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Abstract 
 
The paper reports on relative performance of inverse eigensensitivity and response 
function methods for structural damage detection, location and quantification using 
vibration data. In implementing each of these methods, a validated baseline finite element 
(FE) model for the structure, in its undamaged state, is assumed to be available. 
Depending on this, a matrix of sensitivity of structural dynamic characteristics, in 
frequency or modal domains, to changes in values of structural parameters, is 
constructed. An inverse procedure, based on pseudoinverse theory of matrices, is 
subsequently applied to identify structural damages based on observed changes in 
vibration response of the structure. Issues arising out of mismatch between degrees of 
freedom of the FE model and number of measured degrees of freedom are dealt with by 
using alternative model reduction/expansion schemes. Illustrative examples on 
synthetically and experimentally generated vibration data on cantilever beams and a 
three-storied building frame are presented. 
 
1.0 Introduction 
 
Methods for experimentally establishing dynamic characteristics of linear vibrating 
structures, such as, matrix of impulse response functions, complex frequency response 
functions, or modal characteristics, namely, natural frequencies, modal damping, and 
mode shapes, are currently well established (Ewins 2000, McConnell 1995). These 
characteristics depend upon the physical properties of the structure, such as, elastic 
constants, mass density, boundary conditions, and geometric characteristics. Any 
modifications to these characteristics imprint their effects on the structural dynamic 
properties. Any such modification is treated in the present study as a “structural damage”. 
The methods of vibration based structural inspection are based on the premises that  (a) 
these changes are observable, and (b) via the application of inverse procedures, these 
changes can be related to the causative modifications to the physical parameters of the 
structure. In the present study it is assumed that the scope of this inspection includes the 
detecting, locating and quantifying the structural damages.  
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The problem of damage location and quantification generally requires the availability of a 
validated finite element (FE) model for the structure in its undamaged state. Such a 
model is obtained by spatial discretization of a continuum. The highest frequency up to 
which one can trust the FE model predictions depends upon the fineness of spatial 
discretization. A FE model with N degrees of freedom, in principle, possesses N natural 
frequencies but only about the first 10% of these modes possess trustworthy accuracy. 
Those modes that are essentially trustworthy would be spatially complete. The current 
state-of-art in FE modeling permits fairly elaborate models for vibrating structures to be 
constructed even on desktop computers. Experimental models, on the other hand, are 
often spatially far less complete than corresponding FE models. This is because of 
limitations on number of channels for vibration measurements, inaccessibility of interior 
degrees of freedom (dofs) for measurement and inability to measure rotational dofs. The 
highest frequency up to which an experimental model can be trusted depends upon 
sampling frequency and anti-aliasing filter characteristics. The current state-of-the art in 
vibration data acquisition permits fairly large sampling rates in vibration data acquisition, 
and, consequently, experimental models are modally incomplete to a lesser extent than 
corresponding FE models. The incompleteness that invariably exists in FE models and 
experimental models poses fundamental difficulties in terms of non-uniqueness and ill 
posedness of governing equations in problems of FE model updating (Friswell and 
Mottershead 1996) and damage identification. The success of damage detection 
algorithm crucially hinges upon how these difficulties are dealt with. The problem of 
structural damage detection is also beset with other difficulties such as those arising due 
to presence of measurement noise, effect of environment (such as temperature and 
humidity fluctuations, and presence of ambient loads, such as, those caused due to wind), 
and possibility of damaged structure entering nonlinear regimes. The optimal selection of 
location of sensors and actuators so as to achieve the best possible results in damage 
identification, also constitutes a challenging problem.  Obtaining vibration signatures 
from large-scale civil structures is often a difficult task because of limitations in 
supplying meaningful test signals that produce structural responses whose levels climb 
over the measurement noise floor.  Furthermore, as has been noted already, when 
damages need to be localized and quantified, a validated baseline FE model for the 
structure, in its undamaged, state would often be required. Fulfilling this requirement 
may however pose significant difficulties. A systematic treatment of these issues poses 
several research challenges and, consequently, this subject has received much research 
attention in the existing literature: the works of Farrar et al., 2001, Doebling et al., 1998, 
Doebling et al., 1996, He 1999, Salawu 1997, Staszewski 1998, and Farrar et al., 1999, 
provide comprehensive overviews on the basic research issues in this area. The paper by 
Majumder and Manohar (2003) contain references to studies on structural damage 
detection using vibration data for civil engineering structures.  
 
A combined experimental and analytical program of research aimed at developing 
methods for structural damage detection using vibration data under ambient loads and 
Bayesian methods for FE model updating is currently underway at the Indian Institute of 
Science. The work done so far has resulted in the development of a time domain 
algorithm for damage detection in beams using vibration data generated by a moving 
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oscillator (Majumder and Manohar 2003,2004). This work has potential applications to 
damage detection in bridge structures based on measurement of vibration produced by 
moving vehicles.  In the present paper, we report on a comparative study of alternative 
algorithms for damage detection in linear systems, which are based on frequency and 
modal domain descriptions. These procedures are applied on synthetically and 
experimentally generated data. Experimental studies are conducted on cantilever beams 
and on a three-storied building frame model and this has involved measurement of a set 
of frequency response functions using impulse hammer tests on the structure in its 
original state and in a modified state and subsequent extraction of modal parameters 
using curve fitting methods. The analytical methods of damage identification, when 
applied to experimental data, are shown to be successful in characterizing structural 
modifications with reasonable accuracy. 
 
2.0 Basic formulation 
 
The equilibrium equations governing the dynamics of a N degrees-of-freedom linear time 
invariant system, in time and frequency domains, are respectively given by 
 

ere M= mass matrix, K= stiffness matrix, C= damping matrix, D(ω)=[- ω2M+i ωC+K] 

 nodal connectivity matrix of size NDOF × N where NDOF is the number dofs in the 
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is the dynamic stiffness matrix, x(t)= N×1 displacement vector, f(t)= N×1 force vector, 
X(ω)= Fourier transform of x(t), F(ω)= Fourier transform of f(t), t= time, ω= frequency, 
i= imaginary number and a dot over head represents derivative with respect to time t. 
Taking into account the assembling procedure followed in finite element formulation, the 
structural matrices can be represented in the form 
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Here the superscript e denotes the element, Ne is the number of finite elements and [A]s is 
the
sth element. An outstanding feature of damage detection problem arises because of the 
fact that the size of the baseline FE model and the experimental model invariably does 
not match. This obligates the requirement that, either the FE model must be reduced, or, 
the experimental model be expanded, so as to achieve a match between the two model 
sizes. For the purpose of illustration we consider the first option in this discussion. The 
displacement vector x(t) is partitioned as x(t )={ xm(t) xs(t )}t where, superscript t denotes 
the matrix transpose operation,  xm(t )= master dofs of size Nm×1  that are measured and 
xs(t)= slave dofs of size Ns×1 that are not measured. This partitioning automatically 
induces the following partitioning into the structural matrices 
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Similarly, the force vector f(t) gets partitioned as ft=[fm fs]. It assumed that the slave dofs 
are not externally driven and, therefore, it follows that fs(t)=0. Let Φ denote the matrix of 
modal vectors normalized such that ΦtMΦ=I, where I is the identity matrix. This matrix 
also gets partitioned as Φt=[Φm Φs]. The master dofs are taken to be related to the 
displacement vector x(t) through the relation x=Wxm, where, W is the transformation 
matrix that depends upon the reduction scheme adopted. There exist several reduction 
schemes in the literature, such as, static and dynamic condensation techniques and system 
equivalent reduction and expansion process (SEREP), which could be used in this context 
(Callhan et al., 1989). According to the static condensation technique, this transformation 
matrix reads 
 

imilarly, in dynamic condensation one gets, 

duction expansion process (SEREP), the 

m in equation (1) and pre-multiplying by Wt one gets 

 
 

ere the quantities MR= W MW, CR= WtCW, and KR= WtKW are, respectively, the 
duced mass, damping and stiffness matrices and fR= Wtf(t) is the reduced force vector. 
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According to the system equivalent re
transformation matrix is given by 
 

Upon substituting equation x=Wx
 

H t

re
In implementing damage detection strategies, the kth element structural matrices are 
multiplied by non-dimensional damage indication factors αk, βk,and γk for k=1,2,…,Ne as 
follows: 
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Here the subscript k denotes the element number, and D and U, respectively, denote 
amaged and undamaged states. Thus, the assembled structural matrices for the damaged 
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The basic problem of damage detection using vibration data can be stated as finding αk, 
βk, γk for k=1,2,…,Ne, given the difference in response characteristics of the structure in its 
undamaged and damaged states. These characteristics could be stated in terms of system 
igensolutions, matrix of impulse response functions, matrix of frequency response 

  

selected active dof.       

cies and mode shapes (for the selected modes) of the full system 
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3.0 Methods of damage detection

e
functions, or structural response to given excitations either in time or frequency domains. 
Depending upon which response characteristic is used in damage detection, and, also 
based on which reduction scheme is used in FE model reduction, several variants of 
damage detection algorithms are thus possible. In most situations these algorithms lead to 
a set of over-determined nonlinear algebraic equations for the damage indicator factors 
αk, βk, γk and one needs to employ an iterative scheme combined with the theory of matrix 
pseudoinverse to obtain the optimal solutions. It may be noted that the relative merits of 
the above-mentioned reduction schemes are widely discussed in the literature, see, for 
instance, Callahan et al., (1989). The accuracy of static and dynamic condensation 
techniques is affected by the choice of active dofs. On the other hand, SEREP provides 
features that the other two reduction schemes do not such as (Callahan et al., 1989):            
 

• The arbitrary selection of modes that are to be preserved in the reduced system 
model.       

• The quality of the reduced model is not dependent upon the location of the 

• The frequencies and the mode shapes of the reduced system are exactly equal to 
the frequen
model.        

he resent study we consider the use of SEREP and dynamic condensation method for 
el reduction. 

 

n method  

odels representing, respectively, the structure in its 
ndamaged state and damaged state. The governing equations, in frequency domain, for 

ystem is driven by point harmonic excitations, is given 
y 
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model; reduction schemes, namely, the SEREP (equation 7) and dynamic condensation 
(equation 6). Using this transformation, equation (11) can be recast as 
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This equation can be written compactly as 
 

 coefficient matrix [Ω] here is complex valued. In the solution of 
the above equation, it is found expedient to separate the real and imaginary parts of Ω and 

F=G+iH . Consequently, equation (23) can be recast as 

D, and, hence, 
δ. Thus equation (17) represents a set of nonlinear 

equations in δ.   In the present study, we adopt an iterative strategy to solve these 
equations. Towards this end, we begin by assuming that WD=WU. With this assumption, 
the governing equation for δ becomes linear in nature. In most applications these 
equations constitute a set of over-determined set of linear algebraic equations with the 
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num  the number of unknowns. An optimal solution to the 
dam  can be obtained using pseudo-inverse theory as 

nowledge of this damage indication vector enables the definition of element location 
ages.  

tivity method  

ethods for evaluating sensitivity of natural frequencies and mode shapes of vibrating 
 

at are linked with damage indicator factors. 
his information is subsequently used in relating the observed differences in 

undamaged and damaged states, to the physical 
cation and severity of the structural damage. 

 
ce in eigensolutions of the structure in its damaged and 

f sensitivity factors and ∆δ is the correction factor. 
tes a set of over-determined linear algebraic equations in 

ber of equations exceeding
age indicator factor δ

 

 
 
Here the superscript + denotes the pseudo-inverse defined for a rectangular matrix A by  
A+=[AtA]-1At. With this initial value of δ, an updated estimate of WD is constructed and 
the iterative process is repeated till satisfactory convergence on δ is achieved. The 
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3.2 Inverse eigensensi
 
M
systems with respect to system parameters is a widely studied subject; one of the early
papers in this area has been by Fox and Kapoor (1968). These methods prove to be 
valuable in formulating problems of linear structural damage detection using vibration 
data. Here one constructs a matrix of sensitivity factors of natural frequencies and mode 
shapes with respect to structural parameters th
T
eigensolutions of the structure, in its 
lo
 
Let {δ} be the l-dimensional vector of structural parameters, which can change due to 
occurrence of damage. Let the jth element of this vector be δj0 in the undamaged state and, 
in the damaged state, let this parameter change to δj0 +∆δj. Consider the rth eigenvalue λr 
and the rth eigenvector {Xr} and let ∆λr and ∆Xr, respectively, denote the changes in λr and 
{Xr} caused due to the damage. Using first order Taylor's expansion one can write 
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If the gradients of eigensolutions with respect to δj are available, then, the above 
quations can re-cast schematically as  e
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∆δ and an optimal solution is obtained as ∆δ=[S]+{ ∆ν}. It can be shown that (Fox and 

 

Kapoor 1968) 
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If δj is interpreted as damage indicator factor, the derivative of the K and M matrices can 
asily be evaluated by using equation (3). It must be noted that in deriving these 
nsitivities it is assumed that no model reduction has been done in obtaining mass and 

stiffness matrices. In case model reduction is indeed implemented, the mass and stiffness 
matrices appearing in equations (21) and (22) need to be interpreted as the reduced mass 
and stiffness matrices. In this case, additional information on derivative of reduced 
structural matrices with respect to δj would be needed. For complicated structures such 
information may not be easily available. This is particularly true when the structure under 
consideration is modeled using commercially available FE codes, which often do not 
have capability to report on eigensensitivity vectors. In such cases, the eigensensitivity 

 

ethod. The error of 
optimally solving the over-determined equations offers a means to make this decision. 

ethod has the potential for updation of the damping matrix. However, the 
model reduction scheme employed here does not include the effect of damping 

j
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vectors can be estimated numerically. This involves repeated runs of the FE codes for a 
matrix of values of design parameter δ followed by numerical differentiation of the 
desired response quantity with respect to the structural variable of interest. This enables 
the estimation of the sensitivity matrix [S] appearing in equation (20) and hence an 
approximate solution to the problem on hand. 
 
Remarks 
 
1. The frequency domain method employs the SEREP for analytical model reduction 

and, given the iterative strategy adopted in the study, the proposed method does not 
need a modal analysis to be done on the experimental model of the damaged 
structure.  The SEREP used is a high fidelity reduction scheme, which retains features 
of original model in both modal and spatial domains. In implementing this method, 
the number of equations to be used and the choice of frequencies at which these 
equations are formulated are crucial to the success of the m

The m

matrix. This can be remedied if one includes the effect of damping in the definition of 
W in carrying out the SEREP. 
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2. 

3. 
e of being applicable to large scale structures wherein 

4. 

 model.  

age identification. The MAC and COMAC are defined, respectively, 

The inverse eigensensitivity methods require that an experimental modal analysis be 
performed on the damaged structure. The method handles relatively less amount of 
information as compared to the response function method. Furthermore, the 
sensitivity of the reduced models needs to be related to the parameters of the original 
model. Here again, SEREP appears to be the best choice for reducing the model. The 
method, in its present form, is inherently incapable of detecting changes to the 
damping characteristics caused due to damage. 
Both these methods, used in conjunction with numerical methods for sensitivity 
computations, have the promis
it is expedient to use commercially available FE codes for modeling and when the FE 
codes used do not have capability to provide the required eigensensitivity 
information.  
In the methods discussed herein it is assumed that a larger FE model is reduced to 
match the size of the smaller experimental model. An alternative to this would be to 
retain FE model untouched but instead resort to expanding the experimental model 
using additional information from the analytical

5. The tools such as, modal assurance criterion (MAC) and coordinate modal assurance 
criterion (COMAC) (Ewins 2000), for comparing two distinct models for 
eigenvectors, obtained by alternative routes (for example, theoretical & experimental 
models or models before and after the occurrence of damage), become useful in the 
context of dam
by 
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…(23) 
Here, ψ denotes the mode shape, the subscripts X and A, respectively, denote the 
experimental and analytical models. MAC is a scalar quantity defined with 
respect to a pair of modes, and, when thes well correlated, MAC 
would be close to one.  On the other hand, the COMAC is defined with respect to 
a set of L correlated mode shapes and is a function of the spatial coordinates. If 
there exists no discrepancies between the two models, the COMAC would be 
unity. A plot of COMAC between baseline model of the structure, in its 
undamaged state, and the structure, in its damaged state, is expected to show 
differences in regions where the effect of damages is felt most pronou

 

e modes are 

ncedly; 
these regions, however, need not correspond to the actual location of damages. 
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4.0 Illustrations using synthetic vibration data 

blem of validating the algorithms developed for damage detection is considered 
or this purpose, we consider a set of spring supported cantilever beams in which 
al modifications are artificially made and the vibration data for damage detection 
erated synthetically using finite element method. These studies are meant to be t

 
The pro
first.  F
structur
are gen he 

recursors to the experimental studies to follow on cantilever beams as shown in figure 1. 
The rotary spring at the end was introduced to cater for the lack of perfect fixity that was 
found to exist in the experimental model. The parameter τ is used to denote the change in 
the value of this spring in baseline FE model updating and structural damage detection. 
The FE model in this study has been created on a Matlab platform. The beam, in its 
undamaged state, is assumed to have the following properties: L=0.72 m, E=2.0e11 N/m2, 
mass density ρ=7528.9 kg/m3, rectangular cross section with dimensions of 50.6 by 6.4 
mm. For the purpose of vibration analysis, the beam is divided into 60 two-dimensional 
Euler-Bernoulli beam elements. For the purpose of damage identification, the beam is 
divided into ns segments; the finite elements lying within each of this segment are 
assigned a set of common damage indicator factors. In the numerical studies ns =4 and 6 
were considered. Thus, in artificially simulating damage, the flexural rigidity or the mass 
per unit length of all the elements lying within a segment is changed simultaneously. To 
start with, vibration data measured from the undamaged structure was inputted to the 
damage detection algorithms. It was found that the algorithms correctly reported that all 
the damage indicator factors were unity with an accuracy of higher than 0.001%. Results 
on damage identification with a distributed scenario of damages using different versions 
of damage detection methods with different choices for the parameters of the algorithm 
are summarized in Table 1. An entry denoted by a * in this table indicates the lack of 
convergence of the detection algorithms for the specific choices of the parameters of the 
method. The factors that influence the accuracy of damage detection for different 
methods are summarized below: 
 

(a) Response function method with model reduction using dynamic condensation: 
number of master dofs, location of master dofs, location of the driving point, 
frequency points at which equation (15) is formulated, the location of these 
frequencies, and number of frequency response functions (FRFs) used in 
formulating the equations. 

(b) Response function method using SEREP for model reduction: number of master 
dofs, their location, location of the driving point, number of modes retained in the 
reduction, the modes that are included, number of frequency points and their 
location and the number of FRFs used. 

(c) Method based on inverse eigensensitivity: number of measurement points and 
their location, and number of natural frequencies and mode shapes included in the 
analysis. 

In all these methods, the number of segments ns into which the beam is divided for the 
purpose of damage detection also is an important factor. Based on the numerical studies 
conducted the following observations are made: 
 

p
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(i) The treatment of rotational dofs as slaves does not affect the success of the 
damage detection algorithms.  

.0 Experimental studies

(ii) In the response function method, with fewer translation dofs treated as masters, 
the accuracy of the method deteriorates; in some instances, the algorithms failed 
to converge. The method based on inverse eigensensitivity showed convergent 
behavior but with increasing errors with reduction in number of masters. In fact 
with only one master and with information on six eigenvalues, the method 
converged and could detect damages with accuracy varying from 0.38% to 11.7% 
depending upon the specific choice of the master dof made.  

(iii) The response function method using dynamic condensation was found to be 
computationally more intensive as compared with the method based on SEREP. 
When only four masters were selected, the method based on SEREP failed to 
provide convergent solutions while the method based on dynamic condensation 
continued to perform well.  

(iv) In the response function method, with dynamic condensation for model reduction, 
the set of discrete frequencies that are included in the analysis plays a crucial role. 
The accuracy does not necessarily improve, as this set is made large. The 
inclusion of about three frequencies around each resonant peak was found to lead 
to acceptable convergent behavior of the damage detection algorithm. A similar 
observation has been made in the existing literature by Rad (1997) in the context 
of FE model updating. 

(v) The method based on inverse eigensensitivity was found to be the most robust 
among the three methods studied with respect to variations in number of masters, 
choices of master dofs and number of segments made for damage detection. 

(vi) The number of iteration cycles, when convergent solutions were possible, varied 
from about 3 to 4 for the inverse eigensensitivity method and up to about 15 
iterations for the response function method. 

 
5   
 
5.1 Stu
 
The exp
(50.6 b a heavy cast iron block at one end (figure 1). The 
Yo
the ana
length w
rotation he beam was divided into 6 segments and 
all 
spatial r
For the ing at the end a preliminary value of Kθ=10000 Nm/rad was assigned. 

 and after updating, the experimentally 
easured natural frequencies on damaged and undamaged beams and the natural 

frequencies predicted after damage detection was completed. The updating and damage 

dies on cantilever beams 

erimental set up consists of a steel beam 0.72 m long, of rectangular cross-section 
y 6.4 mm) and bolted to 

ung’s modulus was found to be 2.0e+11 N/m2 and mass density of 7528.9 kg/m3.  In 
lytical model development the beam was divided into 60 finite elements of equal 

ith a rotary spring inserted at the clamped end to model any lack of fixity against 
. For the purpose of damage detection, t

the finite elements lying within a segment were assigned the same properties. Thus the 
esolution of the damage detection in this case is equal to 1/ 6th of the beam span.  

 rotary spr
An updating exercise based on the method of inverse eigensensitivity was conducted and 
the results are summarized in Tables 2 and 3.  Table 2 shows the summary of results on 
natural frequencies of the baseline model before
m
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detection were based on method of inverse eigensensitivity with first six natural 
cies and mode shapes. It mayfrequen  be noted that for the purpose of simulation of a 

ag
support
depend
be obse
this ma
location
may be espond to scheme III 

data on
placem
damage
dampin  ready reference. The success of the baseline model 

in Tabl
Figure 
shape f
toward
 
In the FRFs were measured by using impulse hammer tests. In 

near th
type 82

using s
based, 00 data acquisition system equipped 
with an anti-aliasing filter (with cut-off frequency of 1000 Hz) and a simultaneous 

 sampling rate of 4000/s was used in conjunction with a 
ctangular window (of width 0.05 s) for the hammer blow and an exponential window 

responses. In Each measurement data of duration 8.192 
was acquired. The FRFs were averaged over 30 samples. A worksheet to conduct the 

“dam e” a concentrated mass of 0.027 kg was placed at a distance of 0.32 m from the 
. It was found that the accuracy with which the damage was identified was 
ent on the scheme adopted for placement of sensors (figure 1 and Table 4). As can 
rved from the results presented in Table 4, the damage detection algorithm locates 
ss with accuracy varying from about 0.15% to 5 % depending upon the sensor 
 scheme. Thus, for scheme 3 the highest error was found to be less than 1.6%. It 

 noted that the results shown in Tables 2,3,5 and 6 and 4 corr
of sensor placement. It is of importance note in this context that analyses using synthetic 

 this system provided equally acceptable results for all the three schemes of sensor 
ents. Table 5 summarizes the MAC values between experimental observations on 
d and undamaged structures; the values of the natural frequencies and modal 
g are also provided here for

updation as well as damage detection can be discerned from COMAC values summarized 
e 6 in which it can be seen that the COMAC value is close to unity at all the dofs. 
4 illustrates the experimentally measured and analytically predicted 3rd mode 
or the damaged beam. The close agreement found between these plots again points 
s the success of the damage detection process.   

experimental work the 
order to achieve acceptable quality of input pulse, it was found advantageous to select 

e beam support to impart the hammer blows. For this purpose the B&K hammer 
02 with plastic tip, B&K 8200 force transducer and B&K 2635 charge amplifier 

was used. The acceleration response of the beam was measured at a set of six points by 
train gauge based Sensotech accelerometers. The data was acquired using a PC 
4-channel 100kHz IOTECH DAQ Board/20

sampling and hold board. A
re
[w(t)=exp(-t/0.659)] for the beam 
s 
experiment was created on a DASYLab platform. The extraction of modal information 
from the measured vector of FRFs was carried using the ME’scope software using 
polynomial curve fitting method with due correction being made for the artificial 
attenuation effect arising due to the use of exponential window. It may be noted that each 
of the accelerometers used had a mass of 0.012 kg and these masses were added to the FE 
model developed for the purpose of damage detection. 
 
5.2 Studies on a three-storied building frame model 
 
Figure 5 shows the model of a three storied, single bay building frame. The columns were 
made flexible in one direction and slabs were heavier and much more rigid than the 
columns: this ensured that the structure would behave predominantly as a three-dof shear 
beam. A three-dof model for the frame was thus made and updated using experimentally 
measured eigenparameters in conjunction with the inverse eigensensitivity method of 
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updating. A modification to the structure was artificially simulated by adding a mass of 
0.233 kg to the second floor. Table 7 summarizes the results on natural frequencies for 
the initial assumed model, experimental results on damaged structure, updated baseline 
model and the predicted values from damaged structure after damage has been 
analytically detected. Tables 8 and 9 summarize the results on baseline model updating 
and detection of damage in the modified structure. The results on MAC and COMAC are 
summarized for the cases of updating of baseline model and for assessment of efficacy of 
damage detection. As can be observed from Table 9, the damage detection here has been 
possible with the highest error being less than 3%. The measurement of eigenparameters 
of the system was based on impulse hammer method and the details of the measurement 
strategy used was broadly similar to the one followed for the beam structure. 
 
6.0 Closing remarks 
 
The problem of structural damage identification using vibration data in cantilever beam 
structures and a three-storied shear-building frame is considered. Methods based on FE 
model updating are employed to detect, locate and quantify the damages. This has 
involved the application of response function and inverse eigensensitivity methods for 
element level location and quantification of structural damages. The governing equations 

r the damage indication factors in both of these methods are shown to constitute a set of 

(such as, loss of stiffness, changes 
 damping and/or onset of nonlinear behavior).  

fo
over determined coupled nonlinear equations. The nonlinear nature of these equations 
essentially arises due to the spatial incompleteness of the experimental data. These 
equations are solved using an iterative strategy. The study has involved both synthetic 
and experimentally produced data. The studies on using synthetic data have proved to be 
useful in investigating the range of validity of the damage identification schemes vis-à-vis 
the choices made on number of masters and their location, number of modes retained in 
the reduced models obtained using SEREP, and number and location of frequency points 
in reduction method involving dynamic condensation. The convergence and accuracy of 
the iterative strategy used in damage identification are shown to be dependent on these 
choices. Additionally, in the studies involving experimental data, the accuracy of damage 
identification is observed to be strongly influenced by the location of sensors and the 
drive point. For a given structural damage configuration, analyses using synthetic data 
provided equally acceptable results for alternative schemes of sensor placement while the 
damage identification using experimental studies showed significantly varying error 
patterns. Further studies are needed to explain these patterns of errors observed in 
damage identification using experimental data. Similarly, the scope of the present study 
needs to be expanded to include the treatment of measurement noise, more general forms 
of structural modification due to occurrence of damage 
in
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Table1 Damage detection in cantilever beams using synthetic vibration data; note: cases 
 damage detection algorithm did not converge is marked by a *. 

 

eme 1; 

for which the
 

Number of segments for damage detection = 6;  
Accelerometer locations as per Sch

Induced damage: α, β= {0.9,1,0.8,1,0.95,1} and τ = 1.20 
 

IES method RFM (SEREP 
condensatio

RFM (Dynamic 
n) condensation) 

 
 

 
 

No. of masters No. of modes Maximum % error 
6(A1-A6) 6 0.00 0.010 2.47 
6(A1-A6) 5 0.00 0.000 0.72 
6(A * 7.45 1-A6) 4 0.00 
6(A1-A6) 3 0.00 * 12.42 
5(A1,A2, 

-A6) 
6 0.00 * 0.27 

A4
5(A1,A2, 

-A6) 
5 0.00 0.01 1.50 

A4
4 (A1-A4) 6 0.00 * 0.53 
3(A1-A3) 6 0.00 * 0.83 
2 (A1-A2) 6 0.00 * 2.01 

1 A1) 6 11.70 * * (
1(A2) 6 11.96 * * 
1(A3) 6 2.40 * * 
1(A4) 6 0.38 * * 

 
Number of segments for damage detection= 4  

Accelerometer locations as per Scheme 4; 
Induced damage: α,β= {0.9,1,0.8,1} and τ = 1.20 

 
4(A1-A4) 6(1-6) 0.00 * 17.20 
4(A1-A4) 5(1-5) 0.00 * 18.34 
4(A 0.00 0.00 0.71 1-A4) 4(1-4) 
4(A1-A4) 3(1-3) 0.00 * 2.17 
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Table 2 Natural frequencies in Hz for the beam structure. 
 

 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 
Baseline model 
before updating 

9.3891 59.1583 166.4382 326.1528 543.3913 812.7730 

Experimental 
results on 

 undamaged beam 

9.38 300 806.9900 52 39.659.1470 166.4300 325.3400 5

Baseline model 
after u ing 

9.3852 59.1470 166.4 0 325.3400 539.6300 806.9900 
pdat

30

Experi ental 9.3633 8.2770  322 00m
results on 

damaged beam 

5 165.9900 .0700  536.41   802.2500 

Re d 
a

9.3633 8.2770 165  322.070 36.4100 00 sults predicte
fter damage 
detection 

5 .9900 0  5  802.25

 
Table 3 Updating of baseline model for the beam structure. 
 
Updating parameters Value before 

updating 
Value a
updati

% updation fter  
ng 

Kθ (Nm/rad) 10000 12779 -27.7860 
M1 (kg) 0.3643 0.4052 -5.4564  
M2 (kg) 0.2914 0.2821 1.6228  
M3 (kg) 0.2429 0.2449 -0.4155  
M4 (kg) 0.3643 0.4042 -5.3280  
M5 (kg) 0.2429 0.2397 0.6490  
M6 (kg) 0.2429 0.2621 -3.8759  

 
Table 4 Results of da
 

S e III 

mage identification on the beam structure. 

cheme I Scheme II SchemDamage 
indicatin

par
Expecte

ector 
Detecte

v

% 
Error 

Expect
d ve

Detecte
d 

vector 

% 
Error

Expecte
d vector 

Detecte
d

vec

% 
rror 

g 
amete d v
rs 

d 
ector 

e
ctor   E

tor 
Α1 1.0000 1. 8

9 
1.00 0.9668 3.32

3 
.0000 0.99 6

8 
0093 0.92 00 1 1 15 0.84

Α2 1.0000 0.9981 0.191
6 

1.0000 0.9813 1.873
4 

1.0000 1.0016 0.158
6 

Α3 1.0732 1.0858 1.170
9 

1.0824 1.1217 3.630
7 

1.1153 1.1331 1.596
2 

Α4 1.0000 0.9519 4.809
0 

1.0000 0.9954 0.463
7 

1.0000 0.9887 1.129
9 

Α5 1.0000 0.9971 0.286
5 

1.0000 1.0499 4.994
7 

1.0000 1.0148 1.483
6 

Α6 1.0000 1.0076 0.762
5 

1.0000 0.9643 3.567
1 

1.0000 0.9936 0.637
5 
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Table 5 Details of natural frequencies, modal damping and MAC for experimental 
easurements on damaged and undamaged structures 

 
 Shape 1 Shape 2 Shape 3 Shape 4 Shape 5 Shape 6 

m

Shape  

 (Hz)
Frequency 

  9.36329 58.2769 165.994 322.072 536.414 802.25 

  mp
(%) 2.81648 0.548626 0.209632 0.160718 0.19635 0.128035 Da ing 

Sha 522 2.80894 1.000 0.078 0.076 0.040 0.018 0.031 pe 1 9.38

Shape 2 59.1468 03 084 1. 0.04 125 0.0.57 66 0. 000 0.039 3 0. 069 

Shape 3 166.432 0.213244 0.078 0. 0 1.000 0.105 0.108 0.084 03

Shape 4 325.34 0.155086 0.043 0.030 0.108 0.999 0.078 0.018 

Shape 5 539.634 0.195323 0.130 0 066 0.999 0.080 0.017 .098 0.

Shape 6 89 0.116466 0.076 0. 0.013 0.08 98  806.9 0.029 081 9 0.9

 
Table 6  Details of COMAC(i) for baseline model updating and for verifying the efficacy 
of dam tion. Case 1: updation of baseline model; A= updated analytical model 
and X= experimental model on undamaged structure. Case 2: check after damage 
detecti alytical model after damage  have be fied and X: ntal 
measurements on damaged structure. 

→ 1 2 3 4 5 6 

ag  detece

on; A: an s en identi experime

 
i  
Case 1 0.9995 0.9892 0.9962 0.9938 0.9930 0.9867 
Case 2 0.9993 90  933 940.9 3 0.9961 0.9  0.9915 0.98  
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Table 7 Natural frequencies in Hz for the frame structure. 
 

 Mode 1 Mode 2 Mode 3 
Baseline m
befor

odel 
e upda g 

2.8495 7.9650 
tin

11.4742 

Experime
on undam  

frame 

2.7931 7.9084 ntal results 
aged

11.6370 

Results from he 
updated baseline 

od

2. 7 t

m el 

7931 7.9084 11.63 0 

Experimental results 
ag

2.7306 7.8676   11.2670 
on dam ed frame 
Results predicted 

 da
detection 

2.7306 7.8676   11.2670 
after mage 

 
 

Up f t e  for ame ure. 
 

g p rs alu re 
updating 

Value after updating pda

Table 8 dating o he baselin model  the fr  struct

Updatin aramete  V e befo % u tion 

M1 (kg) 1.9430 1.8846 3.0063 
M2 (kg) 1.9430 1.8449 5.0510 
M3 (kg) 1.8938 2.1107   -11.4544 

 
Table 9 Results on the damage detection for the frame structure. 

 
mage indicating   

rame
xpected ve r Detected vecto % Error Da

pa ters 
E cto r 

α1 000 2 1.9847  1.0  0.980
α2  1.1182 1.1508 -2.9132 
α3  1.0000 0.9999 0.0094 
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Table 10 Details of natural frequencies, modal damping and MAC for experimental 
measurements on damaged and undamaged structures 
 

   Shape 2 e 3 Shape Shape 1 Shap
 Frequency 

) 
 2.7306 7.8676 11.267 

(Hz
  Damping (%) 2.5134 0.92839 0.68966 

Shape 2.7931 2.43 0.999 0.005 0.003  1 
Shape 2 7.9084 2567 0.999 01 0.9 0.005 0.0
Shape 3 11.637 0.67473 0.000 0.008 0.995 

 
MAC( eline model up nd for verifyi acy 

o  Case 1: updating of baseline model; A= updated analytical model 
a l model on undamaged structure  check after d
dete tical model after damages have been identified and X: experimental 
meas n damaged structure. 
 
 

Table 11 Details of CO
f damage detection.

i) for bas dating a ng the effic

nd X= experimenta
ction; A: analy
urements o

. Case 2: amage 

i→ 1 2 3 
Case 1 0.9986 0.9917 0.9863 
Case 2 0.9956 0.9 74 866 0.98
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SCHEME        L1              L2             L3             L4             L5         L6         Lm         

    1   

M: Mass (Structural modification)
F: Excitation (Impulse hammer)

A1-A6:  Accelerometers

             120             120           160            80             120        120        320

    2                140             110           140            110           110        110        320

3        150             120          100             150           100       100        320        

L3L2L1

  

Kt: Torsion spring

Lm

A1 M

F

A2

L5L4 L6

All dimensions in mm

A6A

4             200          160             160             -             -             -

A3 A4 5

              200  

 
Figure 1 Details of experimental setup for studies on cantilever beam. 
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Figure 2 Point FRF of beam in undamaged and damaged states 
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Figure 3 Analytical FRF of the damaged beam and the FRF predicted from the baseline 

 
 
 
 

model after damage detection. 

 
rdFigure 4. Comparison of 3  mode shape for the damaged beam obtained using 

experiments and predicted using detected damage parameters; the dots represent points at 
which measurements are made.
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Part no. Part Description Numbers Size (mm) 
1 Column 4 3x25x1200 
2 Slab 4 12.5x150x300 
3 Plate 1 7x85x140 

E=69e9 N/m2, ρ=2800 kg/m3 

 
Figure 5 Model of a 3-story building; F: force applied. 
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