
(�,�) in equations (25}27) are derived by

solving the "eld equations (20}22) in conjunction with the appropriate boundary
conditions. Table A1 lists the boundary conditions satis"ed by the three sets of shape
functions. Writing the binary conditions in matrix form,

[�] �g��, �g��, �g��, �g��, �g��, �g��]"I, (A.23)
TABLE A1

Relationship between 00binary11 boundary conditions and shape functions N
�
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�
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�
(�, �) Q

�
(�, �) Q

�
(�, �) Q

�
(�, �)

w(0) 1 0 0 0 0 0
v(0) 0 1 0 0 0 0
�(0) 0 0 1 0 0 0
w(¸) 0 0 0 1 0 0
v(¸) 0 0 0 0 1 0
�(¸) 0 0 0 0 0 1
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where
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and �g�� is the vector of constants giving rise to the kth shape function. To proceed further,
the shape functions N

�
(�,�), P

�
(�,�) and Q

�
(�,�) are represented in matrix form, as in

equations (A.25}A.27). Combining equations (A.14) with the requirements of the boundary
conditions listed in Table A1, it can be shown that

N(�,�)"[� (�)] �s1 (�,�)�, (A.25)

P (�,�)"[� (�)] �s2 (�, �)�, (A.26)

Q (�,�)"[� (�)] �s3 (�,�)�, (A.27)

where
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The shape functions derived in this manner are functions of frequency and are complex
valued. The formulations for the circular beam are expected to lead to the corresponding
results for a straight Timoshenko beam as the radius RPR. However, it is simpler to
reformulate the "eld equations for a straight Timoshenko beam separately. Further details
of this formulation are available in reference [20].
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