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Adaptive Random Field Mesh Refinements in Stochastic Finite Element
Reliability Analysis of Structures

M. Manjuprasad' and C. S. Manohar?

Abstract: A technique for adaptive random
field refinement for stochastic finite element re-
liability analysis of structures is presented in this
paper. Refinement indicator based on global im-
portance measures are proposed and used for car-
rying out adaptive random field mesh refinements.
Reliability index based error indicator is proposed
and used for assessing the percentage error in the
estimation of notional failure probability. Adap-
tive mesh refinement is carried out using hierar-
chical graded mesh obtained through bisection of
elements. Spatially varying stochastic system pa-
rameters (such as Young’s modulus and mass den-
sity) and load parameters are modeled in general
as non-Gaussian random fields with prescribed
marginal distributions and covariance functions in
conjunction with Nataf’s models. Expansion opti-
mum linear estimation method is used for random
field discretisation. A framework is developed
for spatial discretisation of random fields for sys-
tem/load parameters considering Gaussian/non-
Gaussian nature of random fields, multidimen-
sional random fields, and multiple-random fields.
Structural reliability analysis is carried out us-
ing first order reliability method with a few re-
fined features, such as, treatment of multiple de-
sign points and/or multiple regions of compara-
ble importance. The gradients of the performance
function are computed using direct differentiation
method. Problems of multiple performance func-
tions, either in series, or in parallel, are handled
using the method based on product of conditional
marginals. The efficacy of the proposed adaptive
technique is illustrated by carrying out numerical
studies on a set of examples covering linear static,
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free vibration and forced vibration problems.

1 Introduction

One of the major developments in the recent years
has been the extension of deterministic finite el-
ement methods to cover problems involving un-
certainties in structural properties and in specify-
ing loads which has resulted in the development
of stochastic finite element methods (SFEMs).
These developments include treatment of spatially
varying structural properties that are modeled as
random fields, loads that are modeled as space-
time random processes, structural behavior cover-
ing static and dynamic regimes, linear and nonlin-
ear structural mechanical behavior, and character-
ization of response variability and determination
of structural reliability measures. Various mathe-
matical tools, including, discretisation of random
fields, random eigenvalue analyses, solution of
stochastic boundary value problems, inversion of
random matrix and differential operators, compu-
tation of reliability measures via nonlinear opti-
mization tools, Monte Carlo simulation methods
including variance reduction strategies, and appli-
cations of response surface modeling have been
developed (for example see Ghanem and Spanos,
1991; Kleiber and Hien, 1992; Schueller, 1997;
Manohar and Ibrahim, 1999; Haldar and Mahade-
van, 2000; Jefferson Stroud, Krishnamurthy and
Steven Smith, 2002; Manohar and Gupta, 2005).

The finite element method, even when applied to
deterministic problems, is already approximate in
nature, and, when the inputs to the finite element
models are additionally treated as being prob-
abilistic in nature, the character of approxima-
tions involved gets further compounded by inac-
curacies realized in treatment of probability mea-
sure and uncertainty propagation through the sys-
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tem mechanics. Consequently, questions on er-
rors involved in response predictions, vis-a-vis the
choices made in handling of uncertainties, lead to
challenging research problems. In a problem in-
volving reliability analysis of structures analyzed
using SFEM, there could be several sources of nu-
merical errors. These errors can be grouped as
follows:

Group I:

e errors of discretisation of displacement
fields,

e errors of time stepping in direct integration,
e errors in computation of stress fields,

e crrors in determination of natural frequen-
cies and mode shapes, and

e errors due to truncation of modal expansion
of response.

Group II:

e errors associated with discretisation of ran-
dom fields,

e truncation errors in series representations
used for random field discretisation,

e treatment of non-Gaussian nature of random
fields via transformation to normal space,

e errors associated with characterization of re-
liability measures via linearization and sub-
sequent solution of constrained optimization
problems,

e errors associated with computation of gradi-
ents needed in calculation of reliability in-
dices,

e errors associated with treatment of multiple
design points and multiple regions of compa-
rable importance in reliability calculations,

e errors associated with treatment of multiple
failure modes,

e treatment of time-variant reliability using
asymptotic theories of extremes of random
processes, and
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e treatment of sampling fluctuations if Monte
Carlo simulation methods are employed in
reliability assessment.

In any given problem, all the above sources of er-
rors are present simultaneously and interact in a
complicated way contributing to the overall error
in reliability estimates. A unified treatment of all
these errors, with a view to select parameters of
numerical analysis so as to control the errors in re-
liability analysis, leads to complicated questions.
In the present study, we restrict our aim to address
issues related to impact of decisions made on dis-
cretisation of random fields on assessment of reli-
ability of structure on hand.

In the context of SFEM based reliability analy-
sis of dynamic structures with spatially distributed
random properties, there could be three different
meshes that need to be formulated; these are: (a)
mesh for discretizing the displacement fields, (b)
mesh for discretizing the random fields, and (c)
time steps for integrating the equilibrium equa-
tions. The accuracy of random response charac-
terization depends upon the choices made in for-
mulating these meshes. In an adaptive process,
attempts are made to estimate the errors with-
out excessively increasing the numerical effort
and to leave the decision of suitably refining the
mesh/time steps more or less to a computer pro-
gram. Considerable research has been carried out
on adaptive mesh/time step refinements, particu-
larly in the context of deterministic finite elements
(for example see Zienkiewicz and Taylor, 2000;
Ainsworth and Oden, 2000; Stein, Ruter and Ohn-
imus, 2004; Jin Ma, Hongbing Lu, and Ranga Ko-
manduri, 2006; Wacher; and Givoli, 2006). How-
ever, literature available on adaptive methods for
stochastic finite element analysis is limited. Liu,
Belytschko and Mani (1986) have studied the er-
ror induced by discretising a random field and
demonstrated that the number of random variables
required to represent a random field is controlled
by the correlation length of the random field. Li
and Der Kiureghian (1993) have carried out stud-
ies on the error in different random field discreti-
sation methods as a function of element size for
selected correlation functions. Liu and Liu (1993)
studied the influence of random field mesh on the
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performance of stochastic finite element reliabil-
ity analysis in static problems. They presented
rules for the selection and refinement of random
field meshes. The error was computed using reli-
ability index as the error norm and the refinement
of random field mesh was carried using the gra-
dients of Limit-state function as error indicators.
Deb, Babuska and Oden (2001) have developed
a framework for the construction of Galerkin ap-
proximations of elliptic boundary-value problems
with stochastic input data. A theory of posteri-
ori error estimation and corresponding adaptive
approaches based on practical experience can be
utilized. Pellissetti (2003) has discussed issues re-
lated to adaptive data refinement in the spectral
stochastic finite element method.

The present paper addresses some of the questions
related to the issue of random field mesh refine-
ments. Specifically, we consider linear systems
having non-Gaussian spatially distributed prop-
erties subject to static or dynamic loads. The
problem of refinement of the mesh used to dis-
cretize the random fields, in order to achieve an
acceptable estimate of the reliability of the sys-
tem, is considered. The study proposes a general
framework to achieve this objective. The reliabil-
ity analysis procedure used is based on concepts
from first order reliability methods involving sev-
eral improvements to handle possible existence of
multiple design points or multiple regions of com-
parable importance and subsequent use of meth-
ods of system reliability analysis, and, to take into
account random dynamic loads. The refinement
procedure itself is based on a global importance
measure (GIM) assigned primarily to the basic
random variables in standard normal space. These
measures are subsequently assigned to the orig-
inal non-Gaussian random variables using a se-
quence of transformations. Adaptive mesh refine-
ment is carried out using hierarchical graded mesh
obtained through bisection of elements. The study
aims at refining the reliability index/failure proba-
bility estimates obtained through adaptive refine-
ment of finite element mesh and random field
mesh (RF mesh). Illustrative examples involving
static/dynamic problems of structures with one-
dimensional Euler beam elements and plane stress
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elements are presented.

It should be noted that exact solutions to problems
of reliability analysis of structure modeled us-
ing SFEM are seldom available. In the proposed
method for adaptive refinement of random field
mesh, the first step consists of solving the prob-
lem with a coarse uniform mesh configured based
on user’s judgment. The proposed GIM is derived
based on this coarse mesh and these measures in-
dicate spatial regions where the RF meshes need
to be refined. Reliability analysis with the refined
mesh is subsequently performed, which, in turn,
leads to the improved plots of GIM. This process
is continued till a satisfactory convergence is ob-
tained on the reliability measure being estimated.
In the present study, to demonstrate the feasibility
of the proposed mesh refinement procedures, we
first solve the reliability analysis problem using
a fairly fine displacement field mesh (DF mesh)
and RF mesh configurations. The result from this
analysis is treated as a benchmark against which
the merit of the mesh configuration at a given
stage of refinement is evaluated. It is to be noted,
however, that the application of refinement proce-
dure developed herein, does not depend upon the
availability of a benchmark solution. It is also im-
portant to note that the refinement strategy here is
goal oriented. That is, specifically, we focus on
one or more specified performance functions with
respect to which the structural reliability is anal-
ysed. The performance functions are typically in
terms of response at a set of specified points. In
the present paper, we focus on performance func-
tions involving displacements at specified loca-
tions or natural frequencies of specified modes of
the structure.

2 Problem Formulation

Consider the problem of reliability analysis of a
structure in which uncertainties enter through one
or more of the following routes:

1. spatially varying structural properties (such
as, material properties, strength characteris-
tics, joint characteristics or boundary condi-
tions on an edge), which are modeled as a set
of non-Gaussian random fields; these are de-
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noted collectively by the vector random field
w(x) with x denoting the vector of spatial co-
ordinates;

2. loads that act on the structure that need to
be modeled as random processes evolving is
space and/or time; these are denoted collec-
tively by f(x,) with x denoting the vector of
spatial co-ordinates and ¢ denoting the time;
and,

3. those properties of structure or the applied
loads for which a random variable model
would suffice; these are denoted collectively
by the vector of mutually dependent non-
Gaussian random variables ©O.

This list could also include uncertainties in mod-
eling; this, however, has not been included in the
present study. It is assumed that the random fields
w(x) and f(x,7) would be discretised suitably
leading to a vector of random variables =, which,
in general, would be non-Gaussain and mutually
dependent in nature. Furthermore, the random
variable vectors © and = are collectively denoted
by the vector ¥ = [0 Z]'. We define a set of per-
formance functions g; (‘*F) (i=1,2...,n) such that
the regions in the ¥-space for which g; () <0
and g; () > 0, respectively, denote the unsafe
and safe regions with the surface g; (‘') = 0 rep-
resenting the limit surface with respect to the i
performance function. We denote by Py; the esti-
mate of the probability of failure with respect to
i"" performance function and Py as the estimate of
the probability of failure from structural system
reliability analysis. The problem on hand consists
of selecting and modifying the details of random
field discretisation mesh so that the accuracy of
estimation of Py is improved.

3 Overview of the Proposed Adaptive Solu-
tion Strategy

In this section we present the broad features of
the proposed adaptive solution strategy. The de-
tailed description of the various steps involved is
discussed in subsequent sections. In the present
study, an adaptive technique is proposed for car-
rying out stochastic finite element reliability anal-
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ysis of structures. It aims at refining the re-
liability index/failure probability estimates ob-
tained through adaptive refinement of random
field mesh. The following are the broad features
of strategy adopted to tackle the problem stated in
the previous section.

A. Random field discretisation: We model one or
more of the structural properties as a vec-
tor of mutually dependent non-Gaussian ran-
dom fields. These fields are taken to be
differentiable in the mean square sense and
are assumed to be spatially homogeneous and
isotropic. We follow the expansion optimum
linear estimation (EOLE) method of discreti-
sation combined with Nataf’s transformation
technique to represent uncertainties through
an equivalent vector of standard normal ran-
dom variables.

B. Discretisation of load fields: We handle the
spatially distributed surface load as a Gaus-
sian random field. This field is taken to be
differentiable in the mean square sense and
is assumed to be spatially homogeneous and
isotropic. We again follow the expansion opti-
mum linear estimation (EOLE) method of dis-
cretisation to represent uncertainties through
an equivalent vector of standard normal ran-
dom variables. We model the time varying
stochastic excitations due to nodal loads as
zero-mean stationary Gaussian random pro-
cess with a specified power spectral density
(PSD) function.

C. Mesh refinement and error indicator: We
have proposed the use of GIM with appro-
priate transformations as mesh refinement
indicators and this is one of the original
ideas developed for carrying out adaptive
random field mesh refinements proposed in
this paper. A refinement norm based on a
notional reliability index is also proposed and
used as an error indicator for estimating the
percentage error in the estimation of Py.

D. Mesh refinement strategy: We focus attention
mainly on placement of nodes for random
field meshes. The method developed does not
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impose any restriction on relative sizes of dif-
ferent RF meshes as well as the DF mesh. All
these meshes could be refined independent of
each other. The method has provisions for as-
sembly of various structural matrices taking
into account differences in the associated RF
meshes. The mesh refinement itself is carried
on by using the method of successive bisec-
tion. The study also examines the possibil-
ity of derefinement of meshes, wherein, we
reduce the number of elements in spatial re-
gions considered less important by the com-
puted GIMs. The question of using GIM also
to refine DF mesh and time steps of direct inte-
gration problem are also addressed albeit very
briefly.

E. Reliability estimation: ~Structural reliability
analysis is carried out using FORM with the
following improvements: (a) treatment of
multiple design points or multiple regions of
comparable importance in reliability calcula-
tions, (b) system reliability problems involv-
ing multiple performance functions, and (c)
dynamic problems involving random excita-
tions. The performance function is computed
using finite element method and the gradi-
ents needed in reliability calculations are eval-
uated numerically using direct differentiation
method.

4 Random Field Discretisation

In this study, we consider the random fields that
model the structural properties as a vector of non-
Gaussian mutually dependent random fields. We
also take that these random fields are only par-
tially specified with knowledge on their properties
limited to the first order marginal probability den-
sity function (pdf), and the set of auto-covariance
and cross-covariance functions. We discretise
these random fields using the EOLE method (Li
and Der Kiureghian, 1993) in conjunction with
the Nataf’s transformation technique (Der Ki-
ureghian and Liu, 1986), which leads to the def-
inition of a vector of mutually dependent non-
Gaussian random variables.

In order to clarify the steps involved in discreti-
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sation of random field, and its relation to dis-
cretisation of displacement field we consider a
one-dimensional problem involving a displace-
ment field u (x) and a non-Gaussian random field
w(x) with 0 < x < L. Let F,, [w;x] and py,,, (x,x")
denote, respectively, the first order pdf and auto-
correlation function associated with w(x). Let
the displacement field be discretised into N* el-
ements of length A’x and (N*+1) nodes such
that N*A’x = L. Let {x;}fv: , denote the centroidal
value of the i element. In formulating the struc-
tural matrix for the i/ element we need the value
of w(x}).

To arrive at the value of w(x}), we begin by
first transforming w (x) into an equivalent Gaus-
sian random field v(x) using the rule v(x) =
@~ [F,, (w;x)] (Der Kiureghian and Liu, 1986).
The Gaussian random field v (x) is discretised us-
ing another mesh with N nodes and (N —1) el-
ements of length Ax such that (N—1)Ax = L.
Here, {xi}f-V: (represents the nodal coordinates and
v(x;),i=0,1...,N constitutes a set of correlated
Gaussian random variables. We represent v (x) us-
ing the EOLE expansion such that for any point
X = Xi,

0 (xi) =

N r
c(x)+ D bj(x) <M (x)+ Y, Fk’\/@_k@cj) ,

j=1 k=1
i=0,1....N (la)

where, (t (x) represents the mean of v (x), {6 };_,
and {@};_, are the r highest eigenvalues and
eigenvectors associated with auto-covariance ma-
trix of v(x) evaluated at x = xy,x;...,xy; and,

{ry };:1 are a set of standard normal random
. . N
variables. The functions c(x) and {b; (x)}j:1
are the interpolation functions used in discretiz-

ing v(x), selected such that the variance of er-
ror given by <{v(x) —ﬁ(x)}2> is minimized for
every x in (0,L) (Li and Der Kiureghian, 1993).

Here, () is the expectation operator. When c (x)
N

and {b; (x)}

j= are so selected, the optimal error
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is obtained at any point x = x; as,

2
— 2 bjx) <M () + 17<'\/9_k¢kj> } >,
j=1 k=1

i=0,1....N (2a)

After substituting for ¢(x) and {b;(x)}"_and
further simplifying, Eq. (la) and Eq. (2a) take

the following forms:

i=0,1....N (2b)

where, Syx is a N x N matrix containing the ex-
pectations ((v(x;) — 1 (x;)) (9 (1) — 1 (x3))) ( =
0,1...,Nandi=0,1...,N) indicating the covari-
ance of v (x;) with ¥ (x;).

Once the details of discretisation are obtained,
one can obtain w(x;) needed for formulation of
structural matrices for the i/ element by noting
that w (x}) = F, 1 [@ (9 (x}))] with,

1’*/ N

k
O jSji,
\/e—k; g

P () = k() + 2
k=1

i=0,1....N° (l¢)

For the purpose of illustration of some of the fea-
tures of the EOLE, we consider a Gaussian ran-

dom field with unit mean, unit variance and cor-
relation function of the form,

N2
b (x,X) = exp <—(x‘j) > )

a

where, a is the correlation length factor.

In the following studies we fix N* = 32. The
influence of varying r on variance of error for
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a=0.25L,0.5L,1.0L,2.0L and N = 9,17,33 is
shown in Figs. 1la to lc. In Fig. 2 we fix
a = 0.25L, r=5 to show the variation of the vari-
ance of error of discretisation as a function of x/L
for N =9,17,33. The influence of varying a on
the variance of error for r=5, N=33 is studied in
Fig. 3. Fig. 4 shows the plot of correlation func-
tion for different values of a. If we define the
length over which correlation drops by a given
factor (say, 0.5) as the correlation length of the
random field, then it can be observed from Fig.
4 that for a = 0.25L,0.5L,1.0L the correlation
lengths are respectively 0.22L, 0.42L, and 0.82L.
For a = 2L, the correlation length is much greater
than L. Clearly, shorter the correlation length with
respect to L, greater is the need for accounting for
the random spatial variability in the analysis.

In summary, for the given form of p (x,x’) and
value of a it can be noted that the error of dis-
cretisation of the random field depends upon the
choice of N and r. In the present studies we take
r=5and N = 8,16,32, a = 0.25L,0.5L,1.0L and
2.0L. For the range values of r and N considered,
the standard deviation of the error of discretisa-
tion is found to be within 0.04 (See Fig. 2). In the
adaptive refinement procedures discussed subse-
quently, we hold r = 5 and vary N.

It is important however to note that the error of
discretisation that has been discussed in this sec-
tion has so far been in the context of random field
discretisation alone and these errors are not neces-
sarily the ones which we wish to eventually con-
trol. Indeed, it is the error in the estimation of
structural reliability that we wish to eventually
control.

We would also note here that in the context
of problems involving two-dimensional random
fields we assume random fields to be homoge-
neous and isotropic with correlation function of
the form,

12
b (x,) = exp (72) )
where, [ represents the distance between two
points in the random field. Consequently, the dis-
cussion presented above in the context of one-
dimensional random fields remains broadly valid
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in this case also.

5 Adaptive Mesh Refinement

Our objective is to propose a method to adaptively
refine the random field mesh, without excessively
increasing the number of random field elements.
It is expected that the adaptively refined mesh will
result in improved estimation of reliability of the
problem considered. In an adaptive refinement
process, the following issues will be of interest:

e identification of a refinement indicator which
determines regions where the mesh refine-
ments are most effective,

e identification of an error indicator which
serves as a figure of merit for the current so-
lution, and

e implementation of effective computational
algorithms for new improved solutions.

In the following sections we discuss the proposed
refinement indicator, error indicator and compu-
tational algorithm for adaptive random field mesh
refinement in the context of stochastic finite ele-
ment analysis.

5.1 Proposed Refinement Indicator

It is noted from literature that the importance
measures for ranking the random variables have
been used successfully in conjunction with sam-
pling/simulation methods to reduce the compu-
tational effort by eliminating the lowly ranked
random variables from the analysis (Brenner and
Bucher, 1995; Gupta and Manohar, 2004). How-
ever, we realize that, the importance measures in
general, and the global importance measures in
particular, possess potential, which could be uti-
lized in the context of stochastic finite element
method. With appropriate transformations, these
importance measures offer an effective means to
identify the spatial regions in the stochastic finite
element model where refinement of random field
mesh is required. In other words, the global im-
portance measures can be used to serve the pur-
pose of indicators for carrying out adaptive re-
finement of random field mesh. This is analo-
gous to the energy based error indicators used in
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conventional deterministic adaptive finite element
methods. Furthermore, this approach works with
multiple random fields and performance functions
with multiple regions of comparable importance.
We have used global importance measures with
appropriate transformations as mesh refinement
indicators.

In the present work, we assume that the perfor-
mance function could consist of multiple regions
of comparable importance. Fig. 5 shows a few
performance functions where there are multiple
regions contributing to the failure probability. The
limit state surfaces in Fig 5(a) and (b), respec-
tively, has two and four points, which have the
same minimal distance from the origin O. These
are called multiple design points, each of which
makes equally important contributions to the fail-
ure probability. Fig. 5(c) shows a performance
function, where points a and b are situated at
distances 3; and 3, respectively from the origin,
where 3, — B < € with € being a very small num-
ber. In this case, even though there exists only a
single design point a, it is obvious that point balso
makes significant contribution to the failure prob-
ability. Fig. 5(d) shows two performance func-
tions, one that is a perfect circle (full line) and the
other an ellipse obtained by a minor modification
to the circle (dotted line). For the performance
function that is a circle, all points on the limit sur-
face lie at the same distance from the origin and
hence, the number of design points is infinite in
number. On the other hand, for the ellipse, there
exist two design points, ¢ and d, but infinitely
many points that are not strictly the design points,
nevertheless, make significant contributions to the
failure probability.

We use the global importance measure proposed
by Gupta and Manohar (2004) for performance
functions with multiple design points for ranking
the discretised random variables in the order of
their relative importance, and, also, to investigate
if such ranking could be used for adaptive mesh
refinement in stochastic finite element reliability
analysis. If R distinct points are identified in the
n-dimensional standard normal space, the global
importance measure for the i’ element in the vec-
tor of random variables ¥ in non-Gaussian space
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Figure 5: Performance functions in standard normal space with multiple design points (Gupta, 2004)

is computed using the expression,

n R

R
%=, WIM2 > WIM2 (%)
I=1 '

where, the parameters w; and w; are defined later.
The vector of correlated non-Gaussian random
variables W is related to the vector of normal vari-
ables I', through Nataf’s transformation, given by
I' = @ '[Fp(¥)]. Here, Fp and @ (-) are, re-
spectively, the marginal probability distribution
functions of ¥Wand I'. The vector of correlated
normal random variables I"are related to the stan-
dard normal variables I’ through the expression
I’ = LI"’, where L is the lower triangular matrix,
such that Cr = LLT. Here, Cr is the correla-
tion coefficient matrix of I' expressed in terms
of the known correlation coefficients Cy of ¥
(Der Kiureghian and Liu, 1986). The matrix L
is determined by Cholesky decomposition of Cr-.
Since the proposed reliability analysis algorithm

is carried out in the standard normal space, the
direction cosines for the identified design points
aG(I")
or’
responding direction cosines in the ¥-space are

expressed as, (%) =J (aca(ls )> where, J

is the Jacobian matrix, g (V) is the performance
function in non-Gaussian space and G (I'') is the
performance function in standard normal space.
The parameter M' in Eq. (5) is now defined as,

M= fw{(aﬁg))i}z ©)

j=1

)are obtained in the I'’-space. The cor-

Here w; are weighting functions. The details
of computation of gradients a‘f;(:) of the perfor-
mance function are discussed in the work by Man-
juprasad (2005). To give a greater weightage to

the points closer to the origin in the I'’-space, the
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weights w; are defined in terms of probability con-
tent associated with each point in the I'’-space,
and are expressed as,

Wi = ®(=B,) / S o5 @

where, f3; is the Hasofer-Lind reliability index of
the Ith point in the I'’-space. Thus, points in the
failure domain more likely to fail are given greater
weightage.

While carrying out SFEM based reliability analy-
sis, the vector ¥ also contains a subset of discre-
tised random field variables =. Hence, the set of
global importance measures computed using the
procedure discussed above would also contain a
subset of GIM values corresponding to the dis-
cretised random field variables. In this study, it is
proposed to use these global importance measures
with respect to discretised random field variables
as refinement indicators for carrying out adaptive
refinement of random field element meshes.

5.2 Proposed Error Indicator

In the conventional adaptive mesh refinements it
is common to use energy-based norms for estima-
tion of errors and to arrive at global error indi-
cators. In the present method we propose to use
the reliability index based norm for estimation of
error. We begin by describing the random field
mesh using a coarse mesh and subsequently re-
fine the mesh. Let Py denote the estimate of fail-
ure probability with respect to one or more per-
formance functions using a specific mesh config-
uration. We treat a uniformly refined ‘fine’ mesh
as the ‘reference mesh’. Since it is not practi-
cally possible to estimate the exact value of fail-
ure probability in advance, it is assumed that the
estimate obtained using the ‘reference mesh’ as
the best solution. Let P]’f denote the estimate of
failure probability using this reference mesh. The
relative error percentage, 1p, in estimation of fail-
ure probability obtained using any specified mesh
can therefore be defined as,

‘Pf—P]’f
S

x 100 ®)
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The probabilities Py and P; could also be ex-
pressed in terms of notional reliability indices

B=-® ' (P;)and f*= - (P}‘) leading to
an alternative definition of relative error index,
np, given by

77/3 (%) = ‘B‘E*B‘*‘

Fig. 6 shows the relationship between Py and 3. It
is of interest to note that fBis zero when Py is 0.5, 3
is negative for Py > 0.5, and, B3 is positive for Py <
0.5. The presence of modulus in the denominator
of Eq. 9, thus takes into account the probability
of B* being negative. Also, given the fact that
varies monotonically with respect to Py, it is clear
that either np or 1 could equally well serve the
role of error indicator. In the present study we
have preferred to use ng for discussion.

x 100 €)

6 Mesh Refinement Strategy

As has been already pointed out, there exist sep-
arate meshes for displacement field and each of
the random fields that represent different struc-
tural properties. In the present study, the configu-
ration of all these meshes could be different from
each other. Each of the structural property random
fields is represented through its own EOLE. While
the displacement field mesh could be coarser or
finer than the random field meshes, in the for-
mulation of the structural matrices however, the
structural properties, such as, elastic modulus and
mass density, within a displacement field element
is taken to be a constant. These constants them-
selves are deduced from the respective EOLE of
the relevant random fields. In the implementation
of mesh refinements, it is assumed that the mesh
for displacement field has been arrived at inde-
pendently and this mesh itself is not necessarily
open for refinement. The mesh refinement pro-
cess begins with the definition of a coarse mesh
for all the random fields of interest. Upon com-
pleting the reliability analysis of the structure with
this mesh, indicators of relative importance of dif-
ferent random field elements are also obtained.
Based on this, one could enhance the number of
random field elements in the important zones and
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Figure 6: Relationship between probability of failure and reliability index

deplete the number of elements in the least impor-
tant regions. Throughout the present study how-
ever, we adopt structured meshes that are refined
using successive bisection as and when needed.

7 Finite Element based Reliability Analysis

Through appropriate transformations, the basic
random field/process variables obtained through
random field discretisation are transformed to
spatial element random variables/ temporal ran-
dom load time history variables. Finite element
analysis (static/free vibration/forced vibration) is
carried out using suitable element formulations to
compute the performance function and the gradi-
ents of the performance function with respect to
the required random variables. Structural relia-
bility analysis is carried out using first-order re-
liability method (FORM) with improvements as
has been mentioned in Section 3. In reliability
analysis using first-order reliability method, opti-
mization algorithms are commonly used to obtain
the design point and the corresponding reliabil-
ity index or safety index . In the present work

the Rackwitz and Fiessler method (Rackwitz and
Fiessler, 1978) is used to solve the optimization
problem.

In FORM, an approximation to the probability of
failure is obtained by linearising the limit-state
surface at the design point. The existence of
multiple design points may cause the following
problems in FORM: first, the optimization algo-
rithm may converge to a local design point; in
this case, the FORM solutions will miss the re-
gion of dominant contribution to the failure prob-
ability integral and, hence, the corresponding ap-
proximations will be in gross error; second, even
if the global design point is found, there could be
significant contributions to the failure probability
integral from the neighborhoods of local points
approximating the limit-state surface only at the
global design point will not account for these con-
tributions. In the present research work, search
for multiple design points of a reliability prob-
lem is carried out using the method of artificial
barriers proposed by Der Kiureghian and Dake-
sian (1998). The computation of multinormal in-
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tegrals is a necessary step for estimating the prob-
ability of failure of structural systems. In the
present work, an approach using the product of
one-dimensional normal integrals is used is used
to get an approximate value of the multinormal
integral. The method is called product of condi-
tional marginals (PCM) method and was proposed
by Pandey (1998).

Adaptive stochastic finite element reliability anal-
ysis of linear structural problems (static/free vi-
bration/forced vibration) is carried out using for-
mulations to compute the performance function
and the gradients of the performance function
with respect to the required element random vari-
ables or random load time history variables.

For reliability analysis of structures under
stochastic static loads the performance function
defined in terms of displacement at a given node
X is given by,

g=u"—u(x,'¥) (10)

Here, u* is the permissible displacement and ¥ is
the vector of non-Gaussian random variables ob-
tained using EOLE method of discretisation of the
relevant random field meshes.

In the context of vibration problems, one of the
commonly used design criteria is related to the
avoidance of resonance in periodically driven sys-
tems. Thus, if we consider a system driven har-
monically, at a frequency ®*, the designer would
wish to keep the nearest structural natural fre-
quency away from w*. Or, alternatively, one may
limit the resonant amplitude within prescribed
thresholds. In the former case, one can define the
performance function as the region ®* — Aw <
0; (V) < 0" + Ao, where, ®; (V) is the struc-
tural natural frequency centered around @* which
needs to be avoided. Since the natural frequencies
of randomly parametered systems are themselves
random, one can define the failure problem as,

Pr =P/ (@] — () <O)( (@ (¥) — @3 <0)
(1)

where, @ = 0" —Aw and @, = ©* +Aw. This
problem itself can be perceived as a problem in
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parallel system reliability with,
g1 =07 —o; (V) (12)

g2 =w;j(¥)—w (13)

Thus one gets,

Pr=Plo; € (0" —Aw,0" + Aw)] (14)
=Plo"—Ao< o< 0"+ A0] (15)
=Ploy < w; < w] (16)

Here, A®w = 0.5% half power bandwidth=n ®*,
w*=resonance frequency, n=damping ratio corre-
sponding to the mode considered.

2
Pe=P [ﬂ gk(¥) < 0] a7
k=1

Next we consider the reliability analysis of struc-
tures in forced vibration under stochastic excita-
tions. The performance function here is defined
in terms of peak displacement at a given node X in
given time duration, which can be expressed as,

g=u —OléltanT\u(x,t,‘f’)\ (18)
The gradients of the performance function are
computed using direct differentiation method.
Details of formulations developed and used for
reliability analysis of static, free vibration and
forced vibration problems including gradients of
structural matrices with respect to parameters of
interest are given in the work by Manjuprasad
(2005).

In  reliability analysis using FORM,
|Bis1— Bel (0.001 and |g (uk*1) — g (u¥)](0.001
are used as stopping criteria. In addition, max-
imum number of iterations is set equal to 25.
In the method of bulges, |Bx/Bi| (1.5 is used as
a stopping criterion in addition to a maximum
number of iterations equal to 5.

8 Summary of the Steps

We summarize here the various steps involved in
SFEM based reliability analysis using adaptively
refined random field meshes:
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1. Input data: This includes the following de-

tails:

a. Structural geometry and boundary condi-
tions.

b. Probabilistic characteristics of structural
properties, applied loads, and perfor-
mance limits. This description could be
in terms of types of first order pdf, its
parameters, and the definition of auto-
covariance and cross-covariance func-
tions.

c. Number of performance functions (Np)
and their details.

d. Details of displacement field discretisa-
tion including element types, number of
elements and mesh configuration.

e. Details of the initial coarse mesh for the
different random fields.

f. Tolerances on computation of reliabil-
ity index using Rackwitz and Fiessler
method, number of iterations and maxi-
mum number of design points (Np), num-
ber of terms in of expansion using EOLE
method.

. Reliability estimation: A loop over perfor-
mance function runs at the outset. Within
this loop a sub-loop over multiple design
points is implemented. Within each loop for
a design point, reliability index is computed
using FORM in conjunction with Rackwitz-
Fiessler algorithm. The required perfor-
mance function and its gradients are com-
puted using SFEM. For the i’ performance
function we obtain f3;; and DP;, with j =
1...kj < Np, where fB;; is the 7" reliabil-
ity index associated with the i"* design point
DP;; for the i"* performance function. The
i"" performance function is now linearized
around each of the design point DP;j, j =
1...k; < Np and a set of hyperplanes HF;;,
Jj=1...k; < Np are obtained. Subsequent to
the completion of the loop over all the per-
formance functions we would be left with a
collection of hyperplanes each of which rep-
resents a plane that is obtained by linearis-
ing one of the performance functions around
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one of its design points. We now perform
a system reliability analysis using the PCM
method paying due consideration to the con-
figuration of the hyperplanes to be in series
or parallel format. It must be noted that the
set of performance functions defined through
the hyperplanes originating from a given per-
formance function are all in series while the
performance functions themselves could be
in series or parallel.

3. Computation of GIM: The GIMs as given by
Eq. 5 are now computed with R=total num-
ber of design points (DP;;) evaluated in the
previous step. Similarly, in computing the
weights as in Eq. 7, the resulting reliability
indices (B;;) computed earlier are used. This
leads to assignment of importance measures
to each of the elements in the non-Gaussian
vector V.

4. Mesh refinement: The GIMs calculated in
the previous step point spatial regions in
which each off the elements of the random
fields w(x) and f(x,7) need further refine-
ment. Based on this we employ a combi-
nation of mesh refinement and derefinement
to arrive at the revised definition of random
field mesh configuration.

5. Stopping criteria: Repeat steps (1) to (4) till
satisfactory convergence on reliability esti-
mate is obtained.

9 Numerical Examples and Discussion

The procedures discussed in the previous sections
are illustrated with the help of the following three
problems:

1. Failure due to excessive displacements of a
statically loaded one span beam. The elastic
modulus of the beam is modeled as a lognor-
mal random field.

2. Failure of a cantilever beam with random
elastic modulus due to occurrence of reso-
nance.
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3. Failure due to excessive displacements of a
cantilever beam under random dynamic ex-
citation. Here, the elastic modulus and mass
density of the beam are treated as lognormal
random fields and load is considered as a sta-
tionary Gaussian random process.

The numerical examples illustrate the following
range of issues relevant to the problem:

1. Effect of choice of Nin EOLE method of dis-
cretisation.

2. Mesh refinement with respect to alternative
performance functions as well as multiple
performance functions

3. Mesh refinement issues that arise in static
analysis, free vibration analysis, and forced
vibration analysis using direct integration.

4. Treatment of more than one random field
within the same structure.

5. Use of one-dimensional beam and two-
dimensional plane stress finite elements

6. Treatment of one-dimensional and two-
dimensional random fields

Example 1

In this example, we consider the beam structure
shown in Fig. 7. The data for this beam are as
given in the paper by Liu and Liu (1993). Thus,
we take the span of the beam as 9.76 m (32 ft) and
the load to be static with uniformly distributed in-
tensity of 116.7 N/m (8k/ft). The elastic modulus
is assumed to be a homogeneous non-Gaussian
random field with a lognormal first order pdf and
auto-covariance function of the form in Eq. 3.
Consequently, the flexural rigidity of the beam
also becomes a random field and we take its mean
value to be 465706.41 N-m? (1,125,000 k-ft?) and
a coefficient of variation (COV) of 0.20. The
structure is modeled using a set of Euler-Bernoulli
beam elements. The following parametric studies
have been conducted to bring out different aspects
of mesh refinement procedure.
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Figure 7: Geometry and loading of fixed end
beam for Example 1
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Study 1: Adaptive Refinement of Random Field
Mesh

Here, we take a = 0.25L,COV = 0.2 and r = 5.
We focus attention on the influence of varying
number of elements in the random field mesh.
We define the performance function in terms of
midspan deflection namely g () = 6* — Onig- We
assume that 6*=7.62 mm (0.3 inch). We begin by
taking 32 elements (with total degrees of freedom
=96) for the displacement field mesh and consider
the effect of varying the number of elements in
the random field mesh with their lengths being
held uniform. These results are shown in Table 1a
in which the number of elements in the random
field mesh is varied from 8 to 32 and the notional
reliability index B is computed for all the mesh
configurations. To describe the displacement field
mesh and random field mesh we characterize each
mesh configuration by a pair of numbers (Ny,N;),
where, Nj=number of elements in the displace-
ment field mesh and No=number of elements in
the random field mesh. For the mesh configura-
tion (32, 32) we obtain 3=2.0087 and this value
of B is taken to be the reference 3* in comput-
ing 1. From Table 1a it can be seen that ng re-
duces monotonically as the number of elements in
the random field mesh are increased from 8 to 32.
The effect of adaptively refining the random field
mesh is studied in Tables 1b and 1c.

In obtaining the results in Table 1b we begin by
analyzing the GIM for the uniform (32,8) mesh
(Fig. 8). The resulting refined random field mesh
is shown in Fig. 9. For this configuration we ob-
tain a value of §=2.0091 and 13=0.0199 (Table
1b). A comparison of ng for non-uniform (32, 12)
mesh (Table 1b, 15=0.0199) and uniform (32,12)
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Table Table 1a: Uniform refinement of RF mesh

N, | N B np (%) = PgFl x 100
8 2.0126 0.1942
12 2.0101 0.0697
14 2.0096 0.0448
16 2.0093 0.0299
32 1718 2.0091 0.0191
20 2.0089 0.0100
22 2.0088 0.0050
32 | 2.0087(B*) 0.0000

Table Table 1b: Adaptive refinement of RF mesh using bisection of elements

Ny [Ny | B | mp(%) =" <100
12 | 2.0091 0.0199

32 [ 14 [ 2.0089 0.0010
16 | 2.0089 0.0010

Table Table 1c: Adaptive refinement of RF mesh by relocation of nodes

Ny [Ny | B | mp(%) =" <100
5, | 8 [ 20138 0.2539
16 | 2.0091 0.0199

] 50 100 150 200 250 300 350
Length Coordinate in inch

Figure 8: GIM plot for (32, 8) uniform mesh

mesh (Table 1a, 15=0.0697) clearly shows a re-
duction in7)g by a factor of 3.5 due to adaptive re-
finement of the random field mesh for the problem
considered. Based on the refined (32, 12) mesh
the GIM obtained is shown in Fig. 10, which, in
turn, leads to the refined (32, 14) mesh shown in

1
0 50 100 150 200 250 300 350 400 45
Length Coordinate in inch

Figure 9: Adaptive 12-element RF mesh for elastic
modulus based on GIM plot for (32, 8) uniform mesh

Fig. 11. Further refinements based on the GIM
for the (32, 14) mesh (Fig. 12) leads to the re-
fined mesh (32, 16) as shown in Fig. 13. At this
stage we observe that 1g and 8 have converged to
a value of 0.001 and 2.0089, respectively, and one
could stop further refinement at this stage.
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Figure 10: GIM plot for (32, 12) adaptive mesh
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Figure 12: GIM plot for (32, 14) adaptive mesh

In studies reported in Table 1b, the mesh re-
finement was carried out by successive bisection,
without making efforts to remove nodes that are
located in regions of low GIM. The question of
relocating nodes is considered in Table 1c. Here,
based on GIM for the uniform (32, 8) mesh (Fig.
8), we obtain the random field mesh as shown
in Fig. 14a. Here, nodes that lie in regions of
low GIM (50 < x <150 and 250 < x < 350)
have been removed and shifted to regions of high

400
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Figure 11: Adaptive 14-element RF mesh based on
GIM plot for (32, 12) adaptive mesh

1
100 150 200 250 300 350 400 45
Length Coordinate in inch

0 50

Figure 13: Adaptive 16-element RF mesh based on
GIM plot for (32, 14) adaptive mesh

GIM. Figure 14b shows the node locations for a
uniform mesh for comparison with the adaptive
mesh. Similar results beginning with the uniform
(32, 16) mesh and its GIM plot (Fig. 15) lead-
ing to non-uniform (32, 16) mesh with relocated
nodes are shown in Fig 16. A comparison of Ta-
bles 1a and 1c shows that by relocating the nodes
based on GIM for the uniform mesh, one gets
mixed results. Thus, for (32, 8) mesh the refine-
ment leads to a deterioration of 1 from 0.1942
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Figure 14: (a) Adaptive 8-element RF mesh using relocation of nodes based on GIM plot for (32,8) uniform

mesh (b) Uniform 8-element RF mesh

to 0.2539 while for (32, 16) mesh one obtains an
improvement from 0.1205 to 0.0199. This dispar-
ity could be explained if one considers the vari-
ance of error of discretisation with N=8+1=9 and
N=16+1=17 random field nodes. This variation is
shown in Fig. 17 wherein the variance for the case
N=9 (non-uniform relocated nodes) is seen to be
substantially higher than the result for N=9 with
uniform placement of nodes. On the other hand,
similar results for N=17 (uniform and relocated)
do not show as much difference as is observed
for N=9. This points towards the usefulness of
information on variance of error in EOLE indicat-
ing if a refinement strategy involving relocation of
nodes could be acceptable or not.

Study 2: Adaptive Refinement of Displacement
Field Mesh

The formulation of GIM in this study is mainly
motivated by the need to rank the element random
variables in terms of their relative importance to
the reliability calculations. Thus, it would appear
that this measure would mainly be applicable to
the refinement of random field mesh. However,
the reliability calculations itself would crucially
depend on the details of displacement field mesh.
Thus, question would arise on the possible use-
fulness of GIM in relocating the nodes associated
with the displacement field mesh. Limited studies

have been carried out to explore this issue and the
results are summarized in Tables 2a and 2b.

In this study, again we take a = 0.25L,COV = 0.2
and r = 5. We define the performance function
in terms of midspan deflection namely g (¥) =
0% — Opig.  We assume that 6*=7.62 mm (0.3
inch). We begin by fixing 32 elements for the ran-
dom field mesh and consider the effect of vary-
ing the number of elements in the displacement
field mesh to 8, 16 and 32, with their lengths be-
ing held uniform. The results of reliability anal-
ysis are shown in Table 2a. Now beginning from
GIM plots for (8, 32) and (16, 32) meshes (Figs.
18 and 19) we relocate the nodes of the displace-
ment field meshes as shown in Figs. 20 and 21
respectively. The corresponding results of relia-
bility analysis are shown in Table 2b. A compar-
ison of Tables 2a and 2b shows that the adaptive
refinement of displacement field mesh based on
GIM indeed leads to significant improvement in

ng-

Study 3: Adaptive Refinement with Multiple Ran-
dom Field Meshes

In this study we consider the same beam prob-
lem, but now carrying a spatially varying random
load. We model the load as a stationary Gaus-
sian random field and the elastic modulus of the
beam as a lognormal random field. The load is
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Figure 16: Adaptive 16-element RF mesh using relo-
cation of nodes based on GIM plot for (32, 16) uni-
form mesh

Figure 15: GIM plot for (32, 16) uniform mesh
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Figure 17: Variation of the variance of error of discretisation using EOLE along the length of the beam,
Case (1) uniform 8-element RF mesh, Case (2) adaptive 8-element RF mesh with relocation of nodes, Case
(3) uniform 16-element RF mesh, Case (4) adaptive 16-element RF mesh with relocation of nodes; number
of terms of expansion r=5; correlation length factor a = 0.25L; number of finite elements N* = 32.

Table Table 2a: Uniform refinement of DF mesh

N, | N, | DOF B np (%) = PzF x 100
8 24 1.9867 1.0952

16 | 32 [ 48 | 20044 0.2141

32 96 | 2.0087(B) 0.0000
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Table Table 2b: Adaptive refinement of DF mesh by relocation of nodes

_ [B=P"]

N, N2 DOF B T]ﬁ (%) = B x 100
8 3 24 | 2.0238 0.7517
16 48 | 2.0095 0.0398
0.4 0.45
035 04t
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Figure 18: GIM plot for (8, 32) uniform mesh
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Figure 19: GIM plot for (16, 32) uniform mesh
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Figure 20: (a) Adaptive 8-element DF mesh using relocation of nodes based on GIM plot for (8, 32) uniform

mesh (b) Uniform 8-element DF mesh
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Figure 21: Adaptive 16-element DF mesh using relocation of nodes based on GIM plot for (16, 32) uniform

mesh

modeled as g (x) = go (1 +€f (x)) with go=116.7
N/m (8k/ft) and €=0.2. Here, f (x) is a zero mean
stationary Gaussian random field with covariance
function given by Eq. 3, with a=0.25L. Since
elastic modulus of the beam is a random field,
the flexural rigidity of the beam is a random field
and we take its mean value to be 465706.41 N-m?
(1,125,000 k-ft?) with a coefficient of variation of
0.20 and a = 0.25L. The spatially varying elas-
tic modulus E (x) and the distributed load ¢ (x)
are discretised using EOLE with r=5. We define
the performance function in terms of midspan de-
flection namely g(¥) = 8" — Onig. We assume
that 6*= 6.35 mm (0.25 inch). The problem on
hand consists of arriving at refined meshes for
the random fields E (x) and ¢ (x). We introduce a
notation (N1, N, N3) to characterize a mesh with
Ni=number elements in the displacement field
mesh, N,=number of elements in the random field
mesh for E (x) and N3=number of elements in the
random field mesh for g (x).

Table 3 shows results for (32, 8, 8), (32, 14, 12)
and (32, 32, 32) uniform meshes. Using the (32,
32, 32) uniform mesh, the reference notional reli-
ability index B* is determined as 1.3595. The last
row in Table 3 provides results for (32, 14, 12)
mesh in which the random fields E (x) and ¢ (x)
have been adaptively refined based on GIM for
(32, 8, 8) uniform mesh. The plots of GIM for
E (x) and ¢ (x) are shown respectively in Figs. 22

and 23. It is clear that the locations needing re-
finement for E (x) and ¢ (x) fields are dissimilar.
Figs. 24 and 25 respectively show the location of
nodes for adaptively refined random field meshes
for E (x) and ¢ (x). The benefit of refining the ran-
dom field mesh is clearly seen in Table 3 in which
Mg is seen to drop from a value of 2.2803 for a
(32,14,12) uniform mesh to a value of 0.4634 for
the (32,14,12) adaptively refined mesh.

Study 4: Adaptive Refinement with Independent
Multiple Performance Functions

Studies 1-5 have been conducted with respect
to the beam provided with fixed supports at two
ends. In this study we consider the same beam
problem, but now provided with hinged supports
at two ends. We consider a performance function
with respect to admissible rotations at the left sup-
port in addition to the performance criteria with
respect to midspan deflection. It must be noted
however that here the two performance functions
are considered independent of each other. The
elastic modulus is assumed to be homogeneous
non-Gaussian random field with a lognormal first
order pdf and auto-covariance function of the
form in Eq. 3. In the numerical work, we take
COV =0.2,r =5 and N*=32. We begin by eval-
uating 8 with uniform (32, 32) mesh for the two
performance functions namely g1 () = 8" — Oia
and g> (V) = 6" — O.5:; see Table 4 for the de-
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Table 3: Refinement of multiple RF meshes for elastic modulus and distributed load

Ny | N2 (E) | N3 (q) B np (%) = P2 <100 Remarks
32 8 8 1.2816 5.7301
32 14 12 1.3285 2.2803 Uniform RF mesh
32 32 32 | 1.3595(B%) 0.0
32 14 12 1.3532 0.4634 Adaptive RF mesh
0.09 T T T T T T : 0.09
0.08 0.08 B
0.07 0.07 B
0.06 | 0.06 B
0.05 0.05 &
E =
@ 0.04 @ 0.04 g
0.03 0.03 B
0.02 0.02 1
001} //\\\ : 001} .
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Length coordinate in inch Length coordinate in inch

Figure 22: GIM plot for elastic modulus with (32, 8) Figure 23: GIM plot for distributed load with (32, 8)
uniform mesh uniform mesh
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Figure 25: Adaptive 12-element RF mesh for dis-
tributed load based on GIM plot for (32, 8) uniform
mesh

Figure 24: Adaptive 14-element RF mesh for elastic
modulus based on GIM plot for (32, 8) uniform mesh
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Table 4: RF mesh refinement with multiple independent performance functions in terms of midspan deflec-
tion and left support rotation

Ni | N, B ng (%) = “3“;{3‘*‘ x 100 Remarks
PF in terms of midspan deflection, g (¥) = 6* — Opia

32 | 08 2.72750 0.00073

32 | 12 2.72749 0.00037 Uniform RF mesh
32 | 32 | 272748 (B) 0.00000

32 | 12 2.72748 0.00000 Adaptive RF mesh

PF in terms of support rotation, g (V') = 0* — O 4

32 | 08 2.87714 0.00070

32 | 12 2.87714 0.00070 Uniform RF mesh
32 | 32 | 287712 (B") 0.00000

32 | 12 2.87712 0.00000 Adaptive RF mesh

tails.

We assume that 6*=45.72 mm (1.8 inch) and
0*=0.015 radian. Next we evaluate the GIM for
the two performance functions starting with (32,
8) uniform mesh (see Figs. 26 and 27). Upon suc-
cessive bisection of important regions we arrive at
the refined mesh as shown in Figs. 28 and 29.
The corresponding estimates of 3 are provided
in Table 4. It is of interest to note that the GIM
variation depends upon the performance function
criteria used: for criteria on midspan deflection,
the midspan region of the beam requires adaptive
refinement whereas, for the performance criteria
with respect to the left end rotation the impor-
tant regions are skewed to the left. Furthermore,
a comparison of Fig. 26 with Fig. 8 reveals the
influence of changing boundary conditions from
fixed ends to hinged ends on the process of ran-
dom field refinement. Thus it emerges that al-
though a beam that is fixed at the two ends and
a beam that is hinged at two ends are symmetric
with respect to the midspan, the regions for re-
fining the random field mesh for the purpose of
reliability analysis turn out to be different for the
two structures even when there is no asymmetry
either in loading condition or in the definition of
the performance function. This observation points
towards the capacity of the refinement procedure
defined herein to unravel the important features of
discretisation that are difficult at the outset to pre-
dict.

Study5: Adaptive Refinement with Mutually De-
pendent Multiple Performance Functions

In this study, we consider the two performance
functions g; (V) = 6" — Oig and g2 (¥) = 60" —
Ojcf: to be in series. This would mean that the
beam is considered to have failed if either the
midspan deflection exceeds a permissible limit
or the rotation at the left end support exceeds a
permissible limit. It may be noted that the two
performance functions have been earlier studied
separately in Study 4. It is important to note
that the two performance functions here are mutu-
ally dependent. As has already been noted, when
considered separately the two performance func-
tions lead to notably different adaptively refined
mesh configurations for the elastic modulus ran-
dom field. Thus it would be of interest to under-
stand the nature of adaptive refinement of the ran-
dom field mesh when the two performance func-
tions are considered as being in series. In this nu-
merical illustration, we assume that COV = 0.2,
r =25 and N*=32. We assume that 6*=45.72 mm
(1.8 inch) and 6*=0.015 radian. As before, we
use the notation (N1, N, ) to denote N; elements in
the displacement field mesh and N, elements in
the random field mesh. We define B* with respect
to (32,32) uniform mesh. Results for (32, 8), (32,
12) and (32, 32) uniform mesh are summarized in
Table 5. It was found during the numerical work
that for each of the two performance functions
only one design point was considered relevant.

Starting with GIM for (32,8) uniform mesh (see
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Figure 26: GIM plot for (32, 8) uniform mesh with Figure 27: GIM plot for (32, 8) uniform mesh with
performance function in terms of midspan deflection performance function in terms of left-support rotation
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Figure 28: Adaptive 12-element RF mesh for elas- Figure 29: Adaptive 12-element RF mesh for elastic
tic modulus based on GIM plot for (32, 8) uniform modulus based on GIM plot for (32, 8) uniform mesh
mesh with performance function in terms of midspan with performance function in terms of left-support ro-

deflection

tation

Table 5: RF mesh refinement with multiple mutually dependent performance functions in terms of midspan
deflection and left support rotation

N | N, B ng (%) = “3‘5,{3‘*‘ x 100 Remarks

32| 8 2.58011 0.001163

32 | 12 2.58010 0.000775 Uniform RF mesh
32 | 32 | 2.58008(B") 0.000000

32 | 12 2.58008 0.000000 Adaptive RF mesh
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Figure 30: GIM plot for (32, 8) uniform mesh with Figure 31: Adaptive 12-element RF mesh for elastic
multiple mutually dependent performance functions Mdulus based on GIM plot for (32, 8) uniform mesh

in terms of midspan deflection and left support rota- With multiple mutually dependent performance func-
tion tions in terms of midspan deflection and left support

rotation

Fig. 30) we obtain an adaptively refined (32,12)
mesh (see Fig 31). The result of reliability anal-
ysis using this mesh is also shown in Table 5. It
may be observed that the GIM shown in Fig. 30
closely resembles the plot when only g; (x) is con-
sidered (see Fig. 26). This observation points to-
wards stronger influence of the performance func-
tion with respect to translation than with respect
to rotation. As might be expected, the estimate
on system reliability ($=2.58008) is lesser than
the two reliability indices when the performances
with respect to displacement and rotation are con-
sidered separately ($=2.72748 and 3=2.87712 re-
spectively; see Table 4).

Example 2

In this example we study the reliability of a can-
tilever beam with performance function defined in
terms of the fundamental natural frequency of the
beam. The beam structure under study is shown
in Fig. 32 and, Nagesh Iyer and Appa Rao (2002)
have studied this beam problem earlier in the con-
text of adaptive mesh refinements for determinis-
tic vibration analysis.

We model the beam structure using 4-noded rect-
angular plane stress elements. The elastic modu-

lus of the beam is modeled as a 2D homogeneous
isotropic random field with a lognormal first or-
der pdf and covariance function as given in Eq.
4. The mean value of the elastic modulus is taken
as1.0ES MPa and a coefficient of variation of 0.20
is assumed. The Poisson’s ratio, mass density and
damping ratio are taken to be 0.3, 1.0E-6 kg/mm?
and 0.02 respectively. The random field discreti-
sation is carried out using 4-noded quadrilateral
elements and adapting EOLE method in conjunc-
tion with Nataf’s transformation technique. Since
the elastic properties of the beam are random in
nature, the natural frequencies of the beam turn
out to be random in nature. We examine the prob-
ability of occurrence of resonance in the beam
structure when it is subjected to a harmonic ex-
citation of frequency f*=1760 Hz; see Section 7
for the basic motivation for defining this perfor-
mance criteria. We define the failure as the event
that the first natural frequency lies in the interval
(fi.f3) with f; = f*— Af and f5 = f* + Af.
It may be noted that in the absence of random-
ness in the elastic modulus, the first natural fre-
quency of the beam has a deterministic value of
1653 Hz. The probability of failure is now given
by, Pr = P[f{ < fi < f5]. Thus, the problem can
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Figure 32: Geometry of cantilever beam for Example 2

be presumed as a problem in parallel system re-
liability involving two elements. The ingredients
for solving this problem have already been sum-
marized in Section 3.

Here, we take a = 0.25L and r = 5. We introduce
a notation (N;,N;,N;,N,) to denote a mesh con-
figuration with N}* x N; elements for the displace-
ment field mesh and N; x N, for the random field
mesh. Here, Ni and N; denote the number of ele-
ments along the length direction of the beam and
N; and N, denote the number of elements along
the depth direction of the beam. We begin by eval-
uating the reference notional reliability index f3*
by using a (10, 2, 20, 2) uniform mesh. Next,
by holding the displacement field mesh at 10x2
uniform mesh, we evaluate for different uniform
random field meshes starting with 5x2 and going
up to 10x2. These results are shown in Table 6a.
The GIM for the (10, 2, 5, 2) mesh is shown in
Fig. 33. Based on the GIM plot we now succes-
sively refine the random field mesh adaptively to
6x2 and 7x2 as shown in Figs. 34 and 35 re-
spectively. The corresponding results of reliabil-
ity analysis are shown in Table 6b.

It was found during the numerical work that for
each of the two performance functions only one
design point was considered relevant. A compar-
ison of Tables 6a and 6b reveals the advantages
of adaptive refinement of random field mesh in
terms of being able to achieve lesser values ng
with coarser mesh configuration itself.

Example 3

In this example we consider reliability analy-
sis problem involving random dynamic excitation
and multiple random field models for spatial vari-

ations in structural properties. The example struc-
ture considered is a cantilever beam shown in Fig.
36.

The load f () due a tip concentrated load is mod-
eled as a zero mean stationary Gaussian random
process with a PSD given by band limited white
noise with values of variance=10* kg2, lower cut-
off frequency=0 rad/s and upper cut-off frequency
= 1000 rad/s. The beam structure is modeled
using Euler-Bernoulli beam elements. Viscous
damping with a proportional damping model is
considered for the beam. The elastic modulus and
mass density of the beam are modeled as mutu-
ally dependent homogeneous non-Gaussian ran-
dom fields with a lognormal first order pdf and
auto-covariance function of the form in Eq. 3.
Mean value of elastic modulus is taken as 2.1E5
MPa and a coefficient of variation 0.20 is as-
sumed. Mean value mass density is taken as 7.8E-
6 kg/mm? and a coefficient of variation 0.20 con-
sidered. The Poisson’s ratio is taken as 0.3 and
damping ratio of first and second modes are as-
sumed to be 0.02 and 0.01 respectively. Further-
more, the applied load is taken to be independent
of the random fields for elastic modulus E (x) and
mass density p (x).

The performance function is defined in terms of
the maximum value of the tip displacement mea-
sured over specified time duration after the beam
has reached a steady state. In implementing the
reliability analysis procedure, the load f(¢) is re-
placed by a Fourier series with random coeffi-
cients, with number of terms equal to 10. The
set of basic random variables includes the coef-
ficients present in the Fourier expansion for the
load in addition to the set of basic random vari-
ables emerging during the discretisation of E (x)
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Table Table 6a: Uniform RF mesh refinement with performance function in terms of fundamental natural

frequency
“x N} | Ny xN, B np (%) = P55 x 100
5%2 2.6941 0.8611
62 2.6812 03781
10x2 | 7x2 2.6783 0.2696
10x2 | 2.6746 0.1310
20x2 | 2.6711(BY) 0.0000

Table Table 6b: Adaptive RF mesh refinement for cantilever beam with performance function in terms of

fundamental natural frequency

[xN5 [ NixNo [ B | mg (%) = B8] <100
10n2 6x2 | 2.6715 0.0150
x Tx2 | 2.6709 0.0075

Depth coordinate in cm

1

0

10

Length Coordinate in cm

Figure 33: GIM plot for (10, 2, 5, 2) uniform mesh

and p (x). It is important to note here that, in ad-
dition to choosing the details of displacement field
and random field meshes, one needs to select the
time step of integration as well. We adopt a di-
rect integration approach for solving this problem
using Newmark’s method with parameters with
0=0.5, y=0.25, (corresponding to average accel-
eration method).

Here again, we introduce the notation (Ny, N, N3)
to denote number of displacement field elements
by Ni, number of random field elements in E (x)
by N, and number of random field elements in
p (x) by N3. We define B* using a (10, 10, 10)

uniform mesh with time step A7=0.05s. This re-
sult along with results for (10, 5, 5), (10, 5, 8) and
(10, 10, 10) uniform meshes with a coarser time
step of integration Az=0.1s are shown in Table 7a.

By holding A¢ at 0.1s we now adaptively refine
the random field meshes using GIM derived from
(10, 5, 5) uniform mesh with Ar=0.1s. Figs. 37,
38 and 39 show the GIM plots for the random
fields representing elastic modulus, mass density,
and also the random variables generated from the
process f (f) by fixing time . A comparison of
Figs. 37 and 38 show that the GIM values associ-
ated with E (x) are negligibly small as compared
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Figure 34: Adaptive 6 x2 RF mesh for elastic modu- Figure 35: Adaptive 7x2 RF mesh for elastic modu-
lus based on GIM plot for (10, 2, 5, 2) uniform mesh lus based on GIM plot for (10, 2, 6, 2) adaptive mesh
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Figure 36: Geometry of cantilever beam with tip point load for Example 3

Table Table 7a: Uniform refinement of RF mesh for mass density of cantilever beam subjected to stationary

random excitation due to tip point load

_ [B=P"]

N, | Ats | Ny | N3 B T]ﬁ(%)— 5] x 100
515 | 20392 13211
010 5 | 8 | 2.039% 13017
10 10 | 10| 20402 12727
0.05 | 10 | 10 | 2.0665(B") 0.0000

Table Table 7b: Adaptive refinement of RF mesh for mass density of cantilever beam subjected to stationary

random excitation due to tip point load

Ny | Ats [N, [Ns| B nﬁ(%):‘%ﬂ*‘xloo
10 010 5 | 8 | 20610 0.2661

with GIM for p (x). The spatial variation of GIM
also shows notably different trends but this differ-
ence itself is of marginal interest given the very
low values of GIM associated with E (x). The
results on reliability index obtained using adap-
tively refined mesh with A7=0.1s and (10, 5, 8)

mesh is shown in Table 7b. It should be noted
that the adaptive refinement here is restricted only
to the mass density field (see Fig. 40 for details
of refined mesh for p (x)). The mesh for elas-
tic modulus field is uniform in nature. Also, it
needs to be emphasized that Atis held uniform at
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Figure 37: GIM plot for elastic modulus with (10, 5, Figure 38: GIM plot for mass density with (10, 5, 5)
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Figure 39: GIM plot for applied force at different Figure 40: Adaptive 8-element RF mesh for mass
time instants with (10, 5, 5) uniform mesh and time density based on GIM plot for (10, 5, 5) uniform

step =0.1s

acoarser value of 0.1s. It is of interest to note that,
based on GIM shown in Fig. 39 it is possible, at
least in principle, to identify the regions along the
time axis where the step sizes of integration could
be adaptively refined. This aspect of refinement
however has not been investigated further in this
study. A comparison of Tables 7a and 7b reveals
that the reliability index obtained using adaptive
random field mesh refinement assuming a coarser
At, matches well with the results on reliability in-
dex with a finer time step size (A#=0.05s) and a

mesh; time step =0.1s

finer displacement field and random field meshes
(10,10,10 uniform mesh). This again points to-
wards usefulness of mesh refinement procedures
discussed here.

10 Conclusions

The problem of reliability analysis of linear
static/dynamic systems with spatially varying ran-
dom structural properties and loads that could
vary randomly in space and time is considered.
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The reliability itself is defined in terms of a set
of one or more performance functions. The tools
used for reliability analysis are essentially fash-
ioned after first order reliability methods with a
few refined features and stochastic finite element
analysis procedures. An important aspect of the
problem is associated with treatment of structural
properties as a vector of mutually dependent non-
Gaussian random fields. For the purpose of re-
liability analysis these random fields need to be
discretised into a set of equivalent random vari-
ables. The accuracy of reliability analysis cru-
cially depends upon details of discretisation pro-
cedures used. The present study chiefly addresses
this issue. Specifically, we have developed a pro-
cedure to adaptively refine the random field mesh
so as to obtain improved estimates of structural
reliability. This adaptive procedure is based upon
the definition of global importance measures. The
procedures developed can take into account pres-
ence of multiple design points and structural reli-
ability defined in terms of multiple performance
functions. In order to evaluate the merit of an
adaptively refined random field mesh we have uti-
lized the result from a fairly refined mesh as a
benchmark. It should be emphasized that such a
benchmark is useful only to demonstrate the util-
ity of refinement procedures proposed herein and
these procedures themselves do not inherently de-
pend upon the availability of such a benchmark.

The numerical examples presented cover both
static and dynamic behaviour, one- and two-
dimensional random fields and displacement field
elements, simultaneous presence of more than one
random field, space-time randomness associated
with loads and multiple performance functions.
These examples have clearly illustrated that it is
possible to obtain better estimates of structural re-
liability by using adaptively refined random field
meshes than by using uniform meshes with higher
number of nodes. The study also points to-
wards the possible usefulness of GIMs considered
herein for the purpose of adaptive displacement
field mesh refinement and adaptive time stepping
in integrating the equations of motion. This aspect
however, has not been explored further in this pa-
per.
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