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Random variations in the transfer functions describing energy flows in a pair of coupled
axially vibrating stochastic rods are considered. The material properties of the rods are
modelled either as random variables or as random processes, and the consequent effects
on the nature of the power receptance functions are studied by using Monte Carlo
simulation techniques. The relevance of these results is discussed in the context of
variability in average estimates obtained when using Statistical Energy Analysis (SEA)
formalisms. The résponse statistics are shown to vary significantly with the details of the
statistical modelling of the system, especially in the low and medium frequency ranges.
Moreover, the confidence limits show no tendency to converge toward the mean with
increasing frequency. Critical systems the responses of which deviate maximally from the
average values are identified and attempts made to understand their nature.

1. INTRODUCTION

In the vibration of engineering structures subjected to high frequency excitation several
modes of vibration can be expected to contribute to the response at any given frequency.
A major problem in the analysis of such vibrations occurs in handling the extreme
sensitivity of these natural modes of vibration to minor changes in specification of system
parameters and details of the mathematical modelling of the system. Statistical Energy
Analysis (SEA) makes allowance for this fact by treating the vibrating system as being
drawn from a statistical ensemble of nominally similar systems [1]. The energy levels in
individual subsystems are taken to be the principal response variables of interest and are
calculated as averages across this ensemble. The actual structure under consideration is
thought of as a member of the ensemble and the averaged response as a measure of its
response. If these averaged responses are to be meaningfully employed in design practice,
it is clearly desirable to establish measures of dispersion in the response variables and also
to determine confidence levels associated with the estimated averages. Clearly, in such
calculations one needs to describe the statistical ensemble of vibrating systems in greater
detail than would be needed for the determination of the average response alone.

The first step in a systematic investigation of this problem involves deciding on the
nature of the stochastic model to be employed for the vibrating system. In this context
it may be noted that the statistical aspects of system modelling can be incorporated into
the response calculations at basically two different levels. The first involves constructing
appropriate models for the stochastic variability in material, geometric and topological
properties of the vibrating system, followed by a free vibration analysis to determine the
associated random natural frequencies and mode shapes. This information can then be
incorporated into a forced response analysis. The second and somewhat simpler alternative
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is to postulate directly stochastic models for the natural frequencies and mode shapes
and use these in forced response calculations. This approach clearly bypasses the need
to carry out a stochastic free vibration analysis, but its success depends on the accu-
racy of modelling the modal parameters. Consequently, the former approach is
adopted here.

2. A BRIEF REVIEW OF EARLIER WORK

In the past, relatively few authors have considered the problem of determining
measures of dispersion and confidence levels associated with the response levels in
statistically defined vibrating structures. Notable among them are Lyon and Eichler [2],
Lyon [1,3], Fahy [4], Davies and Wahab [5], Davies and Khandoker [6] and
Mohammed and Fahy [7]. The problem has also been discussed in a review paper
by Hodges and Woodhouse [8].

In the paper by Lyon [3] an historical review of statistical modelling of vibrating
structures and acoustical systems was presented. Also considered was the problem of
calculating the statistics of power injected into single vibrating structures by narrow-band
and broadband excitations plus the statistics of the response of the structure. The statistical
modelling of the system was introduced at the eigensolution level. Thus, the natural
frequencies of the system were modelled as a set of stationary Poisson points on the
frequency axis, with the arrival rate given by the modal density of the structure.
Consequently, distinct natural frequencies under this assumption became statistically
independent and identically distributed uniformly in the frequency range of interest. The
spacing between successive natural frequencies was, in turn, exponentially distributed. The
mode shapes were treated as deterministic quantities. The point of application of the force
was taken to be a random variable distributed uniformly over the domain of the structure.
Based on these assumptions and using standard results from Poisson process theory, Lyon
derived the mean and standard deviation of the power input to the structure. Furthermore,
in order to calculate the confidence level associated with the estimated averages, a gamma
probability density function was fitted to the power input using the calculated mean and
standard deviation. Under the additional assumption that the point of forcing and the
point of measurement are independent random variables, identically distributed uni-
formly over the domain of the structure, he also calculated the statistics of the struc-
tural response. Within a framework of similar assumptions, Lyon [1] also discussed the
statistics and confidence intervals of energy levels and dynamical responses in connected
structures.

The assumption of a Poisson process model for natural frequencies in these analyses
results in considerable analytical simplicity. Nevertheless, it is an ad hoc assumption and
it is not obvious whether the occurrence of natrual frequencies in engineering structures
satisfy the postulates underlying the construction of Poisson processes. The effect of
ignoring the random variability in mode shapes, especially at points of driving, coupling
and measurement, is again not clear.

In this context, it may also be noted that a number of studies have been reported in the
nuclear physics literature on the determination of energy levels associated with complex
nuclei. In mathematical terms, these energy levels are calculated as the eigenvalues of
matrices the elements of which are modelled as random variables; see the paper by Brody
et al. [9], for a recent review. Lyon [3] has noted the possible relevance of these results to
SEA applications. In particular, he considered non-Poissonian natural frequency spacing
models which take into account the tendency of two neighbouring natural frequencies to
repel each other. Similar views have also been expressed recently by Weaver [10].
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3. THE PRESENT STUDY

In the present study the variability in energy flow characteristics in one-dimensional
coupled structural configurations is considered. Several factors pertaining to the nature of
excitation, coupling and subsystem properties can be expected to contribute to the
variability in energy flow characteristics. Principally, these are (i} the spectrum and spatial
variation of excitation, (ii) the coupling strength and location, (iii) the statistical variations
in mass, stiffness and boundary conditions of the subsystems which in turn govern the
variations in natural frequencies and mode shapes and (iv) the number of constituent
subsystems. The present study is, however, largely focused on the details of the statistical
modelling of subsysiem properties and their consequent effect on the power flows. The
system considered for study is constructed by coupling two axially vibrating rods at a single
point through a linear, conservative spring. Two specific types of excitations, namely point
harmonic forcing and a distributed rain on the roof type of ¢xcitation, are considered. The
physical properties of the structure, namely the mass and stiffness, are modelled as random
quantities. The ensemble of vibrating systems is simulated computationally by using Monte
Carlo techniques, The power transmission calculations for individual realizations of the
system are carried out based on the exact formulations derived by Davies [11] as developed
further by Keane and Price [12]. The statistical properties of the response quantities of
interest are then obtained by processing the ensemble of response variables. In particular,
calculations are made for the mean, standard deviation, 5% and 95% probability levels
and extreme values of the response variables. The validity of the simulation algorithm has
also been checked by comparing simulation results with certain specific, exact analytical
solutions. These analytical solutions have been developed recently by the present authors
for the case of an axially vibrating stochastic rod [13]. It may be emphasized that the power
transmission calculations for individual realizations are not based on any of the traditional
SEA assumptions and, therefore, are uniformly valid over the entire frequency range of
interest.

It is clear that there is no unique way of generating an ensemble of vibrating systems.
Thus different randomization schemes adopted for generating these ensembles would, in
principle, lead to different sets of solutions. While the results for the means may reasonably
be assumed to be insensitive to these details of modelling, the same may not be true if one
considers higher order statistics or the extremal behaviour of the response. A principal aim
of the present study has been to investigate the effect of different randomization schemes
on such response statistics.

In a simulation study dealing with the determination of deviations from average
behaviour, it is clearly of interest to understand the nature of specific realizations of
structural configurations which lead to extremal responses. The extrema of responses
depend on the behaviour of the associated probability density function near the tails and
hence are sensitive to the sample size used in simulation work. On the other hand, if interest
is focused on the extremal behaviour alome, then it is much simpler to use numerical
optimization schemes than Monte Carlo simulations to determine structural configurations
which show such responses. This option has been adopted in the present study to determine
“optimal” distributions of mass and stiffness properties along the length of a pair of
coupled rods which lead to extreme responses under a prescribed excitation.

4. THE TWO-ROD SYSTEM

The system under consideration consists of a pair of axially vibrating rods which are
mutually coupled at a point through a spring, the system configuration being illustrated
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Figure 1. Two point spring coupled axially vibrating rods.

in Figure 1. The rods are assumed to have random material and/or geometrical properties.
Specifically, the mass and/or stiffness properties of the individual rods are modelled either
as random variables or as random processes. The rods are assumed to be viscously
damped, with the damping coefficients being proportional to the masses. No restrictions
are placed either on the magnitude of the damping or on the strength of the coupling
spring. The external forces acting on the system are modelled as point harmonic excitation
or as rain on the roof type of distributed forcing. The aim of the present study is to cxamine
the probabilistic nature of the power flow characteristics in the system arising out of
random fluctuations in the properties of the system. The response variables of interest are
taken to be the steady state energy levels in the two systems, these variables in turn being
described in terms of various system transfer functions. Of particular interest are the input
power receptance function and the coupling power receptance function. The deterministic
aspect of power transmission characteristics in this type of system has been studied by
several authors [11, 14, 15], and the expressions for the desired receptance functions are
reproduced here without detailed derivation. Thus, when two rods are coupled at x; = a;
and are excited by point forces F,(¢) acting at x; = b,, { = 1, 2, the input power and coupling
power receptances for the first rod are given, respectively, by

H(w) = (@’c,/my) Z WO + (wk, /mf)lm{ [Z Vil Y, (al)/fi’]} M

CUkcz

Hl2(w) |A|2
n,

Zwmmwm ()

T @oon@ys)

Similarly, when the system is excited by distributed forces F;(x;, t), i =1, 2, of the rain on
the roof type, the above receptances are given, respectively, by

Hy(@) = (w?c; fmy) i (1/1¢,[") + (wk,/m3) Im {i} i a )/45?4)}, (3)
w2k2
Hy(w)= |Alg Z W, (a)/|. 1) Z i@ i) C)]

In these equations the summations over the indices i and r respectively denote summations
over the modes of the first and second rods. The quantities w; and y, are, respectively, the
natural frequencies and the mode shapes. The quantities ¢, and A are given by

¢;= 0} -o’+icw and A =1+(k/m) Zl Wia)/¢) + (k.fm;) Z WHa)/é,).
(5,6)
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The mode shapes y satisfy the orthogonality conditions

'[ll’:(xl)'!’j(xt)ﬁ’l(xl)dxt = m; 6;;. N

Here §,; denotes the Kronecker delta function. The quantities ¢;, m, and p,, respectively,
denote the coefficient of viscous damping, total mass and mass per unit length of the ith
system. k_ is the coupling spring constant. The forces F, and F, are assumed to be
statistically independent.

When the mass and/or stiffness properties of the individual rods are modelled as random
quantities, the natural frequencies and mode shapes become random in nature. The
receptance functions described above, in turn, become random processes. The aim of the
present investigation is to obtain probabilistic descriptions of H(w), i,j=1,2, as
functions of the probabilistic description of the mass and stiffness profiles of the individual
rods. A general analytical solution to this problem is currently not possible. Estimates for
the probability distribution function (PDF) of H,;(ev) can, however, be easily obtained by
using Monte Carlo simulation techniques. For this purpose, an ensemble of realizations
of coupled rod systems is computationally simulated as per the stochastic model adopted
for the mass and stiffness properties. For every realization of the pairs of rods, the natural
frequencies and mode shapes are calculated for each of the individual rods and this
information is incorporated into equations (1){4) to generate the ensemble of receptance
functions. This ensemble is further processed to obtain the desired PDFs. Thus a crucial
step in these calculations involves obtaining the natural frequencies and mode shapes of
the simulated rods. When the mass and stiffness of the rods are modelled as random
variables, each realization consists of rods with uniform properties. The eigensolutions of
such rods are well known [16]. On the other hand, when the mass and stiffness properties
are modelled as random processes each realization results in rods with spatially varying

properties. In such cases, special means are needed to derive the natural frequencies and
mode shapes of the rods.

5. EIGENSOLUTIONS OF NON-UNIFORM RODS

The eigenvalue problem of an axially vibrating fixed—fixed rod with length L, stiffness

AE and mass per unit length p consists of determining the non-trivial solutions of the
equation

d dy _
e [AE(I)§:|+€UZP(X)J’ =0, (3)

subject to the boundary conditions

y@ =0, yL)=0. ®)

In order to calculate the eigenvalues, consider the solution y*(x, ) of equation (8) under
the initial conditions

y*0,0) =0, (dy*/dx)(0, w)=1. (10

Notice that the equations (8) and (10) have a non-trivial solution for any arbitrary value
of w. The eigenvalues of equations (8) and (9) can, however, be defined in terms of
y*(x, w). In fact, those @’s which satisfy the equation

VL, 0)=0 (11)
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are the desired eigenvalues of equations (8) and (9). Thus, a root searching technique can
be instituted to find the w’s which satisfy equation (11). These w’s can further be
back-substituted into equation (8) to determine the eigenfunctions.

The study of y*(x, w) is facilitated if the non-uniform rod is idealized as a rod
constructed out of p piecewise uniform sections with lengths /,, stiffness 4E_ and mass
per unit length p,,, m = 1, p. This means that the continuous functions AE(x) and p(x)
are approximated by a sequence of piecewise uniform functions, Within the mth subsection
the solution is known to be given by

y*(x,, w)=Y,sin[4,x, +8,], O0<x,<l,. (12)
Here A, defines the local wave speed in the mth section and is given by

A=/ (P, AE,). (13)

The consideration of continuity of displacement and force at each junction Ieads to the
conditions

Pm+1 AE,
tan 8m+1 = W tan (Am Im -+ Bm)
and
Ym+l)2 (p AE, — puy 1 AE, +1)
L =] 2o Vcos? (AL, + 6,,). 14, 15
( Ym pm+1AEm+l ( ) ( )

The description of y*(x, 1) can then be obtained in terms of the amplitude Y, and phase
angle 6,. Observe that the nth root of equation (11) is given by the root of the
equation

AL +0,=nn. (16)

Thus the eigenvalues of equations (8) and (9) can be obtained by solving this equation.
Once the eigenvalues are determined, equations (15) and (12) lead to the determination
of the eigenfunctions. This procedure for finding the ¢igensolutions closely follows the
formulations presented, for example, by Borland [17] and Bishop and Johnson [18].

The piecewise approximation to p(x) and AE(x) employed in the method described
above is distinctly different from a finite element discretization. It may be recalled that a
finite element approximation involving p elements essentially leads to estimates for the first
2p natural frequencies, with only the first few of these estimates being reliable. On the other
hand, the procedure described in this section leads, in principle, to the entire spectrum of
eigenvalues. In addition, for a rod with piecewise uniform properties the accuracy of the
solutions obtained is controlled solely by the accuracy with which the root searching is
performed in the solution of equation (16). This accuracy is independent of mode count
and can be effectively controlled. Another significant feature of the present approach is
that when p(x) and AE(x) are modelled as random processes, the probability density
function of the eigensolutions can be characterized in terms of the phase angle and
amplitude co-ordinates [19, 20].

Finalty, for the special case of non-uniform rods in which mass and stiffness are related
to each other through the relation

pmAE,, = constant, (17
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it follows from equations (14) and (15) that
Os1 = Al + B =08+ 3 41y and Yuii/Ym=1. (18,19
k=1
Upon noting that 8, =0 for rod fixed at x =0, it can be easily shown that
p—1
8,= Zl Al (20)
Thus the characteristic equation for the eigenvalues becomes
p—1
AL+ Y pul,=nm (21)
m=1
This equation can further be simplified to give the »th natural frequency as

w, = nm/ i Pl (22)

m=1

and the nth mode shape in the mth subsection as

m—1 P
ynm(xm) = Sin [nn{ Z pklk +pmxm}/ Z pklkjl': 0 < xm < lm' (23)
k=1 k=1

These results are, in fact, the discrete analogues of the special case studied earlier by the
present authors [13]. As demonstrated in the reference, they form a starting point in
the analytical determination of the PDF of the eigensolutions, the Green function and
the input power receptance functions of a vibrating rod. These analytical results, being
exact in nature, serve as a benchmark against which alternative solution procedures can
be validated. A discussion of this aspect is presented next.

6. VALIDATION OF COMPUTER PROGRAM

A Monte Carle simulation program to calculate the statistics of the input power and
coupling power receptance functions, equations (1)~(4), has been developed based on the
formulations presented in sections 2 and 3. Before this program can be used with
confidence, it is desirable to verify that it leads to correct solutions when run for any
specific cases for which exact analytical results are available. However, to the best of the
authors’ knowledge there appear to be no exact solutions available for the PDF of the
power flow transmission characteristics for the coupled rod configurations being studied
here. On the other hand, the PDF of the dynamical characteristics of a special case of a
single axially vibrating stochastic rod has recently been studied by the present authors [13].
These results may be used as benchmarks to validate the computer program developed.

Consider the axial vibration of a fixed—fixed rod in which p(x) and AE(x) vary
randomly along the length of the rod. Let p and AE be modelled as

p(x}=poll +&f(x)],  AE(x)=AE +yg(x)]. (24,25)

Here f(x) and g(x) are jointly stationary random processes with zero mean and unit
standard deviation. g,, AE,, ¢ and y are deterministic constants. It has been shown in
reference [13] that when p(x) and AE(x) are such that

[1+&f(x)H1 + yg(x)] =1 (26)
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the PDF of the cigenvalues and the Green function can be analytically determined.
Furthermore, it has also been shown that the PDF of the input power receptance function
for the case when the rod is driven at a point by a harmonic excitation is obtainable. In
the calculations presented in reference [13] the mass process f(x) is taken to be of Gaussian
distribution with an autocovariance function of the form

Ry (x), X%;) = exp[—alx; — x;|]. 27

In Figure 2 is shown the comparison between the analytical and simulated results for the
PDF of the input receptance function for the cases of a point harmonic force acting at
(x/L) = 0-2 with frequency w = 4000 rad/s. The simulated distribution function is esti-
mated by using a sample size of 5000. A Kolmogorov—Smirnov goodness of fit test [21]
has also been performed to verify whether the simulated result agrees with the theoretical
result. The 95% confidence bands has also been marked on Figure 2. Tt is observed that
at 5% significance level the simulated result can be taken to be distributed as per the
theoretical model.

By using the procedures described in the reference it is also possible to determine
analytically the PDF of the input receptance function for uniform rods in which the
mass per unit length is modelled as a random variable. For the purpose of illustration,
consider a rod the mass per unit length of which is modelled as a Gaussian random vari-
able with mean 4-156 kg/m and standard deviation 15% of the mean. Let L =5-182 m,
AE =0-1785MN and ¢ =80s"'. The theoretical result for the PDF of the input
receptance function when the rod is driven by point harmonic excitation at (x/L)=0-2
is compared with the corresponding digitally simulated result in Figure 3. Results of the
Kolmogorov-8mirnov goodness of fit test are also shown in these figures. Again, it is
observed that, at the 5% significance level, the simulated result can be taken as drawn from
a population having the theoretical PDF,
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Figure 2. Theoretical and simulated input receptance probability distribution functions, F[H;, (w)]; point
forcing, special rod, » = 4000 rad/s, b, = 0-2L. ——, Theory, - - - -, simulation; —— —, +5%; —---—, ~5%.
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Figure 3. Theoretical and simulated input receptance proBability distribution functions, F[H;{w)}; point
forcing, uniform rod, @ = 4000 rad/s, b, =0-2L; key as per Figure 2.

The agreement between the theoretical and simulated results observed in Figures 2
and 3 support the use of the simulation program to study problems for which no
alternative solutions are available. It must, however, be noted that it has been possible
to carry out these checks only for simulation results on the behaviour of single rods. It
is clearly desirable to perform such checks on the behaviour of coupled rod systems and
also for individual rods when the constraints on variability of mass and stiffness are
relaxed. As noted already, no analytical solutions to these problems seem to be currently
available.

7. STOCHASTIC MODELS

As has already been noted, there are basically two different ways in which a stochastic
model can be constructed for the physical properties of individual subsystems. In order of
increasing complexity, the first is to model the system parameters as random vanables. This
means that individual realizations of the system have uniform characteristics and are
reasonably well behaved. Thus, for instance, if the quantities p(x) and 4E(x) are taken
to be independent of x and are modelled as random variables, the eigenfunctions remain
deterministic. Although the natural frequencies become random variables, distinct natural
frequencies still remain linearly dependent on each other. In the context of SEA, this
randomization scheme is clearly weak in character. The second and more elaborate scheme
is to take the properties of the rods to be random functions of the spatial co-ordinates.
Thus, p(x) and AE(x) are modelled as random processes. In this case both the natural
frequencies and mode shapes become random in nature, and can be expected to show
reasonably complex behaviour consistent with the conceptual framework of SEA. In using
this model, further decisions have to be made regarding the spectral content and
probability distribution of the spatial variations.
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TasLE 1
Models for stochastic variability in rod properties

Quantity Parameter values
Model treated as ————, Figure

number  random & a numbers Details of model
1 g 0-15 nja 8-11,22 p = po[l + &u]
0-05 n/a 12-15, « Gaussian random variable with zero
22-24 mean and unit standard deviation
2 plx) 0-25 93 16,23 2(x}=poll + eu(x)]
01 13 17,24 u(x) stationary Gaussian random

process with zero mean and
autocorrelation function
R, (xy, %) = exp[—alx; — x,[}

3 p(x) 0177 425 18,23 p(x) = po {1 + efu?(x) — 1-01}
007 0-65 19, 24 u(x) as per model 2
4 AE(x) 0-25 9:5 20,23 AE(x)Y= AE[1 + eu(x)]
u(x) as per model 2
5 d(x) 0-25 95 21,23 d(x) = dy[1 + eu(x)]
(diameter) u(x) as per model 2

The role of different stochastic modelling procedures on the probabilistic nature of the
power transmission is not obvious at the outset. With a view to gaining insights into this
problem, the present study has considered various different randomization schemes for
modelling the subsystems. A summary of the models investigated is given in Table 1. As
can be seen from the table, both Gaussian and non-Gaussian models have been considered.
In this context it must be noted that the use of Gaussian models for positive quantities
such as mass, stiffness or diameter is, strictly speaking, inadmissible. However, if the
standard deviation of the random variations are restricted to less than 30% of the mean
values, the error in the Gaussian approximation is negligibly small. This means that the
parameter ¢ in models 1, 2, 4 and 5 of Table 1 is restricted to take values less than 0-3,
In the case of models involving random processes, additional restrictions need to be
imposed. Thus, for example, when p(x) is modelied as a Guassian random process, if the
standard deviation of the rotal mass of the rod is to be restricted to be less than 30% of
the mean, one obtains

"T—S\/[rrx(x %) dx dx:|<03 (28)
pDL L o 0 vy 2 ] 2 M

Notice that this constraint involves not only ¢ but also the parameters in the autocovari-
ance function of p(x). In the studies described here, the autocovariance of the stochastic
perturbation u(x) for all the random process models shown in Table 1 is assumed to be
of the form

R, (1, x;) = exp[—alx; — x|l (29)

It must also be noted that the models described in Table 1 refer to the properties of a single
rod. In the study of coupled rod systems, the properties of the two distinct rods are taken
to be similar but statistically independent of each other.
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Figure 4. Deterministic input receptance function, H,,(«); point forcing.

8. NUMERICAL RESULTS

The moments and PDFs of the functions H,,(w) and H,(w) for both point harmonic
forcing and rain on the roof type of distributed forcing have been estimated for different
ensembles of coupled rod systems generated as per the models described in Table 1. These
simulations are organized in such a way that the results for the different models can be
directly compared with each other. Of course, for each model in the table four figures may
be produced (i.¢., H, (@) and H;(w) for both forcing models); here, for the sake of
brevity, all four are given only for model 1 with attention being focused on just H,(w),
with point forcing for the remainder. The mean values of the system properties are held
fixed at py=4-156kg/m, L =5182m, AE,=0-1786 MN and ¢ =80s~'. The coupling
spring constant is taken to be k., =05 x 10’ N/m and the points of coupling fixed at

1 [ 1 H
0 5000 10000 15000 20000 25000

Frequency (rad/s)

Figure 5. Deterministic cross-receptance function, H,(w); point forcing.
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Figure 6. Deterministic input receptance function, Hy(w); rain on the roof forcing.

a,=23m (0-44L) and a, = 3-3m (0-64L). The forces are assumed to act on only the first
subsystem, with the second subsystem remaining externally unforced. For point forcing the
point of application is taken to be 5, = 1192 m (0-23L) and the driving frequency range
of interest is taken to be 10025 000 rad/s. The infinite summations appearing in equations
(1)-(4) are carried out over modes occurring in a frequency band width of 32000 rad/s
centred at the driving frequency . When spatial variations in properties are used, the rods
are discretized into 20 piecewise uniform elements of equal length. The variations of the
various statistics of the receptances have been computed as functions of driving frequency
w with response statistics being estimated by using an ensemble sample size of 2500. For
reference, plots of H, (w) and H,,(w) for the case of the deterministic system (¢ =0)
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Figure 7. Deterministic cross-receptance function, H,;(w); rain on the roof forcing.
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Frequency (rad/s)
Figure 8. Input receptance statistics, E{H,, (®)], etc.; point forcing, model 1, £ =0-15, b, = 0-23L. ——, Mean;
----, mean plus one standard deviation; — - —, 5% probability level, —- - -—, 95% probability level.

excited by these two types of forces are given in Figures 4-7. It may be noted that for a
fixed—fixed rod with these properties, the nth natural frequency is given by w,= 1256n
rad/s and, consequently the modal overlap factor is 0-06.
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Figure 9. Cross-receptanoé statistics, E[#;{w))], etc.; point forcing, model 1, ¢ =0-15, b, = 0-23L; key as per
Figure 8.



266 A. ]. KEANE AND C. §. MANOHAR

=]
I8

Receptance

S
&

105

L I 1 J !
0 5000 10000 15000 20000 25000

Frequency (rad/s)

Figure 10. Input receptance statistics, E[H,, (w)], etc.; rain on the roof forcing, model 1, ¢ = 0-15; key as per
Figure 8.

The effect of varying just the overall mass, using uniform rods, that is, model 1, is
illustrated in Figures 8—15, with the randomness parameter & being held at 0-15 for the first
four figures and reduced to 0-05 for the remainder. When the mass density is also allowed

N
T,

e A ]
N e,

|

Receptance

10-%| ~.

| ] I ]
0 5000 10000 15000 20000 25000

Frequency (rad/s)

Figure 11. Cross-receptance statistics, E[H ()], etc.; rain on the roof forcing, model |1, &€ = 0-15; key as per
Figure 8.
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Figure 12. Input receptance statistics, E[H,,{w)], etc.; point forcing, model 1, ¢ = 005, b, = 0-23L; key as per
Figure 8.

to vary along the length of the rod, model 2, the additional parameter & in the
autocovariance is used to characterize these spatial variations. In such cases the total
mass depends on both ¢ and « and these are chosen such that the total masses have the

10°

0 5000 10009 15000 20000 25000
Frequency (rad/s)

Figure 13. Cross-receptance statistics, E[H|,(w)), etc.; point forcing, model 1, & = (-05, b, = 0-23L; key as per
Figure 8.
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Figure 14. Input receptance statistics, E[{,, ()], etc.; rain on the roof forcing, model 1, £ = 0-05; key as per
Figure 8.

same Gaussian distribution as for the case of & = 0-05 with model 1 (i.e., Figures 12-15).
The effects of broad- and narrow-band spatial variations for this model are illustrated
in Figures 16 and 17, respectively, which are for ¢ = 0-25 with ¢ =9-5 and & =0-1 with
o = |-3.
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Figure 15. Cross-receptance statistics, E[H,(w)}, etc.; rain on the roof forcing, model 1, ¢ = 0-05; key as per
Figure 8.
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Figure 16. Cross-receptance statistics, E[H,(®)], etc; point forcing, model 2, ¢ =025, =95, b, =0-23L;
key as per Figure 8.

The effect of assuming p(x) to be a non-Gaussian random process (model 3) is
shown in Figures 18 and 19, again for broad- and narrow-band spatial vari-
ations. Clearly, it is not possible to establish equivalence in terms of PDF
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Figure 17. Cross-receptance statistics, E[H\,(w)}, etc.; point forcing, model 2, ¢ = 0-1, @ = 1-3, b, = 0-23L; key
as per Figure 8,
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]
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Figure 18. Cross-receptance statistics, E[H,,{w)], etc.; point forcing, model 3, & = 0-177, a =4-25, b, = 0-23L;
key as per Figure 8.

for total masses between the results for this model and those for the Gaus-
sian processes of models 1 and 2. It is still possible, however, to establish
equivalence of the mean an autocovariance of p{x) between models 2 and 3,
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Figure 19. Cross-receptance statistics, E[H},(w)], etc.; point forcing, model 3, s = 0-07, & = 065, b, = (-23L;
key as per Figure 8.
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Figure 20. Cross-receptance statistics, E[H),(w)], etc.; point forcing, model 4, £ = 0-25, a =95, b, =023L;
key as per Figure 8

and this has been achieved here by using ¢ =0-177 with a« =425 and £=007
with « =065 in Figures 18 and 19, being equivalent to Figures 16 and 17,
respectively.
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Figure 21. Cross-receptance statistics, E[H,(w)], etc.; point forcing, model 5, £ =025, x =95, b = 0-23L;
key as per Figure 8.
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The case in which the stiffness AE(x) is modelled as a Gaussina random process
instead of the mass, model 4, is shown in Figure 20 for ¢ =025 and a =9-5; cf.
Figure 16 for model 2. Finally, the results for the case when the subsystems are modelled
as rods with circular cross-sections with the diameter varying as a Gaussian random
process (model 5) for ¢ =025 and « =9-5 are presented in Figure 21. In view of the
fact that the mass per unit length and stiffness are functions of square of the diameter,
the models for p and AE in this case are given by

p(x)=poll +eu(x)’,  AE(x)= AE,[l +eu(x)]. 31

In this case therefore, p(x) and AE(x) not only have non-Gaussian character but are also
linearly dependent on each other.

To summarize these results, in Figures 4-15 comparisons are allowed of the
input and cross-power receptances for both point and rain on the roof forcing, in
each case with results for deterministic calculations plus two levels of randomness. In
Figures §, 13, 16, 18, 20 and 21, the cross-power receptances are compared for the
deterministic case plus the five randomization schemes adopted, all with point forcing,
the smaller degree of randomization used in Figures 11-15 and broadbanded spatial
variations. Finally, in Figures 5, 13, 17 and 19 the deterministic case plus the first
three randomization schemes are contrasted with a reduced spatial bandwidth, again
for point forcing and showing the cross-power receptances. These three comparisons
are further aided by studying Figures 22-24, respectively, which show the probability
distribution functions of the cross-power receptances for the various models used,
at a fixed frequency of 10000 rad/s. Notice that the horizontal axes have logarithmic

1.0 |-
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:
04 |
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o0 £ |
1011 10710 10-? 104 10-? 10-6 10-% 10+ 192
Receptance
Figure 22. Cross-receptance probability distribution functions, F[H\;(w)]; point and rain on the roof
forcing, model 1, € =00, 015, and 0-05, w = 10 000 rad/s, b, = 0-23L. ——, Point forcing, deterministic case,
g =00; ———, point forcing, & =0-15; ——~, point forcing, & =005, ——, rain on the roof forcing,

deterministic case, £ = 0-0; - - -, rain on the roof forcing, & =(-15; — - - - —, rain on the roof forcing, ¢ = 0-05.
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Figure 23. Cross-receptance probability distribution functions, F[H,(w)]; point forcing, models 15,
g, & broadbanded (sec Table 1), & = 10000 rad/s, &, = 0-023L. , Deterministic case; — ——, model 1;
———, model 2; ---, model 3; —- —, model 4; —--- —, model 5.

scales in these plots, since the earlier figures are also plotted on a logarithmic basis.
Also, the mean values of the receptances at this frequency are marked with a *4+"
on the figures.
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Figure 24. Cross-receptance probability distribution functions, F[H,(w)]; point forcing, models 1-3,
&, a narrow banded (see Table 1), w = 10000 rad/s, #, = 0-23L. ——, Deterministic case; — ——, model 1;
———, model 2; ---, model 3.
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9. DISCUSSION

A general freature than can be observed in the majority of the cases illustrated in
Figures 8-21 is that, beyond a limiting frequency «w*, the receptance functions tend to
become stochastically stationary. This frequency can be thought of as the cut-off frequency
below which traditional SEA approximations arc unlikely to hold. Several factors
pertaining to excitation and the details of statistical modelling of sybsystems appear to
control this limiting frequency. On the whole, it is seen that the rain on the roof type of
excitation leads more quickly to steady behaviour than point forcing. Also, the function
H, (@) is seen to be much more well behaved in this aspect than H,,(w). The strength of
randomness, and whether or not a random process or a random variable model is used,
further affects w*. Thus, from Figures 811 and 12-15 it can be seen that a reduction in
¢ from 15% to 5% significantly increases the cut-off frequency w®*. This is as expected,
since as € —0 the curves all tend to the deterministic results of Figures 4-7 which, of course,
show no tendency towards steady behaviour, instead being dominated by the individual
model peaks and troughs of the subsystems. Notice that although reducing the randomness
in this way increases the cut-off frequency it reduces the measures of dispersion; this is as
expected since there is no dispersion in the deterministic case. This is more clearly seen
in Figure 22, which shows the probability distribution functions for the two levels of
randomization adopted in model 1: the slopes of the functions increase, tending to step
functions, as ¢ is reduced and the dispersion decreases. A similar change is noted when
moving from point to rain on the roof forcing,

From Figures 13, 16 and 17, it can be noted that, at an equal level of randomness in
total mass, a relatively broadbanded random process model for p(x) results in smoother
behaviour for the receptance functions. This behaviour is also seen when comparing
Figures 23 and 24, where the distribution function is seen to be shallower for the
broadbanded models. In consequence, the difference between the results .of the random
variable model, Figure 13, and random process models, Figures 16 and 17, is most
significant for the case when p{x) is broadbanded (Figure 16). This arises naturally because
the mass profiles for narrow-band variations tend to be slowly varying and thus have a
closer resemblance to those of the random variable model. Conversely, when p(x) is
broadbanded, it is capable of faster fluctuations and, therefore, significant differences from
the random variable model.

The effect of assuming non-Gaussian distributions for p(x), model 3, is seen in Figures
18 and 19. As has already been noted, the random perturbation [1%(x) — 1-0] here is
equivalent to the Gaussian perturbations leading to Figures 16 and 17, in the limited sense
that the perturbations here have similar mean and autocovariance functions. A comparison
between these four figures reveals significant differences in the behaviour of the receptance
statistics. It is observed that a Gaussian model for p(x) is more favourable to the steady
behaviour of the statistics of H,,(w) than a non-Gaussian model. However, even in this
case, the broadband model of Figure 18 is found to be more favourable in this sense than
the narrow-band model of Figure 19. Nonetheless, Figures 23 and 24 reveal that although
the mean and measures of dispersion arising from the non-Gaussian models take longer
to reach steady state, they do not necessarily show significantly greater statistical variation
at any given frequency.

The results discussed thus far pertain to the modelling of p(x) as a random quantity.
Limited studies on alternative randomization schemes involving parameters other than
p have also been carried out. Thus, in Figure 20 are shown the results for the case in
which AE(x) is modelled as 2 Gaussian random process, model 4. The perturbation
u(x}), impressed on AE(x), in this case has properties similar to the case considered in
Figure 16, where p(x} is given an identical perturbation. It is interesting to observe that
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the results corresponding to these two cases show good agreement; this is also seen in
Figure 23, '

The role of modelling diameter as a Gaussian random process, model 5, is inves-
tigated in Figure 21, As has already been pointed out, the mass and stiffness for this
model have non-Gaussian probability distributions and are lincarly dependent on each
other. Interestingly, in this case the receptance function statistics fail to reach a steady
state. In fact, the variations in statistics, closely resemble the results for the determin-
istic case shown in Figure 5. The regular behaviour observed for this model possibly
arises from the linear dependence existing between p and AF, which makes the ratio
p/AE a deterministic quantity. The behaviour of the receptance at around 12 500 rad/s,
where the function peaks and the statistical dispersion narrows, is curious. It is related
to the fact that, at this frequency, mode 10 dominates the response and 20 elements
have been used to discretize the spatial variations: i.e., a node tends to fall at each
element boundary. However, such behaviour is not seen in the other models, and it
remains unexplained for this case. Clearly, it is not amenable to an approximate
analysis using traditional SEA assumptions.

As has already been noted, the mean values of H,(w) are shown in Figures 22-24
marked by a “+ ", These all lie at broadly the same point, which is as expected since the
mean values of the subsystem properties in all the cases shown in the figures are held fixed.
However, it is clear that there are very long upper tails to the functions: at some frequencies
in Figures 13 and 15 for instance, the mean rises above the 95% probability level. These
tails only appear on both sides of the mean when studying logarithmic values, as is normal
in energy flow work. In such circumstances the mean lies well to one side of the probability
functions, and points once again to the use of geometric averaging when studying the
statistics of such flows [22]. This would, of course, imply significant changes to the
generally accepted forms of SEA.

In summary, it can be said that the statistics of power receptance functions are not
robust with respect to the details of the statistical models adopted for the system properties:
i.e., the statistics do not always tend to steady state with increasing frequency, the rate of
convergence being very susceptible to the model adopted. It is especially poor for cases
with low and medium frequency ranges, small degrees of randomness, narrow-banded or
non-Gaussian processes. Even where the statistical variations of H,;{w) and H,(w) do
reach a steady state, the measures of dispersion, namely the standard deviation and the
band enclosing 5% and 95% probability levels, do not tend to reduce with increases in
the driving frequency. In other words, despite the fact that there is a much greater
variability in the eigensolutions at higher frequencies, the dispersion in the response at
these frequencies does not reduce. This points towards significant correlations between
eigensolutions in the higher frequency ranges, and also indicates the possible invalidity of
arguments based on the central limit theorem in these contexts. It may also be related to
the constant model densities and low modal overlap factors exhibited by the stochastic rod
models used here. Finally, the probability distributions have long upper tails which cause
the arithmetic mean to be a relatively poor predictor of typical response, the geometric
mean being more useful in this respect.

10. EXTREME RESPONSES AND CRITICAL SYSTEMS

From a statistical ensemble of vibrating systems it is clearly of engineering interest
to identify the individual members of the ensemble the responses of which depart
most significantly from the mean response. Such systems can be easily identified in a
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Monte Carlo simulation study. To illustrate this, consider the coupled rod excited
by a point harmonic force with frequency o = 10 000 rad/s (1-59 kHz) acting on the first
rod at b, =1-192m (0-23L) as before. Let the individual rods be drawn for a stat-
istical ensemble generated as per the stochastic model 2 with ¢ =0-25 and « =095
with an ensemble of 10000 systems. Based on these calculations the extreme values
of the receptance and corresponding individual realizations of the system which gen-
erate them were identified. The responses were found to be H,,;, = 0-128668E-12 and
H,por = 0-166309E-03.

For the first of these cases, the subsystem critical mass profiles, associated mode shapes
in the neighbourhood of the driving frequency of w = 10000 rad/s (1-59 kHz) and the
overall behaviour of the receptance function are shown in Figures 25-27. From a careful
study of the figures, it can be discerned that neither of the two rods has a natural fre-
quency near the driving frequency, and that the mode shapes tend to have low values at
the points of coupling (g, = 2:3m, a, = 3-3m) and driving (5, = 1-192 m). In other words,
the distribution of the mass in the critical system tends to make the driving frequency an
anti-resonant frequency for the system, which, in turn, pushes the response to this extreme.
Similar, but reversed, trends are observed for the case of H\jy,-

If the determination of the extreme responses and the corresponding “optimal”
systems is alone of interest, then Monte Carlo simulation procedures are perhaps not
the most efficient methods for solving the problem. This is because the extreme
responses are essentially rare in character and hence are sensitive to the sample size
used in the simulations. Alternatively, numerical optimization schemes provide efficient
means with which to handle this problem. For the purpose of illustration again,
consider two axially vibrating rods made up of 20 piecewise uniform sections of equal
length. Let p,,, i =1.2, m = 1,20, be the mass per unit length of the ith rod in the
mth section, Other properties of the rod and the details of coupling are taken to be
identical to the mean properties considered in section 6. Again, let this system be excited
by a harmonic force with frequency w = 10000rad/s acting on the first rod at
b, =1-192m. Let it be required to determine values of p,,, i = 1,2, m = 1,20, which
lead, respectively, to the minimum and maximum of the function H(w) at
@ = 10000 rad/s. It may be recalled that in the determination of “optimal” systems based
on Monte Carlo simulations, the vibrating rods were constrained to belong to a
statistical ensemble having prescribed properties. In the present case a similar

12

€)] (b)

10} -~
E
@ 8- -
=
=]
g ok -
g 4r ™~ L
]
=

2.—

| 1 1 | | 1 | | I j -
0 1 2 3 4 5 0 1 2 3 4 5

Position (m)

Figure 25. Mass profiles for system with minimum cross-receptance function, Hy..(w); point forcing,
model 2, Monte Carlo simulation, ¢=025 a =95, «=10000rad/s, b =023L. (a) Subsystem 1,
(b) subsystem 2.
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Figure 27. Deterministic cross-receptance function, H,,(w), for system with minimum cross-receplance
function, H),.,(w); point forcing, model 2, Monte Carlo simulation, ¢ =025, & =9-5, @ = 10000 rads,
b =023L. +, Hp,, (@)

constraint also needs to be imposed on the variables p,,. This is achieved by requiring that
the total mass of the individuat rods, given by

»
m=3 lpm i=1,2 (32)

m=]

takes values in the range 3 <m,<50kg, i=1,2, along with the restriction that
0-5 < pim < 10-0 kg/m. Application of a genetic algorithm approach to this problem, with
50 generations of 50 members (see, for example, the paper by Goldberg [23]), leads to mass
distributions that give H,,,,,, = 0-4926790E-19 and H;,,, = 0:476113E-03: that is, respect-
ively, 3-82E-07% and 286-8% of the corresponding extreme results determined by using
Monte Carlo simulations. Again, the details of the optimal mass profiles and the
corresponding subsystem mode shapes and variations of the receptance functions for the
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Figure 28. Mass profiles for system with minimum cross-receptance function, H,,,,,{®); point forcing, genetic
algorithm optimization, 3 < m, < 50kg, 0-5 < p,, < 10-0 kg/m, w = 10000 rad/s, b, = 0-23L. (a) Subsystem I;
(b) subsystem 2,
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Figure 30. Deterministic cross-receptance function, H;(w), for system with minimum cross-receptance
function, H,,,(e); point forcing, genetic algorithm optimization, 3 <m, < 50kg, 0-5<p,, < 10-0kg/m,
w = 10000 rad/s, b; = 0-23L. +, Hym(o).

first of these cases are given here; see Figures 28-30. The plot of the receptance function
shows an extreme trough at the frequency of 10 000 rad/s chosen for the optimization. The
finite, although small possibility, of finding ensemble members that give rise to such
extreme behaviour indicates that the tails of the probability distribution functions
describing the various response parameters will be extremely long. Clearly such an exercise,
perhaps with use of more severe constraints for the ranges of parameters considered, might
form a useful adjunct to SEA methods when considering extremal behaviour.

This process can be extended further by optimizing the integral of H\,(w) with respect
to @ on some chosen range. Such a calculation has been carried out here for the case
of H,,,,;, over the range 6000-14 000 rad/s, and the corresponding results are shown in
Figures 31-33. From Figure 33 it can be seen that all the peaks have been reduced in
magnitude when compared to those on either side of this range. In fact, a kind of *stop”
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Figure 31. Mass profiles for system with minimum integrated cross-receptance function, min { H,,(w) dw;
point forcing, genetic algorithm optimization, 3 < < 50kg, 05 < p,,, < 10-0kg/m, w = 6000-14 000 rad/s,
b, =0-23L. (a) Subsystem 1; (b) subsystem 2.
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Figure 33. Deterministic cross-receplance function, Hy,(w), for system with minimum integrated cross-
receptance function, min [ H;(w)dw; point forcing, genetic algorithm optimization, 3 <m <50kg,
05 < p,, < 100 kg/m, o = 6000-14 000 rad/s, b, =0-23L.

band has been introduced into the receptance function. Such behaviour is, of course,
well known in structures with periodic variations in physical parameters, and Figure 31
indeed demonstrates a tendency towards alternating light and heavy sections in the mass
profiles. Moreover, the associated mode shapes show the localized large amplitudes
characteristics of such nearly periodic systems [24].

It is clear from these studies that it is possible to modify dramatically the behaviour of
a system by a choice of parameters which gives rise to suitable mode shapes and natural
frequencies. However, the mass profiles used here are extremely unlikely to arise by chance
if uniform rods are taken to be the equivalent deterministic case.

11. CONCLUSIONS

The random variability in energy flow characteristics of a system of two, coupled axially
vibrating stochastic rods has been investigated by using computer simulation techniques.
Attention has been focused on the input power receptance and coupling power receptance
functions which are intimately connected with the definition of various SEA parameters.
Exact analytical soiutions for the PDFs of the input receptances are known to be possible
for specific types of axially vibrating stochastic rods, These solutions have been used as
benchmarks to validate the Monte Carlo simulation program.

The effects of different types of stochastic variations in subsystem properties on the
probabilistic nature of the receptances have been investigated. The receptance functions
are seen to show a statistically stationary behaviour beyond a cut-off frequency in most,
but not all cases. This cut-off frequency is shown to be dependent on the spatial variation
of the excitation, and also on the details of statistical modelling of system parameters,
Contrary to expectations, the measures of dispersion associated with the responses are
found not to reduce with increases in frequency. This feature may be associated with the
constant modal densities and low modal overlap factors exhibited by the stochastic rod
models used here.

Individual members of the statistical ensemble of vibrating systems, the responses of
which deviate significantly from the average, have been identified and these illustrate the
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extremes that may be found even with small parameter variations. Alternative schemes
based on numerical optimization methods to generate systems showing even greater
extreme responses have also been outlined. In these systems, not only the natural
frequencies, but also the mode shapes, are shown to play a significant role in producing
extreme responses.

It must be stressed that the systetns studied here are very far from being general in
nature, since most engineering problems of interest to practitioners of SEA consist of more
than two subsystems, often with complex coupling topology and non-constant or high
modal overlap factors. As such, this study represents part of an ongoing program of work
directed at understanding the nature of the statistical variations in SEA predictions. Future
publications will report on progress in this area and will address problems with more
complex topology and, eventually, beam and plate based subsystems with higher and
non-constant modal overlap factors.
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