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State and parameter estimations of non-linear dynamical systems, based on incomplete and noisy mea-
surements, are considered using Monte Carlo simulations. Given the measurements, the proposed method
obtains the marginalized posterior distribution of an appropriately chosen (ideally small) subset of the
state vector using a particle filter. Samples (particles) of the marginalized states are then used to con-
struct a family of conditionally linearized system of equations and thus obtain the posterior distribution
of the states using a bank of Kalman filters. Discrete process equations for the marginalized states are
derived through truncated Ito–Taylor expansions. Increased analyticity and reduced dispersion of weights
computed over a smaller sample space of marginalized states are the key features of the filter that help
achieve smaller sample variance of the estimates. Numerical illustrations are provided for state/parameter
estimations of a Duffing oscillator and a 3-DOF non-linear oscillator. Performance of the filter in parameter
estimation is also assessed using measurements obtained through experiments on simple models in the
laboratory. Despite an added computational cost, the results verify that the proposed filter generally pro-
duces estimates with lower sample variance over the standard sequential importance sampling (SIS) filter.

© 2009 Published by Elsevier Ltd.
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1. Introduction7

State estimation of dynamic systems is an important problem
in many engineering applications. In feedback control of dynamical9
systems, the states of the system need to be estimated from avail-
able noisy measurements. Structural health monitoring requires the11
estimation of both states and parameters. Also, parameter identi-
fication of non-linear vibrating systems is of fundamental impor-13
tance in understanding the structural behavior under extreme load-
ing conditions. For linear systems under Gaussian additive noises,15
Kalman filter provides the optimal estimate [14]. For non-linear sys-
tems, there are two main classes of methods, viz., the suboptimal17
filtering strategies such as the extended Kalman filter (EKF) or its
variants [1,9,10,13,31] and those based on Monte Carlo (MC) simu-19
lations, known as particle filters. The exploitation of the EKF within
the framework of particle filters has also been explored [17]. These21
filters, referred to as Gaussian particle filters and Gaussian sum par-
ticle filters, approximate the posterior density by a mixture of Gaus-23
sian densities obtainable from a bank of EKFs. Using a Gaussian ap-
proximation of the states, EKF based methods aim at updating only25
the first two moments of the conditional pdf of the states and hence
these methods may be inappropriate for highly non-linear systems.27
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In particle filters, the conditional pdf of the states is recursively rep- 29
resented using a set of random particles (instantaneous realizations
of states) with associated weights. Hence they are more versatile 31
in handling system non-linearity and even non-Gaussian nature of
noises. Different versions of the particle filter have been reported 33
in the literature [6,7,8,11,12,20,23,27,33,34]. Particle filters are ex-
tensively used in navigation and tracking applications. Their use in 35
structural system identification is also reported in a few recent arti-
cles [2,3,11,19,21,32,35]. 37

In the identification of uncertain dynamical systems, one is
also concerned about confidence levels of the estimates (typically 39
quantified by second or higher order moments) in addition to their
accuracy [15]. One important source of variability in particle filter- 41
ing is associated with sampling fluctuations arising out of statistical
nature of treatment of the filtering problem. In this context variance 43
reduction techniques assume significance in system identification
procedures. There is a general principle called Rao-Blackwellization, 45
which aims at combining Monte Carlo simulations (particle filter)
with analytic computation (Kalman filter) [20,28]. This technique is 47
known to reduce the variance of the estimator and provide more
accurate estimates than standard particle filters. An implication of 49
Rao-Blackwellization is that one should carry out analytical calcula-
tions as much as possible [20]. In order to apply Rao-Blackwellization 51
in its original form, the state vector must be partitioned into two
sets such that, given the information on one set of states, the model 53
formed by the other set of states becomes linear Gaussian. How-
ever, such a partitioning is generally not possible in the state space 55
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model of a structural system as different parts are coupled with each1
other. Recently, the authors have proposed a novel variation of the
Rao-Blackwellized particle filter (RBPF) for a class of non-linear sys-3
tems, in which the structure is divided into linear and non-linear
substructures [32]. But, as the number of substructures increases,5
the procedure becomes complex. In this study, we propose a method
in which a particle filter is first used to estimate a subset of the7
states typically associated with the non-linear terms of the process
and measurement drift fields. Conditioned on the marginalized par-9
ticles, a bank of Kalman filters is then employed to estimate the full
state vector and thus obtain the particles from the posterior density11
within the framework of Monte Carlo simulations. If the drift non-
linearity is localized, the information of a few states provided by the13
particle filter transforms the given model to a family of condition-
ally linear systems. The focus of the study is on assessing the effect15
of the increased analyticity in the filtering algorithm on the accu-
racy and sampling fluctuations. Numerical illustrations on state and17
parameter estimations of a 1-DOF Duffing oscillator and a 3-DOF os-
cillator are provided. The performance of the filter in parameter es-19
timation conditioned on measurements via experiments on models
in the laboratory is also reported. Numerical and experiment-aided21
results clearly indicate the superiority of the proposed filter over
the standard sequential importance sampling (SIS) filter in state and23
parameter estimations.

2. Methodology25

2.1. Governing equations

Consider a non-linear dynamical system given by the state space27
model:

ẋ = f (x,u(t), t,�(t)) (1)29

x ∈ �nx represents the state vector, u(t) ∈ �m the vector of external
loads and �(t) ∈ �q the process noise. A general form of the mea-31
surement equation may be written as

y = h̄(x, �(t)) (2)33

y ∈ �ny represents the vector of measurements, �(t) ∈ �ny the mea-
surement noise and h̄ a sufficiently smooth function of its argu-35
ments. We assume process and measurement noises to be additive
and Gaussian. The stochastic differential equation (SDE) correspond-37
ing to Eq. (1) may be expressed as

dx = a(x,u(t), t) dt + DdB (3)39

a(x,u(t), t) ∈ �nx represents the drift vector, D ∈ �nx×q the diffusion
matrix and B ∈ �q a vector of independently evolving q standard41
Brownian motion processes.

Let x̃ ∈ �ñx be a subset of x such that the non-linear (drift) terms43
in the process and measurement equations are non-linear in x̃ alone.
We assume that the non-linear terms are sufficiently smooth func-45
tions of x. Now, conditioned on (all finite dimensional filtrations gen-
erated by) these non-linear terms up to the current instant, both the47
process and measurement equations may be interpreted as being
conditionally linear with a jointly Gaussian distribution. Note that,49
by Kolmogorov's extension theorem, a suitable collection of these
filtrations along with the associated finite-dimensional probability51
distributions adequately determines the stochastic processes gener-
ated by the non-linear terms. In other words, onemay approximately53
accomplish the required conditioning on appropriately discretized
non-linear terms, consistent with the temporal discretization being55

employed for solving the SDEs. We denote {�x } = {x}\{x̃} and write
the ith component of a as57

ai(x,u(t), t)= āTi x + gi(x̃,
�
x , t)+ bTi u(t) (4)

āi ∈ �nx and bi ∈ �m are constant vectors and gi(x̃,
�
x , t) is a non- 59

linear scalar function in x̃. Eq. (3) may now be expressed as

dx = [Ax + B̄u(t)+ G(x̃,
�
x , t)]dt + DdB (5) 61

where A=[ā1 ā2 · · · ānx ]
T ∈ �nx×nx ,G=[g1(x̃,

�
x , t) g2(x̃,

�
x , t) · · · gnx

(x̃,
�
x , t)]T ∈ �nx and B̄ = [b1 b2 · · · bnx ]

T ∈ �nx×m. Let the time 63
axis (t0, T) be discretized as t0, t1, t2, . . . , tk−1,tk, . . . , T with step size
h = tk − tk−1 being uniform. We obtain an approximate solution 65
for the SDE (5) in the form of a discrete map via a variant of local

linearization [29,30], wherein we replace G(x̃,
�
x , t) by G(x̃k,

�
x

k−1
, t) 67

over t ∈ (tk−1, tk). The resulting solution map is given by

xk = �k−1xk−1 + �k−1(
�
x k−1, x̃k) + wk (6) 69

where �k−1 = eAh and wk = ∫ tk
tk−1

D eA(tk−�) dB(�) ∈ �nx is a vector of
zero mean additive Gaussian noises (martingales) whose covariance 71
matrix (Qk) is given by

Qk = E[wk wT
k] =

∫ tk

tk−1

eA(tk−�)DDT (eA(tk−�))T d�
73

Moreover, we have�k−1(
�
x k−1, x̃k)=

∫ tk
tk−1

eA(tk−�)[B̄u(�)+G(x̃k,
�
x k−1, �)]d�.

Note that, within a Monte Carlo simulation, a specific realization 75

(say the ith realization, i ∈ [1,N]) of �k−1(
�
x k−1, x̃k) is given by

�(i)
k−1 = �k−1

(
�
x
(i)

k−1, x̃
(i)
k

)
. Using Ito–Taylor expansions, a discrete 77

model of the components of x̃ (for use with the particle filter) may
be obtained as 79

x̃k = f (xk−1, �̃k) (7)

where �̃k is a noise vector containing the multiple stochastic inte- 81
grals (MSIs) that are integrals of the form Iri=

∫ tk
tk−1

∫ s
tk−1

dBr(s1) dBi(s),

Irij = ∫ tk
tk−1

∫ s
tk−1

∫ s1
tk−1

dBr(s2) dBi(s1) dBj(s), Ir0 = ∫ tk
tk−1

∫ s
tk−1

dBr(s1) ds, etc. 83
(r, i, j ∈ [0,q]). Here the integer subscripts indicate the indices of
scalar Brownian motion components in the same order as they ap- 85
pear within the integrands with dB0(t) : =dt.

A discrete form of the measurement Eq. (2) may be expressed as 87

yk = h(xk) + vk (8)

where h(.) is a linear/non-linear function of the state and vk ∈ �ny 89
represents the additive measurement noise. We assume that, in
terms of x̃k, Eq. (8) is expressible as 91

yk = h1(x̃k)xk + h2(x̃k) + vk (9)

for appropriately measurable and (weakly) smooth functions h1(.) 93
and h2(.). Note that h2(x̃k) is a non-linear function in x̃k and that,
given x̃k, h1(x̃k)xk is linear in xk. By appropriately selecting x̃k, it is 95
often possible to express Eq. (8) in the form given by Eq. (9). We
observe from Eqs. (6) and (9) that, given x̃k, both the process and 97
measurement equations are linear, an aspect that will be made use
of in the state estimation. 99

2.2. State estimation

The objective of state estimation is to obtain the filtering density 101
p(xk|y1:k), which represents the pdf of the descretized state vector
conditioned on the observations available up to time tk. From the 103
filtering density one may obtain the quantities of interest such as
conditional mean and conditional variance. Incorporating x̃k, the fil- 105
tering density may be expressed as

p(xk|y1:k) =
∫

p(xk|x̃k, y1:k)p(x̃k|y1:k) dx̃k (10) 107
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It may be noted that the transition kernel p(xk|x̃k,y1:k) corresponds1
to a linear-Gaussian state space model for a given x̃k and can thus be
evaluated analytically using the Kalman filter. Note that p(xk|x̃k,y1:k)3
is a (weakly) Feller kernel (i.e., if �1(x̃) is a continuous, bounded
function, then so is �2(x), where �2(xk) = ∫

�1(x̃k)p(xk|x̃k, y1:k) dx̃k).5
In the proposed method, the filtering density or more specifically
the samples {x(i)k }Ni=1 ∼ p(xk|y1:k) are recursively obtained through a7
Monte Carlo simulation that involves a particle filter to obtain the
likelihood (Radon–Nikodym derivative) p(x̃k|y1:k), which is usedwith9
the Kalman transition kernel in Eq. (10). More specifically, samples
{x̃(i)k }Ni=1 ∼ p(x̃k|y1:k) are obtained using a particle filter and the en-11

semble of densities {p(xk|x̃(i)k , y1:k)}Ni=1 is obtained analytically through
a bank of Kalman filters. Using Eq. (10), we finally obtain a Monte13
Carlo approximation to the filtering density as

pN(xk|y1:k) = 1
N

N∑
i=1

p(xk|x̃(i)k , y1:k) (11)
15

Since p(xk|x̃k, y1:k) is (weakly) Feller and x̃(i)k bounded almost surely
(a.s.), one may prove that limN→∞ pN(xk|y1:k) = p(xk|y1:k) (a.s.) [5].17
Thus, it turns out that the filtering density is a mixture of Gaus-
sian densities and hence one can readily generate samples{x(i)k }Ni=1 ∼19
p(xk|y1:k) [26]. The conditional mean (x̂k) and variance (�k) may be
obtained as21

x̂k�
1
N

N∑
j=1

x(j)k (12a)

�k�
1
N

N∑
j=1

(x(j)k − x̂k)(x
(j)
k − x̂k)

T (12b)
23

It may be noted that it is required to find p(yk
∣∣x̃k ) in the particle

filter and thus, while selecting x̃, we generally need to include all the25
states appearing in the observation equation. However, as is often
the case, suppose that the measured vector yk admits partitioning27
as yk = [{yIk}T , {yIIk }T ]T with yIk and yIIk given by

yIk = f1(x̃k) + �1k (13a)29

yIIk = f2(
�
x
k
) + �2k (13b)

Recall that {�x
k
} denotes the complement of x̃k in xk, �1k and �2k are31

the noises in the measurement subsets yIk and yIIk , respectively. In
this case, p(x̃k|y1:k) = p(x̃k|yI1:k) and thus p(yk|x̃k) may be obtained33
asp(yk|x̃k) = p�1,k (yk − f1(x̃k)). Accordingly, it suffices to consider the
subset of equations for yIk as the measurement equations within the35
particle filter. We provide below the algorithm for implementing the
proposed filter.

37
1. Set k= 0. Draw samples {x(i)0 }Ni=1 from the initial pdf p(x0) and set

k = 1.39
2. As yk arrives, use the particle filter to obtain samples {x̃(i)k }Ni=1 ∼

p(x̃k|y1:k).41
3. For each x̃(i)k , i ∈ [1,N], obtain the density p(xk|x̃(i)k ,y1:k) using

Kalman filter. Construct the filtering density via Eq. (11) and gen-43
erate samples {x(i)k }Ni=1 ∼ p(xk|y1:k). Estimate the conditional mean
and conditional variance using Eq. (12).45

4. Replace k by k+1 and recursively use steps 2 and 3 till the terminal
time is reached. 47

Thus the proposed filter estimates the states in two stages; the
marginalized states (defining the localized non-linearity) are first 49
estimated using a particle filter and then, making use of the infor-
mation available on these states, the resulting conditionally linear 51
systems are analyzed through a bank of Kalman filters. The same
steps are also valid for parameter estimations, as these parameters 53
are declared as additional states within the dynamic filtering frame-
work. Unlike the Rao-Blackwellized particle filter wherein estima- 55
tions of a few states are done using a particle filter and the remain-
ing states by a bank of Kalman filters, the proposed method obtains 57
the conditional pdf of all the states through a bank of Kalman fil-
ters. Roughly speaking, since we typically have dim(x̃)>dim(x) for 59
oscillators with localized non-linearity and the fact that weights are
proportional to the marginalized posterior density p(x̃k|y1:k), sam- 61
ple variance due to dispersion of weights, computed over a reduced
sample space containing the marginalized states, will be less for a 63
given N. Indeed, if dim(x̃)=0, then we recover the analytical Kalman
estimate with zero sample variance. These statements may be made 65
mathematically more precise by defining appropriate sample vari-
ances associated with the Kalman prediction and weight calculation 67
steps followed by the use of Jensen's inequality (somewhat similar
to the proof of Theorem 4 in [4]). This exercise will be taken up in a 69
future study.

3. Numerical implementation of the filter 71

The central idea of the proposed method is the conditional lin-
earization of the process/observation equations so that analyticity of 73
the Kalman filter can be exploited in the state estimation procedure.
The process and measurement equations need to be expressed in a 75
form consistent with Eqs. (6) and (8). Further illustration is facili-
tated by considering specific examples and we presently consider 77
a 1-DOF Duffing oscillator and a 3-DOF spring mass oscillator with
localized non-linearity. 79

The governing SDEs of the Duffing oscillator, subjected to support
motion and additive white noise excitation, may be expressed in the 81
following incremental form:

dx1 = x2 dt

dx2 =
{
1
m

[	x1 + 
x31 + cx2] − ẍg

}
dt + �d dB1

}
(14)

83

with initial conditions xi(0)=xi0, i ∈ [1, 2]. Here 	, 
 and c represent
the system parameters and xg represents the support motion. �d is 85
the additive diffusion coefficient representing the process noise and
dB1 increments of a standard Brownian motion process. Eq. (14) is 87
the process equation. The discrete form of the measurement model
is assumed to be 89

yk = x1k + �k (15)

where �k denotes the measurement noise. It may be observed that 91
Eq. (14) is conditionally linear provided that it is appropriately con-
ditioned on x31, the non-linear term. In the proposed procedure, we 93
declare x̃= x1 (also denoted as x̃1) and, for subsequent linearization
of the process equation, we must estimate x̃1 through particle filter- 95
ing. The linearized process equation (conditioned on x̃31) may then
be expressed as 97

{
dx1
dx2

}
=

[ 0 1−	
m

−c
m

]{
x1
x2

}
dt +

{
0

−

m

x̃31 − ẍg

}
dt +

{
0
�d

}
dB1 (16)

Eq. (16) may be converted to a discrete form (as in Eq. (7)) using a 99
stochastic Taylor (Ito–Taylor) expansion. Note that the observation
Eq. (15) in the present example is already linear. Details of Ito–Taylor 101
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expansions and related concepts in stochastic calculus may be found 1
in [16,21,24,25]. Using an explicit and truncated Ito–Taylor expan-
sion, the discrete map for x̃1 over the interval (tk−1, tk] (with a uni-3
form step-size h = tk − tk−1) may be written as

x̃1k = x1,k−1 + x2,k−1h + a2,k−1
h2

2

− 1
m

(	x2,k−1 + 3
x21,k−1x2,k−1 + ca2,k−1)
h3

6

+ �dI10 − c
m

�dI100 (17)5

Eq. (17) serves as the process equation for the particle filter and the
observation equation is given by Eq. (15) with x1k replaced by x̃1k.7

The 3-DOF oscillator with localized non-linearity is shown in Fig.
1(a). The first spring is assumed to have a bilinear force-displacement9
relation (Fig. 1b). The force resisted by the first spring is thus given
by11

fs(x1) = k1x1 if x1�0

= (k1 + kb)x1 if x1>0 (18)

A more general form of the above equation may be written as13

fs(x1) = pk1x1 + q(k1 + kb)x1 (19)

p and q are presently given by p = 1, q = 0 if x�0 and p = 0, q = 115
otherwise. The damping force in the first segment (acting to the left
of first mass point) is assumed to be of the form c1ẋ1−�1(1−x21)ẋ1+17
�2 sgn(ẋ1). In order to conform to the smoothness requirement of the
truncated Ito–Taylor expansion, the discontinuous signum function19
is approximated as tanh(
ẋ1), where 
>0. Note that tanh(
ẋ1) →
sgn(ẋ1) as 
 → ∞. Indeed, a continuous approximation of the signum21
function is achievable in multiple ways. For instance 2/� tan−1(�ẋ)
may also be used to approximate sgn(ẋ) (2/� tan−1(�ẋ) → sgn(ẋ)23
almost surely as � → ∞).

The governing SDEs of the 3-DOF system in incremental form25
may be expressed as

dx1=x4 dt; dx2=x5 dt; dx3=x6 dt;
dx4=a4 dt+�1 dB1; dx5=a5 dt+�2 dB2; dx6=a6 dt+�3 dB3

}
(20)27

with initial conditions xi(0) = xi0, i ∈ [1, 6]. �1, �2 and �3 are the
additive diffusion coefficients representing the process noise. The29
drift coefficient functions are given by

a4=− 1
m1

[pk1x1+q(k1+kb)x1−�1(1−x21)x4+�2 tanh(
x4)

+c1x4+k2(x1−x2)+c2(x4−x5)]−ẍg

a5=− 1
m2

[k2(x2−x1)+k3(x2−x3)+c2(x5−x4)+c3(x5−x6)]−ẍg

a6=− 1
m2

[k3(x3−x2)+c3(x6−x5)]−ẍg

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(21)

31

The force transmitted to the support is assumed to bemeasured. Thus
the observation equation is also non-linear in this case. A discrete 33
form of the measurement equation is given by

yk = pk1x1k + q(k1 + kb)x1k + c1x4k − �1(1 − x21k)x4k
+ �2 tanh(
x4k) + �k (22) 35

where �k represents the measurement noise. Given x1 and x4, the
process equation (Eq. (20)) and the measurement equation (Eq. (22)) 37
are linear. Thus one may declare x̃ = {x1; x4}T , which are the states
to be estimated using the particle filter. Given x̃, the process Eq. (20) 39
may be expressed in a conditionally linearized form as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx1
dx2
dx3
dx4
dx5
dx6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−(k1 + k2)
m1

k2
m1

0
−(c1 + c2)

m1

c2
m1

0

k2
m2

−(k2 + k3)
m2

k3
m2

c2
m2

−(c2 + c3)
m2

c3
m2

0
k3
m3

−k3
m3

0
c3
m3

−c3
m3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
x4
x5
x6

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
dt

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0−1

m1

[
qkbx̃1 − �1(1− x̃21)x̃4 + �2 tanh(
x̃4)

]
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
dt +

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
�1 0 0
0 �2 0
0 0 �3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎨
⎩
dB1
dB2
dB3

⎫⎬
⎭ (23)

41

The observation equation (Eq. (22)) may be expressed in a linear
form as 43

yk = Hkxk + �2 tanh(
x̃4k) + �k (24)

Hk = [k1 + qkb 0 0 c1 − �1(1− x̃21k) 0 0] and

xk = [x1k x2k x3k x5k x6k]
T 45

Note that Eq. (24) is in the form given by Eq. (9). Using truncated
Ito–Taylor expansions, discrete maps of respective local orders 47
O(h2.5) and O(h1.5) for x̃1 and x̃4 over (tk−1, tk] are obtainable as

x̃1k = x1,k−1 + x4,k−1h + a4,k−1
h2

2
− 1

m1
{[pk1 + q(k1 + kb)]x4,k−1

− �1(1 − x21,k−1)a4,k−1 + 2�1x1,k−1x
2
4,k−1

+ �2
[1 − tanh2(
x4,k−1)]a4,k−1

+ c1a4,k−1 + k2(x4,k−1 − x5,k−1)}h3/6

+ �1I10 − 1
m1

[−�1(1 − x21,k−1)

+ �2
[1 − tanh2(
x4,k−1)] + c1]�1I100

− c2
m1

(�1I100 − �2I200) (25a) 49

x̃4k = x4,k−1 + a4,k−1h − 1
m1

{[pk1 + q(k1 + kb)]x4,k−1 − �1(1− x21,k−1)

× a4,k−1 + 2�1x1,k−1x
2
4,k−1�2
[1 − tanh2(
x4)]a4,k−1

+ c1a4,k−1 + k2(x4,k−1 − x5,k−1)}h2/2
+ �1I1 − 1

m1
[−�1(1− x21,k−1)

+ �2
(1 − tanh2(
x4,k−1) + c1]�1I10

− c2
m1

(�1I10 − �2I20) (25b)

While these equations constitute the process equation for the par- 51
ticle filter, the observation equation is given by Eq. (22) with x1k
and x4k replaced by x̃1k and x̃4k, respectively. The quantities Ir , Ir0 53
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Fig. 1. (a) The 3-DOF system with localized non-linearity and (b) force–displacement relation of the first spring.

and Ir00 (r = 1, 2) used in Eqs. (17) and (25) are MSIs given by1

I1 =
∫ tk

tk−1

dB1, Ir0 =
∫ tk

tk−1

∫ s

tk−1

dBr ds1 and

Ir00 =
∫ tk

tk−1

∫ s

tk−1

∫ s1

tk−1

dBr ds1 ds2 (26)

These MSIs are zero mean, normal random variables. Details of eval-3
uating these MSIs may be found in [16]. The approximating the
signum function as mentioned above allows the vector field to be5
adequately differentiable and this helps to obtain the discrete maps
of the SDEs in a weak form. To assess the error introduced due to7
this approximation, it may be necessary to obtain the solution of the
SDEs in the strong form. This requires the detection of the event ẋ=09
(where the signum function fails to be differentiable). However, an
accurate detection of such events in the solutions of SDEs is still an11
open research problem and is not attempted in the present study.

To estimate the parameters, within the framework of dynamic13
state estimation, one needs to extend the state vector by declaring
the parameters as additional state variables. For the 3-DOF oscillator,15
we consider the estimations of kb, �1 and �2, the parameters that
account for the non-linearity in the model. The governing SDEs of17
the estimation problem in incremental form (after declaring these
parameters as additional states—kb, �1 and �2 declared as x7x8, and19
x9, respectively) may be written as

dx1=x4 dt; dx2=x5 dt; dx3=x6 dt
dx4=a4 dt+�1 dB1; dx5=a5 dt+�2 dB2; dx6=a6 dt+�3 dB3
dx7=�k dB4; dx8=��1

dB5; dx9=��2
dB6

⎫⎬
⎭ (27)

21

Here the drift coefficient function a4 is given by

a4 = − 1
m1

[pk1x1 + q(k1 + x7)x1 − x8(1 − x21)x4

+ x9 tanh(
x4) + c1x4 + k2(x1 − x2) + c2(x4 − x5)] − ẍg (28)23

The coefficients a5 and a6 are the same as given in Eq. (21). �k, ��1

and ��2 represent the assumed diffusion coefficients in the SDEs25
for the parameter states x7x8 and x9, respectively. As in the state
estimation problem, the force transmitted to the support is assumed27
to be measured and hence the discrete observation equation takes
the form29

yk = pk1x1k + q(k1 + x7k)x1k + c1x4k − x8k(1− x21k)x4k
+ x9k tanh(
x4k) + �k (29)

where �k represents the measurement noise.31
Given the states x1, x4, x7, x8 and x9, the process equation (27) and

the observation equation (29) are linear. Thus x̃—the states to be es-33
timated using the particle filter—is identified as x̃=[x1; x4; x7; x8; x9].
The linearized process and the observation equations, conditioned35
on x̃, may now be readily expressed in the form of Eqs. (6) and

(9). Using truncated Ito–Taylor expansions, the discrete maps of the37
components of x̃ (i.e., x̃1, x̃4, x̃7, x̃8 and x̃9) over the interval (tk−1, tk]
may also be obtained. 39

3.1. Numerical results

We now employ the proposed methodology for state and param- 41
eter estimations of the Duffing and the 3-DOF oscillators. While we
report results on state estimations of both the oscillators, we pro- 43
vide results on parameter estimations of the 3-DOF oscillator only.
In both state and parameter estimation problems, we use an SIS fil- 45
ter for comparisons with results via the present filter. In parameter
estimation problems, the unknown system parameters are treated 47
as additional state variables. Discrete maps of system states, which
serve as the process equations for the SIS filter, are obtained using 49
truncated Ito–Taylor expansions. Details of the SIS filter are avail-
able in [6–8,21] and skipped here for conciseness.Within the present 51
filtering algorithm, we consistently use a bootstrap filter for esti-
mating the marginalized states. All such comparisons with the SIS 53
filter are reported using the same initial pdfs of all states, same pro-
cess/measurement noise intensities and the same ensemble size. To 55
study the effect of sampling fluctuations, 100 independent Monte
Carlo runs are performed. 57

The parameter values assumed for the Duffing oscillator are:
m = 1kg, 	 = 10N/m, 
 = 50000N/m3 and c = 0.5N s/m. For the 3- 59
DOF oscillator, the assumed parameter values are: m1 = m2 = m3 =
10kg, k1 = k2 = k3 = 3000N/m, kb = 750N/m, c1 = c2 = c3 = 5N s/m, 61
�1 =40N s/m3 and �2 =5N. The value of 
 used in the present work
is 104 (as a quick numerical study has confirmed that a further in- 63
crease in 
 does not significantly change the results). All other sys-
tem parameters are chosen arbitrarily in the present study. In state 65
estimation problems, the support motion is assumed to be harmonic,
i.e., xg(t)= xgo sin(�t). The parameters xgo and � are taken as 0.03m 67
and 4 rad/s, respectively, for the Duffing oscillator. Note that the
frequency of the support motion is close to the natural frequency 69
of the oscillator without the cubic term. The natural frequencies of
the linear model (again obtained by removing the non-linear terms) 71
associated with the 3-DOF oscillator are found to be 7.7, 21.6 and
31.2 rad/s. The support motion parameters of the 3-DOF oscillator 73
are taken as xgo = 0.01m and � = 7 rad/s. The process noise param-
eter (�d) for the Duffing oscillator is assumed as 0.05|ẍg|max, where 75
|ẍg|max is the maximum value of the realization of |ẍg(t)| over the
time interval of interest. For the 3-DOF oscillator, process noise pa- 77
rameters (�1, �2 and �3) are uniformly taken to be 0.01|ẍg|max. While
the measurement equation for the Duffing oscillator is obtained by 79
assuming the displacement to have been measured, the support re-
action constitutes the measurement for the 3-DOF oscillator. In the 81
numerical study, for the purpose of illustration, the time histories
of measurements are generated synthetically. (The case of experi- 83
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Fig. 2. State estimation of the Duffing oscillator using the proposed filter.

mentally obtained data is considered later in the paper.) For both1
the oscillators, the standard deviation of the measurement noise is
assumed as 7.5% of the maximum absolute value of the measured3
quantity. A uniform step size h=0.01 s is used for both the systems.
The ensemble sizes used are N = 50 and 250, respectively, for the5
Duffing and the 3-DOF systems. Both the oscillators are assumed to
start from rest and the initial conditions are treated as deterministic.7

In the parameter estimation problem, we consider the estima-
tions of kb, �1 and �2 of the 3-DOF system. The system parameters9
are assumed to be the same as those used in the state estimation
problem. Accordingly, the reference values of the parameters to be11
estimated are given by k∗

b=750N/m, �∗
1=40N s/m3 and �∗

2=5N. The
support motion is assumed to be a realization of the stochastic pro-13
cess xg(t)=

∑n
i=1ri sin(�it + �i), where ri , �i and �i are independent

random variables. While ri is assumed to be uniformly distributed in15
[−0.005, 0.005]m, �i and �i are assumed to be uniformly distributed
in [5,35] rad/s and [0, 90]◦ , respectively. Value of n is taken as 10. The17
initial pdf of x7 (i.e., kb) is assumed to be its given by its reference
value times a uniformly distributed random variable in [0.5, 1.2].19
Similarly the initial pdfs of x8 and x9 (i.e., �1 and �2, respectively)
are given by their respective reference values times (independently21
generated) uniformly distributed random variables in [0.8, 1.5]. We
note that the deviation of the mean of the initial pdf from the true23
value is 15% for all parameter states. Diffusion coefficients associated
with the parameter states are assumed as 10% of their reference val-25
ues. The process and measurement noise parameters are taken to be
the same as those used in the state estimation problem. A step size27
h = 0.01 s and an ensemble size of N = 1000 are uniformly used.

Results of the state estimation of the Duffing oscillator are shown29
in Figs. 2–7. Fig. 2 shows the measurement and one specific realiza-
tion of the estimate using the proposed filter. A good convergence31
of the mean is observed. The phase plot is shown in Fig. 3. One tra-
jectory amongst the ensemble of solutions of the SDE is used for33
generating the measurement and is taken as the so called `reference'
trajectory (note that this is only possible in numerical experiments35
involving artificial generations of measured signals). A reasonably
good correspondence of the estimated trajectory with its reference37
is observable from Fig. 3. In order to obtain a measure of sampling
fluctuations in the estimation process, 100 independent MC simu-39
lations are performed. Cumulative sampling variances of the esti-
mated states are shown in Fig. 4. The cumulative sampling variance41
of the estimate of the ith state is obtained as cum.var(E[xi(t)]) =∫ t
0 var(E[xi(s)]) ds. A significant reduction in the cumulative variance43
of the states is observable through the proposed filter. Root mean
square errors (RMSEs) in the estimated states from their references45

Fig. 3. State estimation of the Duffing oscillator—phase plane plot.

Fig. 4. State estimation of the Duffing oscillator—cumulative variance of the esti-
mated states.

Fig. 5. State estimation of the Duffing oscillator—RMSE of the estimated states.

are shown in Fig. 5. The error in estimating the ith state is evaluated
as ei(t) = xi,reference(t) − x̂i(t), where x̂i is the estimated state. Com- 47
pared with the SIS filter, a marginal reduction in the variances of es-
timated states and RMSEs could be seen in state estimations via the 49
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Fig. 6. State estimation of the Duffing oscillator—MSE (with reference to the solution
trajectories of the system SDEs), in one of the MC runs.

Fig. 7. State estimation of the Duffing oscillator—variance of the MSE (with reference
to the solution trajectories of the system SDEs).

proposed filter. In the context practical applications, the so called1
reference trajectories are not available and hence the RMSE calcula-
tion as mentioned is not feasible. Nevertheless, the availability of the3
analytical model of the structure, built into the process equations,
makes it possible to generate any number of realizations of the solu-5
tion of the associated SDEs. Consequently we define the estimation
error in the ith state as ē(j)i (t) = xi(t,�j) − x̂i(t), where xi(t,�j) is the7
j-th realization of the solution of the process SDEs. Thus, the MSE
in one MC run may be computed as

∑N
j=1[ē

(j)
i (t)]2 with N being the9

number of particles. Fig. 6 shows the MSE in the estimate of x2 in
one of the MC runs. The sample variance of the MSE, over 100 MC11
runs, is shown in Fig. 7. Here again, the robustness and accuracy of
the proposed filter is observable. Figs. 8–14 show results on state es-13
timations of the 3-DOF oscillator. Fig. 8 shows the measured support
reaction and its estimate using the proposed filter. The phase plane15
plot is shown in Fig. 9. A fairly good convergence of the estimated
trajectory may be observed. Fig. 10 shows the cumulative variance17
of the estimated velocity states (x4, x5 and x6) over 100 MC simula-
tions. Substantial reductions in variance is visible in the estimated19
states through the proposed filter vis-à-vis the results obtained by
the SIS filter. The MSE of the estimated states, as defined above, in21
one of the MC runs is shown in Fig. 11. A superior performance of

Fig. 8. State estimation of the 3-DOF oscillator using the proposed filter.

Fig. 9. State estimation of the 3-DOF oscillator—phase plane plot.

Fig. 10. State estimation of the 3-DOF oscillator—cumulative variance of the esti-
mated velocity states.

the proposed filter over the SIS filter is evidenced from both the fig- 23
ures. For both state and parameter estimation problems of the 3-DOF
oscillator, we mainly use tanh(
ẋ) to approximate the signum func- 25
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Fig. 11. State estimation of the 3-DOF oscillator—MSE (with reference to the solution
trajectory of the SDE), in one of the MC runs.

Fig. 12. State estimation of the 3-DOF oscillator using the proposed filter—RMSE
of the estimated states using two different approximations of the signum function.
(Scheme 1 refers to approximation of sgn(ẋ) as tanh(
ẋ) and Scheme 2 refers to
approximation of sgn(ẋ) as (2/�)tan−1(�ẋ).)

tion. However, as mentioned in the previous section, signum func-1
tion can also be approximated as 2/� tan−1(�ẋ). It will be interesting
to compare the error in state estimation using these two schemes3
of approximations for the same values of 
 and � (
 = � = 104). Fig.
12 shows a comparison of the RMSE of the estimated states (over5
100 independent MC simulations) of the 3-DOF oscillator using these
two schemes of approximations of the signum function. We observe7
that both the schemes lead to almost identical RMSEs.

The results of parameter estimation of the 3-DOF oscillator are9
shown in Figs. 13 and 14. Mean of the estimated parameters, over
100 MC runs, is shown in Fig. 13. One realization (time history of11
the estimate in one of the MC runs) of the estimated parameters
is also shown along with the mean of the estimated parameters.13
Fig. 14 shows the cumulative variance of the estimated parameters
in 100 MC runs. In estimating the mean of the stiffness parameter15
kb, performance of both the filters is almost identical. However, in
the estimation of the damping parameter �1, the mean estimate17
using the proposed filter shows better convergence to its reference
value. The mean estimate of the Coulomb damping parameter (�2)19
converges to a slightly higher value compared to its reference value,
using both the filters. A single realization of the estimate of �2 was21

Fig. 13. Parameter estimation of the 3-DOF oscillator: (a) estimate of mean of kb;
(b) estimate of mean of �1and (c) estimate of mean of �2.

Fig. 14. Parameter estimation of the 3-DOF oscillator—cumulative sample variance
of the estimated parameters.

found to be oscillatory and the convergence was found to be poor.
Nevertheless, compared to the estimates using the SIS filter, mean 23
parameter estimates using the proposed filter are generally closer
to their respective reference values. The fact that estimates do not 25
converge exactly to the reference values is only natural because of
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Fig. 15. Schematic diagram of the experimental setup.

Fig. 16. Experimental models: (a) 3-storey building frame (model 0); (b) first storey of `model 0' modified with additional columns and mass (model 1) and (c) first storey
of `model 0' attached with diagonal wires (model 2).

the presence of process and measurement noises in the system. A1
consistent reduction in the cumulative variance of the estimates is

also evident. Thus, it is clear that the proposed filter yields accurate 3
and variance reduced estimates.
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Fig. 17. (a) Analytical model of `model 0' and (b) force–displacement relation of the
first storey of `model 2'.

4. An experimental validation1

In this section, we study the problem of identification of sys-
tem parameters based on laboratory experiments conducted on a3
3-storey building frame (Figs. 15 and 16). Here the model structure
is excited by harmonic base motion and the response of the floors5
(displacement, velocity or acceleration) could be measured using the
sensors T1–T5. The experiments were conducted using standard vi-7
bration equipment and data acquisition system and these details in-
dicated briefly in Fig. 15. In this study we first consider a reference9
model (Fig. 17a; designated as model 0) and we assume that its prop-
erties have been already identified by an independent means (such11
as, for instance, those based on experimental modal analysis or in-
verse sensitivity analysis). Newer structural models can now be gen-13
erated by making suitable local modifications to this baseline model
(models: 1 and 2; Figs. 17b and c). To obtain `model 1', the first story15
of `model 0' was stiffened with two additional columns of the same
type as used in `model 0'. A mass of 0.511kg was also added in the17
first floor slab. Fig. 16(b) shows the modifications made in the first
storey of `model 0'. Since no modification was done in the second19
and third stories of the basic frame, the mass, stiffness and damping
parameters—m2,m3, k2, k3, c2 and c3—of the model were assumed to21
be the same as those of `model 0'. Next, `model 0' was modified by
attaching two steel wires of 0.25mm diameter diagonally in the first23
storey as shown in Fig. 16(c) to obtain `model 2'. The wires were
attached in such a way that they were just taut in the undeformed25
state of the structure. Since the wires offer resistance in one direction
only, the force–displacement relation of the first storey becomes bi-27
linear (Fig. 17b). Thus `model 2' is a non-linear frame with localized
non-linearity in the first storey. The identification method proposed29
in this paper is applied to estimate the parameters of models 1 and 2.

Fig. 16a shows the 3-stoired building frame (model 0) that is31
made up of aluminum columns and slabs. The slab dimensions were
300.0mm×150.0mm×12.7mm and the columns had rectangular33

Fig. 18. FRFs (accelerations at different floors due to unit harmonic force at the
second floor) of the 3-storey frame.

cross section of 25.1mm×3.0mm. The floor heights were 400mm.
The behavior of this system can be adequately represented as a 35
3-DOF shear frame model (Fig. 17a) over a frequency range up to
about 12Hz [22]. The mass and stiffness parameters of the analyti- 37
cal model were estimated as m1 = m2 = 1.8685 kg, m3 = 1.7058 kg;
k1 = k2 = k3 = 2923.7 N/m. In the present study a simple damping 39
model of the frame was obtained by assuming it to be propor-
tional to stiffness and the damping parameters are obtained as 41
c1=c2=c3=0.65N s/mby minimizing the squared error between the
experimental and analytical frequency response functions (FRFs). 43
A fairly good match between the FRFs of the analytical model and
those via experiments could be seen from Fig. 18. Figs. 19 and 20 45
show the experimental and calculated response (using the analytical
model) of `model 0' for harmonic base motions of frequencies 2 and 47
2.6Hz (Figs. 19a and 20a), respectively. A good match between the
experimental and numerically obtained responses (time histories of 49
velocities of different floors—Figs. 19b and 20b) suggests that under
low frequency harmonic base motions, the 3-DOF analytical model 51
is adequate to represent the behavior of `model 0'.

4.1. Experiments 53

The objective of the experiments is to estimate the unknown
parameters in models 1 and 2, using the proposed filter, making use 55
of the incomplete and noisy measurements. In `model 1', we aim to
estimate the stiffness and damping values of the first storey, whereas 57
in `model 2', the objective is to estimate the stiffness offered by the
wires and the damping coefficient of the first storey. For comparison, 59
estimations of the unknown parameters were done using the SIS
filter also, using the same initializing parameters (initial pdfs of all 61
states, parameters of process/measurement noise and ensemble size)
as those used with the proposed filter. In both the experiments, 63
measured velocities of the first and third floors were only used for
estimating the parameters. Further details of the experiment are 65
provided below.

4.1.1. Experiment on `model 1' 67
The analytical model of `model 1' could be represented by the

model shown in Fig. 17(b), with m1 modified as m1 +ma , where ma 69
represents the attached mass. The stiffness (k1) and the damping
coefficient (c1) of the first storey of the modified frame were treated 71
as the unknown parameters to be estimated and they are declared
as additional states (x7 and x8, respectively). The governing SDEs in 73
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Fig. 19. Measured and calculated response of model 0 for harmonic base motion of
frequency 2Hz: (a) measured base motion and (b) velocity of floors.

incremental form may be expressed as1

dx1=x4 dt; dx2=x5 dt; dx3=x6 dt
dx4=a4 dt+�1 dB1; dx5=a5 dt+�2 dB2; dx6=a6 dt+�3 dB3
dx7=�c dB4; dx8=�k dB5

⎫⎬
⎭ (30)

with initial conditions xi(0) = xi0, i ∈ [1, 8]. The drift coefficients are3
obtained as

a4=− 1
m1+ma

[x8(x1−xg)+x7(x4−ẋg)+k2(x1−x2)+c2(x4−x5)]

a5=− 1
m2

[k2(x2−x1)+k3(x2−x3)+c2(x5−x4)+c3(x6−x5)]

a6=− 1
m3

[k3(x3−x2)+c3(x6−x5)]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(31)

5

Here, �1,�2 and �3 are the intensities of the additive process noises.
�c and �k represent the assumed diffusion coefficients associated7
with the parameter-states c1 and k1, respectively. Since measured
velocities of first and third floors were used in the estimation process,9
the measurement equations may be written as

y1k = x4k + �1k
y2k = x6k + �2k

}
(32)11

where �1k and �2k represent measurement noises. Note that, given
x7 and x8, the process equation (30) becomes linear. If y1k (in Eq.13
(32)) is taken as the observation for the particle filter, then x̃ (the
states to be estimated using particle filter) may be marginalized15

Fig. 20. Measured and calculated response of `model 0' for harmonic base motion
of frequency 2.6Hz: (a) measured base motion and (b) velocity of floors.

as x̃ = [x4; x7; x8]
T . Conditioned on x̃, linearized process equations

may now be obtained as explained in Sections 2 and 3. Also, the 17
discrete process equations for the particle filter may be arrived at
using truncated Ito–Taylor expansions. 19

The process noise coefficients (�1,�2 and �3) were taken as 5%
of the maximum absolute base acceleration. The standard devia- 21
tion of the measurement noise (obtained by collecting the noise
data using the setup used for measurement, with all the electron- 23
ics switched on while keeping the structure at rest) was found to
be 6×10−4 m/s. The initial pdf of x7 (i.e., c1) and x8 (i.e., k1) were 25
assumed to be uniformly distributed in [3000, 8000]N/m and [0.75,
2.5]N s/m, respectively. The initial pdfs of all displacement and ve- 27
locity states were, respectively, assumed as being uniformly dis-
tributed in [−1× 10−4, 1× 10−4]m and [−1× 10−3, 1× 10−3]m/s. 29
The diffusion coefficients (�c and �k) of the parameter states were
assumed to be 5% of the mean of their initial pdfs. An ensemble size 31
of N = 1500 was used.

As has been done in the numerical study, in the experimental 33
study also 100 independent MC simulations are performed to assess
the sampling fluctuations in the estimation process. Fig. 21 shows 35
the estimated velocities in one of the MC runs. Figs. 22 and 23 show,
respectively, the mean and the cumulative variance of the estimated 37
parameters over 100 MC runs. One trajectory of the estimated pa-
rameters, using the proposed filter, is also shown along with the 39
mean of the estimated parameters. A fairly good convergence of the
estimated states may be observed from Fig. 21. The value of the pa- 41
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Fig. 21. Experiment on `model 1'—estimated states in one of the MC runs: (a)
velocity of first floor; (b) velocity of second floor and (c) velocity of third floor.

rameter is calculated as the time-averaged mean of its estimate (in1
a single simulation) over the last 2 s of simulation. Thus, for the tra-
jectories shown in Fig. 22, the values of k1 and c1 were found to3
be 4289.98N/m and 1.54N s/m, respectively. A reduction in the cu-
mulative sample variance, through the proposed filter compared to5
SIS filter, can be observed in Fig. 23, which indicates that sampling
fluctuations are less for the proposed filter. Making use of the val-7
ues of k1 and c1 (as found above) in the analytical model of `model
1' the response was obtained numerically, for a specific base mo-9

Fig. 22. Experiment on `model 1'—estimate of parameters.

Fig. 23. Experiment on `model 1'—cumulative sample variance of the estimated
parameters.

tion, and compared with the actual response measured in the ex-
periment (Fig. 24). It can be seen that the numerically obtained re- 11
sponse matches reasonably well with the actual response obtained
through the experiment, which shows the accuracy of the proposed 13
estimation procedure.

4.1.2. Experiment on `model 2 15
The analytical model shown in Fig. 17(b) could still be used to

represent `model 2', with the first linear spring (corresponding to 17
the first storey) being replaced by a bilinear spring whose force-
displacement relationship is as shown in Fig. 17(c). The force in the 19
first spring may be written as

fs(x)= k1x if x�0

= (k1 + kw)x if x>0 (33) 21

where kw is the contribution of the wires to the stiffness of the first
spring and x is the extension/contraction of the spring. Eq. (33) may 23
be generalized as

fs(x)= pk1x + q(k1 + kw)x (34) 25

where p and q are given by p = 1, q = 0 if x�0 and p = 0, q = 1
otherwise. 27
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Fig. 24. Measured and calculated response of model 1 for a specific base motion:
(a) measured base motion and (b) velocity of floors.

The damping coefficient of the first storey (c1) and stiffness of-1
fered by the wires (kw) are declared as additional states x7 and x8,
respectively. The governing SDEs of the system may be expressed in3
the following incremental form:

dx1=x4 dt; dx2=x5 dt; dx3=x6 dt
dx4=a4 dt+�1 dB1; dx5=a5 dt+�2 dB2; dx6=a6 dt+�3 dB3
dx7=�c dB4; dx8=�k dB5

⎫⎬
⎭ (35)

5

with initial conditions xi(0) : = xi0, i ∈ [1, 8]. The drift coefficients
are given by7

a4=− 1
m1

{[pk1+q(k1+x8)](x1−xg)+x7(x4−ẋg)+k2(x1−x2)

+c2(x4 − x5)}
a5=− 1

m2
[k2(x2−x1)+k3(x2−x3)+c2(x5−x4)+c3(x6−x5)]

a6=− 1
m3

[k3(x3−x2)+c3(x6−x5)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(36)

�1, �2 and �3 are the intensities of additive process noises. �c and9
�k represent the assumed diffusion coefficients associated with the
parameters c1 and kw, respectively. The measurement equations are11
the same as given in Eq. (32). Taking y1k (Eq. (32)) as the observa-
tion for the particle filter, if one declares x̃ = [x1; x4; x7; x8]

T , the13
process equation (35) becomes linear conditioned on x̃. The rest of
the filtering algorithm follows the steps already outlined in Sections15
2 and 3.

Fig. 25. Experiment on `model 2'—estimated states: (a) velocity of first floor; (b)
velocity of second floor and (c) velocity of third floor.

Towards estimating the unknown parameters, process and mea-17
surement noise intensities were taken the same as in experiment 1.
An ensemble size of N=2500 was used. The initial pdf of x7 (i.e., c1) 19
and x8 (i.e., kw) are assumed to be uniformly distributed in [8000,
28000]N/m and [0.75, 3.0]N s/m, respectively. The diffusion coeffi- 21
cients (�c and �k) of the parameter states were assumed to be 5%
of the mean of their initial pdfs. The initial pdfs of the displacement 23
and velocity states are also taken to be the same as those used in
the previous experiment. The estimated floor velocities, obtained in 25
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Fig. 26. Experiment on `model 2'—estimate of parameters.

Fig. 27. Experiment on `model 2'—cumulative sample variance of the estimated
parameters.

one simulation, along with the respective measurements are shown1
in Fig. 25. The mean and the cumulative variance of the estimated
parameters over 100 MC runs are shown in Figs. 26 and 27, respec-3
tively. Along with the mean of the estimated parameters, one trajec-
tory of the estimated parameters, using the proposed filter, is also5
shown. From Fig. 25, one may observe that the estimated velocities
of second and third floors converge reasonably well whereas con-7
vergence of the estimated velocity is slightly inferior for the first
floor. In this case also, compared to the SIS filter, the proposed filter9
results in less cumulative variance of the estimated parameters (Fig.
27). From the estimated trajectories of the parameters the values of11
kw and c1were obtained as 13511 and 1.89N s/m, respectively. With
these values used in the analytical model, the response of `model 2'13
was obtained numerically, for a given base motion (Fig. 28a), and
compared with the measured response obtained in the experiment15
(Fig. 28b). A satisfactory comparison between the numerical and ex-
perimental response is indicative of the accuracy of the proposed17
method in parameter identification.

5. Concluding remarks19

A conditionally linearized Monte Carlo filter for state and param-
eter estimations of non-linear structural dynamical systems with21

Fig. 28. Measured and calculated response of `model 2' for a specific base motion:
(a) measured base motion and (b) velocity of floors.

Gaussian additive noises is proposed. A small (marginalized) sub-
set of the state vector, which contains the system states appearing 23
in the non-linear functions in the process equations and (some of
the) measurement equations, is estimated using a particle filter and 25
the resulting information is used to linearize the system equations.
The system states are then estimated using a bank of Kalman fil- 27
ters. As the number of states to be estimated via the particle filter
increases with the number of states involved in the system non- 29
linearity, the proposed method is considered ideal for large systems
with localized non-linearity. In addition to a reduction in the sam- 31
ple variance of the estimate, the present method also eases the dis-
cretization requirements of the governing SDEs. Discrete maps of 33
the marginalized states (to be estimated through the particle filter)
only need to be obtained using stochastic Taylor expansions. Limited 35
numerical illustrations on a few non-linear oscillators and experi-
mental demonstrations on laboratory models are indicative of the 37
superior performance of the proposed method. While the method is
computationally expensive, the focus of this study has been on an 39
exploration of techniques to increase the analyticity of the filtering
schemes and to study the sampling fluctuations of the resulting al- 41
gorithm. As a consequence of a substantial amount of calculations
being done analytically in arriving at the conditional pdf, the vari- 43
ance of the estimator is found to be reduced vis-à-vis the standard
SIS filter. However, further studies are essential for rigorous analyses 45
of the sampling fluctuations and convergence characteristics.

Q1
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