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The free vibration of strings with randomly varying mass and stiffness is considered. The
Joint probability density functions of the eigenvalues and eigenfunctions are characterized
in terms of the solution of a pair of stochastic non-linear initial value problems. Analytical
solutions of these equations based on the method of stochastic averaging are obtained. The
effects of the mean and autocorrelation of the mass process are included in the analysis.
Numerical! results for the marginal probability density functions of eigenvalues and
eigenfunctions are obtained and are found to compare well with Monte Carlo simulation
results. The randem eigenvalues, when normalized with respect to their corresponding
deterministic values, are observed to tend to become first order stochastically stationary
with respect to the mode count.

1. INTRODUCTION

The analysis of structural systems with stochastic stiffness and mass properties is currently
an active area of research [1, 2]. These problems are also of fundamental importance in
the study of linear systems under high frequency excitations by using statistical energy
analysis formalisms [3]. The determination of natural frequencies and mode shapes
constitutes a challenging class of problems in the study of stochastically defined systems.
These problems are associated with the study of random matrices and stochastic boundary
value problems. Some of the earliest works in this area of research have been by Boyce
and his associates on random strings and bars [4, 5] and by Soong and Bogdanoff on
discrete multi-degree-of-freedom systems [6, 7]. Reviews of the existing literature dealing
with this class of problems have been presented by Boyce [8], Scheidt and Purkert [9] and
Ibrahim [2]. A variety of methods based on perturbation analysis, the transfer matrix
approach and variational formulations have been discussed in these references. By and
large, the available studies on random ¢igenvalues aim at estimating the first two moments
and often succeed only in establishing bounds on them.

The eigenvalues associated with a second order stochastic boundary value problem has
been considered earlier by Iyengar and Athreya [10]. These authors have characterized the
eigenvalues in terms of zeros of the solution of an associated initial value problem. This
allows one to bring in the powerful concepts of diffusion processes to characterize the
probability density functions of the eigenvalues. This approach has been studied further
by Iyengar and Manohar [11] and Manohar and Iyengar [12], and it has been shown that,
although an exact solution of the associated initial value problem is rarely possible, for
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specific types of stochastic variations, however, the problem can be readily analyzed by
using approximate techniques. The present study is a continuation of these earlier
investigations and reports on the extension of the formulation to study the probability
density functions of the eigenfunctions. It is demonstrated that the consideration of the
joint density functions of eigenvalues and eigenfunctions requires the solution of a pair of
coupled non-linear stochastic initial value problems. Exact solutions of these equations are
again found not to be possible, but satisfactory approximate solutions are still obtainable.

2. ANALYSIS

The simplest of the eigenvalue problems which arise in the study of stochastic continuous
systems is, perhaps, the second order boundary value problem associated with the
stochastic wave equation, This equation is encountered in the vibration analysis of strings,
bars, shafts and soil layers having randomly varying mass and stiffness properties. The
eigenvalue problem in this case can be stated as finding the non-trivial solution of the
equation

d d
= {[1 +ég(x)]3£}+aztl + e/ =0, M

under the boundary conditions

y(0)=0, y()=0. 2,3

Here g(x) and f(x) are, respectively, the stochastic stiffness and mass processes which are
taken to be jointly stationary and bounded in a mean square sense. ¢ and & are parameters
such that 1 + ¢f(x)> 0 and 1 + dg (x) > 0. The independent variable x has been normal-
ized with respect to the length and, therefore, takes values in (0, 1). 4 is the cigenvalue
parameter. As a consequence of modelling mass and stiffness as random processes, the
eigensolutions, in turn, become stochastic in nature. Thus, the eigenvalues are now random
variables and eigenfunctions are random processes. The aim of the present investigation
is to formulate an analytical procedure to calculate the joint probability density function
(pdf) of L and p(x).

2.1. RANDOM EIGENVALUES

The procedure for obtaining the marginal probability distribution of eigenvalues has
already been outlined in references [10-12]. The central idea of this procedure is to seek
the solution of the stochastic boundary value problem given by equation (1)—(3) in terms
of solutions of an associated initial value problem. This, in turn, consists of forming the
solution y*(x, 1) of equation (1) for an arbitrarily chosen value of A and for the initial
conditions at x =0

y*=0, (dy*dx)=1. (4)

It must be noted that the initial conditions here are being referred to the co-ordinate x,
while in vibration literature the term “initial condition” normally refers to the time scale.
For any realization of g(x) and f(x), a family of solutions y*(x, 2) can be obtained by
solving equations (1) and (4) with 2 as a parameter. The members of this family can further
be grouped into two categories depending on whether or not they satisfy the condition
y*(1, ) =0. Those members which do satisfy this condition clearly correspond to the
eigenfunctions of equations (1)-(3). In other words, the eigensolutions of equations (1}-(3)
form a subset of a broader class solutions to equations (1) and (4) obtained for different
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values of A, The essence of the present approach is to characterize this subset of solutions
by using the known properties of y*(x, ).

Let Z,(4) denote the nth zero of y*(x, 4). The eigenvalues of equations {1)-(3) can be
defined in terms of Z,(4) as being the roots of the equation

Z,(4,) =1 (5}

This definition enables the study of 4, to be carried out in terms of the properties of Z,(4).
It is known from the Sturm-Liouville theory of ordinary differential equations that Z,(4)
are non-increasing in A [13]. The study of Z, (1) is facilitated by the co-ordinate
transformation

y*(x, Ay=r(x, 2)sin ¢(x, 1), (1+8g)dy*/dx =r(x,)icos¢(x,4). (6,7)
This leads to

% - A{%% +(1+¢f)sin? ¢}, % —14rsin 2¢[(1 +15g) —q +£f)j|,
@ =0, rO)=[l+ O] (8-11)
It follows from equation (6) that Z (1) satisfy the equation
¢[Z,(4), A] = nm. (12)

Thus the study of Z, (1) reduces to the study of the process ¢{x, A). It may be observed
from equation (8) that the right side is always positive, which implies that ¢(x, 1) is a
non-decreasing function in x and since Z,(4) is non-increasing in 4 it follows that

P[4, <A]=P[Z,(A) < 1]=Plrrn < ¢(1, 1}], (13)

where P[] denotes the probability measure. Thus, in order to find the probability
distribution function of 4,, equations (8) and (10) must be solved to obtain the pdf of the
process ¢(x, i) at x = 1.

2.2. RANDOM EIGENFUNCTIONS
The pdf of the eigenfunctions can also be characterized in terms of r(x, 1) and ¢(x, A).
For this purpose, consider the joint pdf between the nth cigenfunction and the nth
eigenvalue. An expression for this pdf can be constructed using the properties of y*(x, 1)
and ¢(x, 1) and a few standard identities of probability theory. Thus,
Py (3, x;A) =Py <y, (x) <y +dy, A <4, <A +dA]=p,; [y. x|4, = 4]p; (1)
=Py, [V X14, = 4 and x = | is the nth zero of y*(x, 1)]p; (1)
= Py, [V, X|4, = A and ¢(1, 1) =nn]p; (1)
= Pyegii, Lys x50, 114, = A1 p; (A)py(nm, L, 4). (14)
The pdf of y,(x) can now be obtained as

P, (%) = j " Py i LY X3 11 YA, = A1 p;, (2)

o p¢(mr, 1,4)
Here p,(nm, 1,1) denotes the pdf of ¢(1,4) evaluated at ¢ =nn. To evaluate the
conditional pdf appearing in the integrand of this expression, the joint pdf between y*{x, 1)
and ¢ (1, 1) needs to be determined. This, in turn, necessitates knowledge of the joint pdf
of r(x, 4), ¢(x,2) and ¢(1, i). Notice that the equation for r(x, 1} is coupled to ¢(x, 1),
while the equation for ¢ (x, 4) is independent of r(x, 4). This means that the marginal pdf

di. (15)
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of eigenvalues can be determined in terms of the solution of a first order equation, while
the consideration of the pdf of the eigenfunctions requires the solution of two coupled first
order equations.

3. STOCHASTIC AVERAGING

In order to apply the identities (13) and (14), it is necessary first to solve equations
(8)—(11). These equations constitute a pair of stochastic initial value problems, The
presence of non-linearity in these equations makes the solution procedures difficult. Only
under very special circumstances can one obtain exact solutions to these equations. One
such case arises when the condition

(1+dgCOJ[1 + ¢f (x)] = 1 (16)

is satisfied [11, 14]. A discussion of the solutions for this special case is presented in
Appendix A, where the exact solutions are used to illustrate the validity of equations (13)
and (i4). When dealing with more realistic problems, however, the analysis of equations
(8)—(11) presents considerable difficulties. One way to approach this problem is to model
f(x) and g(x) as filtered Gaussian white noise processes, and to employ the Markov
process theory to derive the Fokker-Planck equation governing the transitional pdf of the
vector (r, ¢, f, g} [15). Although the derivation of this equation is straightforward, finding
exact solutions is, however, not possible. Thus, to proceed further, approximations become
necessary. In this context, it may be recalied that one of the powerful approximation
techniques in random vibration applications has been the method of stochastic averaging
{16]. This technique is applicable to initial value problems involving weak, broadband
stochastic coefficients and results in a diffusion process approximation to the solution. The
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Figure 2. The probability density function of 4,; n =1, 10; « =208, ¢ =0-2; legend as in Figure 1.

averaging procedure is a combination of “temporal” and ensemble averaging, and aims
at eliminating rapid oscillations from the dominant slowly varying components and also
at replacing randomly fluctuating components by equivalent delta correlated processes.
The resulting simplified equations can often be solved within the framework of the Markov
process theory. It is intended here to investigate the scope of this technique in analyzing
equations (8)~(11) and also in the further analyses of the random eigenvalues and
eigenfunctions.

In the further analysis it is assumed that ¢ = 0. This means that the randomness in the
resulting problem is taken to arise solely out of random variations in the mass process f(x).
Under the assumption that ¢ <€ 1 and also that the correlation length of f(x) is much less
than the relaxation lengths of the processes r(x) and ¢(x), equations (8)—(11) can be
analyzed by using the stochastic averaging approximations. For this purpose it is found
advantageous to transform r and ¢ as

rix, 4} =expla(x, 4)], @(x, A)=Ax +0(x, 1). (17, 18)
This leads to
da | . e _,
= i (x)sin 20 +4x), =5eAf(x)[1 —cos 2(6 + 1x)],

al)=Inr, O(0)=0. (19-21)

This pair of equations can now be simplified by using the stochastic averaging theorem
[16). The details of this derivation are presented in Appendix B and, as has been shown
there, the solution vector can be approximated by a two-dimensional Markov process
which satisfies the Tto equations

da =y dx + o, AW, (x),  d& =2, dx + eop d W (). (22)
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The solution of this pair of equations is straightforward and one obtains

a(x)=e’mx + €0, £, (x) + 4, B(x) = ’myx + €6 &,(x),

G(x)= j dwi(s), &(x)= JI dW;(s). (23-26)
0 0

Notice that the processes & (x} and &,(x) are independent and Gaussian distributed.
Consequently, in the present approximation the processes a(x) and #(x) become stochas-
tically independent Gaussian random processes. Equations (23) and (24) lead to

Y*(x, A) = rpexpleim, x + €0, & (X)) sin [Ax + e2myx + 6,6, (x)]. 27N

It may be noted that, im,_, y*(x, 1) = sin Ax, which is as it should be.
The probability distribution function of the eigenvalues can now be determined by using

equations {13) and (24). This leads to
[mr - :;,_ czmz]
PlA, < Al =Ple’my + can&y(1) 2nn — Al =1 F,[ 2, (6)dE 28
Here p,, (£) represents the Gaussian density function of &,(1). In turn, the probability
density of 4, is given by

d [m: — jﬂ; tzmz]
P =1 P de. 9)
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Furthermore, by using equations (24) and (18) it can be shown that
pelnm, 2, 1) =p,;. [nj”;ea%_ezrm] / €63, (30
v order to determine py. 4 (¥, nn|d, = 1), a dummy variable
z*(x, Ay =explelmx 4 e, & () cos [Ax + €2myx + o5, E,(x)] 30
- introduced. By using this equation together with equation (27) and the relation
¢ (1, ) =24+ my+ eo5,6,(1) (32)
* ¢an be shown that
" e pubab)
cwk o Eanoh(yt+ 2
Eo=(lea, D [—*mx +log/y2+27, & =(leon)[nm — 4 — ?m,),
& = (l/eoy)[tan~"' (y/z) + 2kn — €*myx — Ax]. (33-36)

Py sl (,V, nnl/l,, = j,) =

tne function p(¢,,, &, &5 ) appearing in equation (33) represents the three-dimensional
"~ Gaussian density function of the random variables &, (x), £ (x) and &,(1). Finally,
©_ joint pdf of y,(x) and A, can be determined by substituting equations (29), (30) and
54i—(36) into the identity (14).
As has already been pointed out, the equation of ¢(x, 1) is uncoupled from r(x, i). It
. of interest to note that the equation for r(x, 1) can be integrated directly to obtain

rix,A)=r, exp{—_éEé J‘If(s) sin {8(s) + 24As] ds } (37)
0
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This solution in itself is, however, of limited use in the study of the random eigenfunctions,
since the right side still contains 8(s) for which, no exact solution exists, Nevertheless,
equation (37) provides a clue that the solution of r(x, i) can be sought in the form
r{x, A) =expla(x, 1)].

In summary, it is noted that the application of a stochastic averaging method to the
initial value problem given by equations (8)—(11) converts the original stochastic eigen-
value problem into a problem involving memoryless transformation of Gaussian random
variables. In the opinion of the authors, this is a significant simplification of the problem.
Furthermore, a distinguishing feature of the solutions obtained here, as compared with thc
perturbational approaches discussed, for example, by Soong and Bogdanoff [6], Boyce 1
and Scheidt and Purkert [9], is that the present approach leads directly to the esii '
of the probability distribution functions of the eigensolutions, while the expansion mett
lead to the estimates of the moments of the eigensolutions and, consequently, the exi
of the probability density functions can only be obtained with additional statistical cicau: -
approximations.

4. NUMERICAL RESULTS AND DISCUSSION
For the purpose of illustration, a string the mass per unit length of which is madeiie:
as 4 stationary random process with autocovariance given by
Ri(x), %) = exp[—at|x; — x,[] (38

is considered. In Figures 1 and 2 are shown the pdf’s of the first ten eigenvalues obiains
for the case of « = 20-8 and ¢ = 0-1 and 0-2, calculated in accordance with equation (29
As can be observed, the density functions are centered around the correspomncic.
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Figure 5. Contours of the probability density function of the first eigenfunction; « = 20-8, ¢ =0-1. —
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Figure 6. Contours of the probability density function of the second eigenfunction; « = 20-8, ¢ = 0-1; legend
as in Figure 5.

deterministic solution of 4, = nn. For larger ¢ and for higher mode counts the “overlap”
between the probability density functions of neighbouring eigenvalues is observed to
increase. With a view to studying the distribution of the higher eigenvalues, the pdf’s of
the first 25 eigenvalues have been obtained for the case of « = 20-8 and ¢ =0-1 and 0-2.
The contours of the probability distributions as a function of the mode count are shown
in Figures 3 and 4 for different values of the probability measure P. Notice that in these
plots the eigenvalues have been normalized with respect to the corresponding deterministic
value: that is, the state variable in these plots is 2,/an. These figures also show the results
of digital simulations with 2000 samples. In the simulation work the mass process is taken
to be Gaussian distributed. The realizations of this process are computed by passing
samples of Gaussian white noise process through a first order linear filter: that is, the
samples of f(x) are obtained by numerically solving the equation

df dx + af = {(x). (39)

Here {(x) is a Gaussian white noise process with strength 2a. The calculation of the sample
eigenvalues is based on numerically searching the poles of the tip receptance function
(17, 18]. For this purpose, each realization of the string is divided into 30 piece-wise
uniform sections of equal length, and the receptance function is evaluated by using the
transmission matrices of the individual sections.

It may be observed from Figures 3 and 4 that, for the parameter values considered, the
theoretical results compared very well with the simulation results. As might be expected,
the accuracy of the theoretical results is found to be better for smaller values of €. An
interesting feature to be observed in these figures is that the probability contours tend to
constant values beyond aboult the second or third mode count. This, in turn, implies that
the variable 4,/nm tends to become stochastically stationary with respect to the mode index
n and also that all the first order statistics, such as the mean and standard deviation, of
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the eigenvalues A, are linearly proportional to n. In this context it may be recalled that
the modal spacing for strings with uniform properties remains constant throughout the
entire frequency axis. However, this property does not hold good for non-uniform strings.
In the present case, the modal spacing S, is a random variable and its average value is given
by

(8,0 = [Aui1 = 4> = + DA, 1 (1 4+ DD — nl4,/n])- (40)

In view of the observation that, for large n, {4,/an remains constant with respect to n,
it follows that

{8,> = {[4,/n]> = constant. (41)

This means that the average modal density for the random strings considered in this study
remains constant along the frequency axis. Further work on the joint pdf of distinct
eigenvalues is necessary before the question of the higher order moments and the possible
stationarity of the pdf of S, with respect to # can be analyzed.

The contours of the theoretical probability density functions of the first two eigenfunc-
tions as a function of position x and for ¢ =01 and & = 20-8 are shown in Figures 5 and
6. The contours are constructed for ten different values of the probability density function
(pdf). While reading these plots it may be noted that the pdf’s of the eigenfunctions are
unimodal in nature. Clearly, the density functions are centered around the corresponding
deterministic solutions. Notice that at x = 0 and x = 1 the functions degenerate into Dirac
delta functions centered at zero. The spiky nature observed in these figures, especially near
the boundaries, arises due to the aliasing problems occurring in plotting the contours and
is not present in the actual solution. Given the approximate nature of the theoretical
solution it is desirable to compare the solution with digital simulation results. For this
purpose, four sections along the length of the system which roughly span the antinode and
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Figure 7. Histogram of the second eigenfunction; bars are simulated results and extended lines are Pl
solutions. L x=05 ——-x=044; —-—-— ,x =038, —--—-- -, x =032
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node of the second eigenfunction were selected. The simulated histograms of the second
eigenfunction at these sections with 2000 samples are compared with the corresponding
theoretical solutions in Figure 7. The procedure for simulating the realisations of the
eigenfunctions is as described in reference [18]. The agreement between the simulation and
theoretical results is again found to be satisfactory in this case also.

Finally, it must be noted that no assumption has been made about the probability
distribution of f(x) in obtaining the analytical results based on the stochastic averaging
approximation. In fact, knowledge of the pdf of f(x) is not needed for the application of
the averaging theorem. Thus, irrespective of the actual distribution of f(x), one always
obtains Gaussian approximations for the processes a(x, 1) and ¢(x,1) as given in
equations (23) and (24). This, in turn, automatically fixes the form of the probability
distribution functions of the eigensolutions, although the parameters of these distributions
can still vary with changes in the mean and autocorrelation of £(x). In this context it must
be emphasized that the identities derived in equations (13) and (14) crucially depend on
the fact that ¢(x, A) is non-decreasing with respect to x. Thus, the fact that ¢(x, 1) is
Gaussian in the averaging approximation is indicative of a limitation of the analysis. It
may also be noted that in the simulation work, and also in the discussion presented in
section 3, the process f(x) is taken to be a Gaussian random process. Consequently,
P[1 + ¢f (x) < 0] # 0, which, in view of the fact that f(x) represents the mass process, is,
strictly speaking, inadmissible. Also, the stipulation that ¢(x, 1) be non-decreasing with
respect to x again becomes violated on accout of this assumption. The resulting error in
the results can, however, be expected to be small if ¢ < 0-25.

5. CONCLUSIONS

A new procedure for the determination of the joint pdf of the eigenvalues and
eigenfunctions of a second order stochastic boundary value problem is developed. It is
shown that the joint pdf can be characterized in terms of the solutions of a pair of
stochastic initial value problems. The validity of the formulation is illustrated with the help
of a special example for which the exact joint pdf of eigenvalues and cigenfunctions is
obtainable by using alternative methods. An approximate procedure based on the theory
of stochastic averaging is outlined for the determination of the pdf of eigensolutions for
strings with random mass variations. The performance of this procedure for the calculation
of the pdf of eigenvalues and eigenfunctions is examined with the help of digital simulation
results. For the parameter values considered, the theoretical solutions are shown to
compare well with the corresponding simulation results. Tt is observed from the numerical
results that the first order probability distribution functions of the eigenvalues normalized
with respect to their corresponding deterministic values tend to become stationary with
respect to the mode count.
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APPENDIX A

Consider the special case in which the processes g(x) and f(x) satisfy the condition
[14+ g1 +ef(x)]=1. (Al)

In this case equations (8) and (9) yield
P(x)=Ax +cl '['f(s)ds, r(x) = ry. (A2)

0
This further leads to
P*(x, A) = rysin [Ax +el j f(s) ds} (A3)
0

By using the condition y*(1, 1) =0, the expressions for the eigenvalues and eigenfunc-
tion can now be obtained, respectively, as

by=nnf/(l+cF),  p(x)=sin[i,(x + F.)], (A4, A5)

where

F = J f)ds,  F= f"f(s) ds. (A6)
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Given the knowledge of the joint density of the random variables F, and F,, the joint
density of the nth eigenfunction and nth eigenvalue can easily be obtained by applying
the rules of transformation of random variables to equations (A4) and (AS5). Thus, if it
is assumed that F, and F, have zero mean and are jointly Gaussian, it is straightforward
to show that

@ —1
A= k
p},,g,, (y ) kzz_mgzﬂo',o'x\/(l _O_%x)\/(l_yz)exp[z(] _O_%x)
2 2
e ]
where
-x 1 . =1 nn
fFT*a[S"‘ Yy 4 2kn), fl——€~+a~,
oi= <I J' )/ o) du dv>, 1= <f j S )/ @) du dv>,
0 Jo 0 Q
o= — <j'ff(u)f(u)dudv>- (AS-A12)
616, \Jo Jo

Here { > denotes the mathematical expectation operator. The marginal pdf of 4, can be
obtained directly from equation (A4), and this pdf can be shown to be given by

ni —1/nn 1}2
. = — =} L Al
P (%) ,mzﬂmzexp[m(Q1 )] (A1)

It is important to note that the probability density functions given in ¢quations
(A7)Y{(A13) have been obtained without taking recourse to the identities derived in
equations (13) and (14). It is of interest to ascertain that the application of these identitics
also lead to the same solutions. Thus equations (13) yields

"]

PlL, < Al=Pn <A1 +eF)]=1— .L \/lz_n exp[—%zi] du.  (Al4)

Upon differentiating this function with respect to i, the pdf of A, can be obtained, which,
as might be expected, agrees with the pdf derived in equation (A13}. In order to apply the
identity (14), consider the joint pdf of y*(x, A) given by equation (A5) and ¢(1, 1) given
by

¢, ) =A[1 +eF). (A15)
It follows that

(1, 3) = 1 —1/nn —AY
Pe T, s ‘\/Ena,d xp 201\ €l ’

£ 1 —1
T N /'i." = A =
Proan =)= L e JA =ty 0 =9 sk
x {f—z i —ZG‘J'I‘}]. (A16)
O'_‘, O'T al a.\'

Here f, and f, are as defined in equations (A8) and (A9) respectively. Substitution of
equation {A16) and p; (1) obtained by using equation (A14) into the identity (14) leads
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to the joint pdf of y, and i, and the resulting expression, again as might be expected, is
identical to the pdf obtained in equation (A7) by alternative means.

APPENDIX B
By using the notations
Xi(x)=alx), Xx)=08(x), Xo=a0), Xyn=0(0),
gilx X, f(x)]= —0-54f(x) sin 2(8 + ix), 2s[x, X, FO) =054 (x)[1 — cos 2(8 + Ax)]
(B}
equations (19)+21) can be recast as
X =glX, x,f(x), X(0)=X. (B2)

The prime here denotes the derivative with respect to x. This equation is in a form suitable
for the application of stochastic averaging theorem (see the paper by Roberts and Spanos
[16]). The solution process X{(x) is now approximated by a two-dimensional Markov
process which satisfies the fto equation

dX =e’m(X)dx + ea(X) dW(x). (B3)

The symbol W(x) denotes a two-dimensional vector of independent Brownian motion
processes with unit variances. The drift vector m and diffusion matrix ¢ are given by

m=T% JO E{(0g/0X)(g%):s.}dr.  oo*=T" _ro E{g.g¥, }dn,  (B4)

- —Goo

where (*) denotes matrix transposition and E{ } the mathematical expectation. Further-
more, T® is an averaging operator in x given by

70 = lim (%) j "Odx, (BS)

*o
with the integration being performed on explicit x. Upon substituting equation (B1) into
equation (B4), the drift and diffusion coefficients can be shown to be given by

,12 w© AZ o0 12
m = ?J R(t)cos 24t dr, oy = [EJ R (t)cos 24z d‘t:l )
4] 0

RS PR A2 [ 112
my=—7 J; R(7) sin 247 dz, 622=[I.[ R(r)dr + T J_ Ry{t) cos 24z df:l ;

O = Gz[ = 0 (BG)

Here R/ () denotes the autocorrelation function of the process f(x). Thus, the pair of
simplified equations for further analysis is given by

dX, = €'m, + eo,) AW, (x), dX, = e’'my + eay AW, (x). (B7)



