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The problem of estimating parameters of nonlinear dynamical systems based on
incomplete noisy measurements is considered within the framework of Bayesian filtering
using Monte Carlo simulations. The measurement noise and unmodelled dynamics are
represented through additive and/or multiplicative Gaussian white noise processes.
Truncated Ito–Taylor expansions are used to discretize these equations leading to
discrete maps containing a set of multiple stochastic integrals. These integrals, in
general, constitute a set of non-Gaussian random variables. The system parameters to be
determined are declared as additional state variables. The parameter identification
problem is solved through a new sequential importance sampling filter. This involves
Ito–Taylor expansions of nonlinear terms in the measurement equation and the
development of an ideal proposal density function while accounting for the non-Gaussian
terms appearing in the governing equations. Numerical illustrations on parameter
identification of a few nonlinear oscillators and a geometrically nonlinear Euler–Bernoulli
beam reveal a remarkably improved performance of the proposed methods over one of
the best known algorithms, i.e. the unscented particle filter.
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1. Introduction

Dynamic state estimation of dynamical systems is of central importance in the
areas of structural vibration control and system parameter identification. The
pioneering work of Kalman (1960) provides the exact solution to the problem of
state estimation in linear dynamical systems with Gaussian additive noises. The
filter is formulated in the time domain, is recursive in nature, implemented in
real time, and the filter estimate minimizes the mean square error. The filter is
extensively studied and has found widespread applications in the field of signal
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S. J. Ghosh et al.26
processing. Nevertheless, its inability to treat nonlinearity and/or non-Gaussian
noises impairs its applicability to most problems of practical importance. In the
context of mechanical systems, such problems are often characterized by their
large dimensionality (possibly owing to a finite-dimensional projected semi-
discrete form of an infinite-dimensional mathematical model) and diverse forms
of nonlinearity (possibly resulting from deformation geometry or material
inelasticity). Further complications may arise through the possible emergence of
non-Gaussian terms in the temporal discretization of the semi-discrete form,
which mostly appears as a system of stochastic differential equations. There are
essentially two alternative strategies in the existing literature to treat at least
some of these difficulties. The first strategy employs some form of linearization to
approximate the given nonlinear state-space model and subsequently apply the
Kalman filter to the linearized equations (e.g. Saito & Hoyshiya 1984; Imai et al.
1989; Ghanem & Shinozuka 1995; Brown & Hwang 1997; Ghosh et al. 2007). The
second strategy, on the other hand, aims at numerically treating the posterior
non-Gaussian probability density functions (pdfs) of the system states.
Interestingly, recursive formulae for the evolution of such posterior pdfs
conditioned on available measurements are derivable in an exact form. These
are valid, in general, for nonlinear systems and Gaussian or non-Gaussian noises
that could be additive or multiplicative in nature (Ristic et al. 2004). These
formulae contain a large number of multidimensional integrals that are often
computationally intractable. Consequently, the formulae remain essentially
formal in nature. On the other hand, such recursive relations may form the basis
of numerical strategies to tackle the problem approximately. This, indeed, has
been the focus of a wide range of numerical techniques styled variously as
particle filters, Monte Carlo filters, population Monte Carlo algorithms and
sequential Monte Carlo sampling methods. In these methods, the posterior pdf is
represented by a set of sample realizations of the states (obtainable using Monte
Carlo simulations) along with a set of associated weights, and the algorithm
ensures that these weights evolve recursively as the measurements are
assimilated sequentially (Gordon et al. 1993; Tanizaki 1996; Merwe et al. 2000;
Doucet et al. 2001; Liu 2001; Ristic et al. 2004; Cappé et al. 2007). A particle
filtering technique of specific relevance to the present study is the sequential
importance sampling (SIS) filter (Doucet et al. 2000). This filter is based on
importance sampling from a proposal density. The choice of this density
function itself constitutes an important step in the implementation of the
method. For the special class of filtering problems involving nonlinear process
equations and linear measurement models (with only additive Gaussian noises),
it has been shown that the ideal importance sampling pdf (ispdf ), which
minimizes the variance of weights conditioned on previous states and
measurements up to the current time, has a Gaussian form.

Parameter identification of nonlinear structural dynamical systems has attracted
extensive research attention. A wide variety of identification strategies have been
formulated in time and frequency domains. Worden & Tomlinson (2001) and
Kerschen et al. (2006) provide extensive reviews of these developments. However,
these reviews do not cover the methods based on dynamic state estimation
techniques. Indeed, the application of particle filters to problems of relevance in
structural dynamics is not yet widely researched. A few studies in the recent years
have been done by Ching et al. (2006), Manohar & Roy (2006), Namdeo &Manohar
Proc. R. Soc. A (2008)



27SIS filter for nonlinear system estimation
(2007) and Sajeeb et al. (2007, submitted). The application of the Bayesian inference
approach for model selection in the context of nonlinear dynamical system
identification has been considered by Kerschen et al. (2003).

We presently consider the problem of state estimation and parameter
identification in nonlinear dynamical systems when the measurements are
noisy and nonlinear functions of the system states. The unmodelled dynamics in
the formulation of process equation is represented as additive and/or multi-
plicative white noise vector processes (i.e. formal derivatives of Weiner vector
processes). The process and measurement equations are discretized into maps via
Ito–Taylor expansions. The discretization involves a set of multiple stochastic
integrals (MSIs) that are, in general, mutually dependent, zero-mean, non-
Gaussian random variables (local martingales). The system parameters to be
identified are treated as auxiliary state variables, thereby converting the
parameter estimation problem into one of state estimation. Measurements are
allowed to be sufficiently smooth nonlinear functions of the system states. Thus,
for instance, the reaction transferred to the support in a nonlinear oscillator is a
nonlinear function of displacement and velocity processes; similarly, strains
measured on a beam or a plate, undergoing large dynamic deformations, would
be nonlinear functions of the discretized displacement and velocity fields. The
problem at hand is then characterized by the presence of non-Gaussian random
variables in the discretized equations, and a nonlinear functional relationship
between the measured quantities and the state variables. These features pose
difficulties in developing sequential Monte Carlo schemes for the filtering
problem, and the present study aims at addressing these difficulties. Specifically,
we propose a strategy to select an ideal importance sampling density function for
this class of problems. This function is given by aweighted sumofmultidimensional
Gaussian density functions and is shown to be asymptotically exact as the
nonlinearity in the measurement model tends to vanish. Furthermore, subject to
nonlinear terms being sufficiently smooth, the formal accuracy of the expansion
improves as the number of terms in the truncated Ito–Taylor expansion increases.
Byway of illustration, we consider a few examples from low-dimensional dynamical
systems and the problem of state and parameter estimation of an Euler–Bernoulli
beam undergoing large-amplitude (geometrically nonlinear) oscillations, with
measurements being made on bending strains at a set of points on the beam. The
proposed method is shown to perform significantly better than the unscented
particle method (Merwe et al. 2000; Ristic et al. 2004) in terms of both the
numerical accuracy and the computational time.
2. Governing equations

We consider dynamical systems governed by a set of stochastic differential
equation (SDE) of the generic form

duðtÞZ ~aðuðtÞ;ud ;f; tÞdtC~bðuðtÞ;f; tÞdBIðtÞ; uð0ÞZu0; ð2:1Þ
where uðtÞ2Rn is the state vector; ud 2Rf is the deterministic forcing
function; f2Rp is the unknown vector of system parameters to be identified;
~a : Rn!Rf !Rp!R/Rn is the drift vector or the state transition function;
~b : Rn!Rp!R/Rn!Rr is the diffusion coefficient matrix; BIðtÞ2Rr is a
Proc. R. Soc. A (2008)
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vector of standard Brownian motion processes; and u0 2Rn is the vector of
initial conditions (possibly random, but assumed to be independent of dBI(t)).
BI(t) is taken to account for any unmodelled dynamics (while being questionable,
this is standard in the particle filters literature). To facilitate determining the
vector f, we declare the elements of f as additional states evolving according to
the equation

dfðtÞZsfdBIIðtÞ; fð0ÞZf0; ð2:2Þ
where sf 2Rp!Rp is a diagonal matrix of the noise intensities; BIIðtÞ2Rp is
a vector of increments of standard Brownian processes independent of BI(t); and
f0 2Rp is modelled as random variables independent ofu0, dBI(t) and dBII(t). The
time dependence of f, as in equation (2.2), is an artefact to convert the problem of
parameter estimation to one of state estimation.Now,we define the augmented state
vector xðtÞZ ½uðtÞT;fðtÞT�T and combine equations (2.1) and (2.2) to obtain

dxðtÞZaðxðtÞ;ud ; tÞdtCbðxðtÞ; tÞdBðtÞ; xð0ÞZx0; ð2:3Þ
wherexðtÞ2Rs,withsZnCp is theaugmented statevector;a : Rs!Rf !R/Rs

is the augmented drift function; BðtÞZ BT
I ;B

T
II

� �T
2Rn1 , with n1ZrCp, is

the augmented vector of standard Brownian motion processes; b : Rs!R/
Rs!Rn 1 is the augmented diffusion coefficient matrix; and x0 2Rs is
the augmented initial condition vector (assumed to be independent of B(t)).
The implementation of the state estimation algorithm generally requires that the
governing state equation (2.3) be discretized in t. We presently accomplish this
by using the Ito–Taylor expansion (Kloeden & Platen 1992). Thus, we consider
discretization times t0Z0! t1! t2!/! tj!/with DjZ tjC1K tj ; jZ0, 1, 2,..
In order to stay focused on the basic elements of the method, we presently adopt
a uniform step size DjZD. A 1.5 local-order strong Ito–Taylor expansion of the
multidimensional SDE (2.3) has its ith component given by

x ikC1 Z x ik CaiDC
1

2
L0aiD2C

Xs
jZ1

bi; jIj CL0bi; jIð0; jÞCLjaiIðj;0Þ
� �

C
Xs

j1; j 2Z1

Lj1bk; j 2Iðj1; j 2ÞC
Xs

j1; j2; j3Z1

Lj1Lj2bk; j3Iðj1; j2; j3Þ k Z 0; 1; 2;.; ð2:4Þ

where the operators are given by

Lr Z
Xn
jZ1

b j; r
v

vx j
and; ð2:5aÞ

L0 Z
v

vt
C
Xn
jZ1

aj
v

vx j
C

1

2

Xs
rZ1

Xn
i; jZ1

br ; ibr ; j
v2

vxi vxj
: ð2:5bÞ

The quantities Ij ; Iðj;0Þ; Ið0; jÞ; Iðj1; j2Þ and Iðj1; j2; j3Þ appearing in equation (2.4) are
known as MSIs. They are given by

Iðj Þ Z

ðtkC1

tk

dBj
t; Ið0;jÞ Z

ðtkC1

tk

ðt1
tk

ds dBj
t1

and Iðj;0Þ Z

ðtkC1

tk

ðs1
tk

dBj
s ds1; ð2:6Þ

Iðj1; j2Þ Z

ðtkC1

tk

ðt1
tk

dBj1
t2
dBj2

t1
and Iðj1; j2; j3Þ Z

ðtkC1

tk

ðt1
tk

ðt2
tk

dBj1
t3
dBj2

t2
dBj3

t1
: ð2:7Þ
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29SIS filter for nonlinear system estimation
For a given k, the MSIs constitute a set of zero-mean random variables that are
mutually dependent and non-Gaussian in general. The lower-order MSIs, viz. Ij,
I( j,0) and I(0, j ), may be shown to be jointly Gaussian while the higher-order

MSIs, Ið j1;j2Þ and Ið j1; j2; j3Þ, are non-Gaussian. We refer to Kloeden & Platen (1992,

pp. 351–356) for the details of the evaluation of MSIs. Thus, the discretized
version of equation (2.3) may be cast in the form

xkC1 Zakðxk;udk ÞCbkðxk;udk Þwk Cckðxk ;udk Þjk; ð2:8Þ
where ak 2Rs!Rf /Rs; bk 2Rs!Rf/Rs!Rn2 ; ck 2Rs!Rf/Rs!Rn3 ;
wk 2Rn2 ; and jk 2Rn3 . The explicit dependence on time has been suppressed in
equation (2.8) for notational conciseness. While wk contain lower-order MSIs that
are strictly Gaussian (with wk 2Rn2 wN ½M1;C1�;M 1Z 0f g), jk is the set of
higher-order non-Gaussian MSIs. It may be shown that elements of jk are
expressible as nonlinear functions of a set ofGaussian randomvariables, denoted by
the vector ak. The joint distribution of the random variables wk and ak is
determinable, and we illustrate the relevant details through specific examples later
in this paper.

The identification of f is based on a set of measurements made on functions of
the system states. Such measurements are invariably via the sampling of the
system response at a set of discrete time instants. We assume that the sampling
instants coincide with the discretization times 0! t1! t2!/! tj!/ used in
discretizing the process equation (2.3). Accordingly, we postulate a model for the
measurement given by

yðtkÞZh½xðtkÞ; tk �Cq½xðtkÞ; tk�mk or yk ZhkðxkÞCqkðxkÞmk ; k Z 1; 2; 3;.;

ð2:9Þ
where yk 2Rm; hk : R

s!R/Rm; qk : R
s!R2Rm!Rn4 ; and mk 2Rn4 .

Moreover, mk, kZ1, 2,., is a sequence of independent vector-valued Gaussian
random variables with zero mean and given covariance. These random variables
represent the effect of measurement noise and unmodelled mechanics of the
problem in relating measurement yk to the system state vector xk. The functions
hk(xk) and qk(xk) are, in general, nonlinear.

Equations (2.8) and (2.9), taken together, constitute the governing equations
for the estimation of the states. We now introduce the vector sequences x0:kZ
{x 0, x1, ., xk} and y1:kZ{y1, y2, ., yk}. The problem is then to determine the
multidimensional posterior pdf p(x 0:kjy1:k) and the filtering density p(xkjy1:k).
Using p(xkjy1:k), one may readily determine the moments of interest (e.g. the
mean and the covariance of xk conditioned on y1:k). A formal solution to this
problem is available (see Ristic et al. 2004). It consists of the following pair of
equations corresponding to the prediction and updating steps:

pðxk jy1:kK1ÞZ
ð
pðxk jxkK1ÞpðxkK1jy1:kK1ÞdxkK1 and

pðxk jy1:kÞZ
pðyk jxkÞpðxkjy1:kK1ÞÐ
pðyk jxkÞpðxkjy1:kK1Þdxk

:
ð2:10Þ

The implementation of these equations is, however, not feasible in most cases as
they involve a large number of multidimensional integrals with non-Gaussian
pdfs in the integrand. Consequently, one resorts to either approximate analytical
schemes or numerical solutions based on Monte Carlo simulations.
Proc. R. Soc. A (2008)
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3. State estimation using the sequential importance sampling filter

The SIS filter is a widely used method for dynamic state estimation via Monte
Carlo simulations. We first present the salient features of this method and
indicate its limitations, which the present study offers to overcome. Consider the
problem of evaluation of the expectation

I ½Jk �ZEp½Jkðx0:kÞ�Z
ð
Jkðx 0:kÞpðx0:k jy1:kÞdx0:k ; ð3:1Þ

using Monte Carlo simulations. Here, Ep[$] denotes the expectation with respect
to the pdf p(x0:kjy1:k). As there is no straightforward way of drawing samples
from p(x0:kjy1:k), we rewrite equation (3.1) as

I ½Jk �Z
ð
Jkðx0:kÞ

p x0:k jy1:kð Þ
p x0:k jy1:kð Þ p x0:k jy1:kð Þdx0:k : ð3:2Þ

Here, p(x0:kjy1:k) is a valid pdf to be selected, so that p x0:k jy1:kð ÞO00
p x 0:kjy1:kð ÞO0 (i.e. p is absolutely continuous with respect to p). While pjp is
the Radon–Nikodym derivative, p is the ispdf or the proposal density function. It
follows that:

I Jk½ �ZEp Jkðx0:kÞ
p x0:kjy1:kð Þ
p x0:kjy1:kð Þ

� �
ð3:3Þ

and an estimate of this integral is given by

Î N ½Jk �Z
1

N

XN
iZ1

Jkðxi;0:kÞ
p xi;0:k jy1:k

� �
p xi;0:k jy1:k

� � ; ð3:4Þ

where xi ,0:k denotes the ith sample drawn from the ispdf p(x0:kjy1:k). Equation
(3.4) can be recast as

Î N ½Jk �Z
1

N

XN
iZ1

Jkðxi;0:kÞ ~W ðxi;0:kÞ; with ~W ðxi;0:kÞZ
W ðxi;0:kÞPN

iZ1

W ðxi;0:kÞ

and W ðxi;0:kÞZ
pðy1:k jxi;0:kÞpðxi;0:kÞ

pðxi;0:kjy1:kÞ
:

ð3:5Þ

In addition, by choosing the ispdf in the form

p x 0:k jy1:kð ÞZp x0:kK1jy1:kK1ð Þp xk jx 0:kK1;y1:kð Þ; ð3:6Þ
the weights W(xi,0:k) may be shown to be recursively computable as

W ðxi;0:kÞZW ðxi;0:kK1Þ
p yk jxi;k

� �
p xi;kjxi;kK1

� �
p xi;k jxi;0:kK1;y1:k

� � : ð3:7Þ

The implementation of the filter begins by assigning the value of 1/N to all
the weights at kZ0. However, given that weights are generated through a
multiplicative scheme (3.7) and that they must be bounded, most weights,
excepting one, go to zero as k increases. There is thus a gradual depletion in
the number of samples with distinct values, and this compromises the ability
Proc. R. Soc. A (2008)



31SIS filter for nonlinear system estimation
to assimilate further measurements. Although using a very large N could
address this issue in principle, it is impracticable. An alternative strategy
involving a resampling step is implemented in which, at every k, an effective
sample size, given by

Neff Z
1PN

iZ1

W xi;k

� �� �2 ; ð3:8Þ

is evaluated. Note that NeffZN if all weights are equal and NeffZ1 if all
weights excepting one are zero. Thus, when the effective sample at any time
step falls below a threshold Nthres, a step involving resampling is implemented
with a view to arresting the depletion of samples. The performance of the SIS
filter crucially depends upon the choice of the ispdf p(xkjxi,kK1, yk). Doucet
et al. (2000) argue that the ispdf given by pðxkjy1:k ; xi;0:kK1ÞZpðxkjyk ; xi;kK1Þ
minimizes the variance of the weights conditioned on x0:kK1 and y1:k. This
optimal ispdf is, in general, not determinable. However, it can be shown that,
when the process equation has additive Gaussian noise terms and the
measured quantities are linear functions of the system states with the
measurement noise being additive Gaussian, the optimal ispdf is also
Gaussian. Thus, when the process and measurement equations are given,
respectively, by

xk Z f ðxkK1ÞCnk ; n
keN ½f0gnn!1;Sn� and

yk ZHxk Cwk ; w
keN ½f0gnw!1Sw�;

ð3:9Þ

the ideal ispdf is Gaussian, with mean Mk and covariance matrix S given by

M k ZS SK1
v f ðxkK1ÞCHTSK1

w yk
� �

and

SK1 ZSK1
v f ðxkK1ÞCHTSK1

w H :
ð3:10Þ

Owing to the non-availability of an analytical form of the ispdf in most cases,
several approximate methods have been proposed (Doucet et al. 2000).
However, each of them has specific disadvantages, e.g. a fixed pdf does not
account for either process or measurement dynamics, the prior pdf does not
account for the current observation, local linearization of the observation
function relies on the accuracy of linearization, extended Kalman filter–particle
filter and unscented particle filters (UPFs) are computationally expensive
and depend on the accuracy of the extended and unscented Kalman filters,
respectively.

In the present study, while the process equation (2.8) is allowed to have
multiplicative Gaussian noise terms as well as non-Gaussian random noise terms,
the measurement equation (2.9) may have terms that are nonlinear in the
system states and multiplicative Gaussian noise terms. Clearly, these equations
do not conform to the form given in equation (3.9) and, therefore, the problem
of determining the optimal ispdf for this case requires the development of
newer strategies.
Proc. R. Soc. A (2008)
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4. An optimal ispdf based on the Ito–Taylor expansion

In order to implement the SIS filtering with the ideal ispdf for the problem at
hand, we need to accomplish two tasks: (i) to determine the functional form of
the ispdf and (ii) to develop a strategy to draw samples from this ispdf. In order
to determine the ideal ispdf, we note that

pðxkjyk ;xi;kK1ÞZ pðxk jyk ;xi;kK1ÞZ
pðxk; yk jxi;kK1Þ
pðyk jxi;kK1Þ

: ð4:1Þ

For the process equation (2.8) and the measurement equation (2.9), the pdfs
p(xk, ykjxi,kK1) and p(ykjxi,kK1) are non-Gaussian and their functional form is not
readily determinable. Consequently, drawing samples from the ideal ispdf would not
be straightforward.We propose herein a strategy to overcome these difficulties in an
approximate manner. We consider the nonlinear functions h xðtÞ; t½ � and q xðtÞ; t½ �
in themeasurement equation over t 2 tkK1; tkð � and propose that these terms be Ito–
Taylor expanded around the state xkK1dxðtkK1Þ. Accordingly, we obtain

hkðt; xðtÞÞ Z ~hkðt; tkK1;xðtkK1ÞÞC ~Bkðt; tkK1; xðtkK1ÞÞ ~m1
k Cr1

z~hkðt; tkK1;xkK1ÞC ~Bkðt; tkK1; xkK1Þ ~m1
k ; ð4:2aÞ

q
ði; jÞ
k ðt;xðtÞÞZ ~q

ði; jÞ
k ðt; tkK1; xðtkK1ÞÞC ~Q

ði; jÞ
k ðt; tkK1;xðtkK1ÞÞ ~m2ði; jÞ

k Cr
ði; jÞ
2

z~q
ði; jÞ
k ðt; tkK1; xkK1ÞC ~Q

ði; jÞ
k ðt; tkK1;xkK1Þ ~m

2ði; jÞ
k

i Z 1; 2;.;m and j Z 1; 2;.; s1; ð4:2bÞ
where ~m1

k and ~m2
k are a vector and a matrix of MSIs, respectively; and r1 and r2

are the associated vector-valued and matrix-valued remainder terms, respectively.
In order to simplify notations, we drop the time indices and, based on the above
approximations, the measurement equation can be approximated as

ykz �hkðxkK1ÞC �BkðxkK1; �jkÞ �mk C �B1k ðxkK1Þ�jk; ð4:3Þ

where �hk : R
s!R/Rm. The vectors �mk 2Rn5 and �jk 2Rn6 represent the

resulting Gaussian and non-Gaussian terms as a result of the approximation, �Bk :
Rs!Rn6 !R/Rm!Rn5 and �B1k : R

s!R/Rm!Rn6 .
From equations (2.8) and (4.3), it follows that the process equation and the

approximated measurement equation have non-Gaussian noise terms, and we

introduce the notation qkZ jT
kK1; �j

T
k

n oT
to collectively denote all these non-

Gaussian random variables. It follows from equation (4.3) that pðyk jxi;kK1; �jkÞ is
Gaussian in nature and is given by

pðyk jxkK1; qkÞZ pðyk jxkK1; �jkÞZNðM 2;C2Þ; ð4:4Þ

where M 2Z �hkðxkK1ÞC �B1k ðxkK1Þ�jk; C2Z �BkðxkK1; �jkÞ �R �B
TðxkK1; �jkÞ; and �R is

the covariance matrix of the resultant Gaussian noise vector �mk in equation
(4.3). Considering equations (2.8) and (4.3), it follows that xk and yk are jointly
Gaussian given xkK1; qk, i.e.

pðyk ;xkjxkK1; qkÞZNðM 3;C3Þ; ð4:5Þ
Proc. R. Soc. A (2008)



33SIS filter for nonlinear system estimation
withM 3ZfakK1ðxkK1;udkK1
ÞCckK1ðxkK1;udkK1

ÞjkK1, �hkðxkK1ÞC �B1k ðxkK1Þ�jkgT.
If Q denotes the vector of Gaussian random variables consisting of the Gaussian
vectors wkK1 and �mk and Xðxk�1; qkÞ denotes the corresponding coefficient
matrix to be obtained from the joint distribution of xk and yk given xkK1; qk, then

C3 ZXðxkK1; qkÞE½fQgfQgT�XðxkK1; qkÞT:

From the discrete map (2.8), it follows that

pðxk jxkK1; qkÞZ pðxk jxkK1;jkK1ÞZNðM 4;C4Þ; ð4:6Þ

where M 4ZakK1ðxkK1;udkK1
ÞCckK1ðxkK1;udkK1

ÞjkK1; C4ZbkK1ðxkK1;udkK1
Þ

QbTkK1ðxkK1;udkK1
Þ; and Q is the covariance matrix of wkK1. Q has the same

functional form as C1. Based on the theory of vector Gaussian random variables,
it may be shown that

pðxkjyk ;xkK1; qkÞZNðM I;CIÞ; ð4:7Þ

with M IZM 4C ~C3C
K1
2 ðykKM 2Þ and CIZC4K ~C3C

K1
2

~C
T
3 . Here, ~C3 denotes

the cross terms of the covariance matrix C3.
As already noted, elements of the vector qk are non-Gaussian random

variables that are described by nonlinear functions of Gaussian random
variables. This means that, even though it is difficult to determine the pdf
pðqkÞ, drawing samples from this pdf is a simpler exercise. We use this in
obtaining an approximation to the ispdf. Note that

pðxk jyk; xkK1ÞZ
ð
pðxk jyk ; xkK1; qkÞpðqkÞdqk: ð4:8Þ

Furthermore, we adopt a weighted Monte Carlo representation of the pdf
pðqkÞz

PN1

iZ1 pidðqkKqikÞ, where qik are the sampled values and pi are the
associated weights. It then follows from equation (4.8) that

pðxk jyk ;xkK1ÞZ
XN1

iZ1

pipðxk jyk ;xkK1; q
i
kÞZ

XN1

iZ1

piN M IðqikÞ;CIðqikÞ
� �

: ð4:9Þ

This is the required optimal ispdf. This function, thus, turns out to be a weighted
mixture of Gaussian pdfs. The strategy for drawing samples from such pdfs is
well established (Liu 2001).

We also need to determine the terms pðyk jxi;kÞ and p xi;k jxi;kK1

� �
appearing in the

equation for the weights (equation (3.7)). The determination of pðykjxi;kÞ is
straightforward since this density function may be shown to be given by
pðyk jxi;kÞwN hkðxi;kÞ;C5ðxi;kÞ

� �
, with C5ðxi;kÞZqkðxi;kÞ ~Rqkðxi;kÞT (where ~R is

the covariancematrix of themeasurement noisemk in equation (2.9)).On the other
hand, owing to the presence of non-Gaussian terms in equation (2.8), determining
p xi;k jxi;kK1

� �
is not so simple. To circumvent this difficulty, we follow the same

strategy as has been used in deriving equation (4.9). Thus, we write

pðxk jxkK1ÞZ
ð
pðxk jxkK1;jkK1ÞpðjkK1ÞdjkK1 Z

XN1

iZ1

qipðxk jxkK1;j
i
kK1Þ; ð4:10Þ
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with pðjkÞz
PN1

iZ1 qidðjkKji
kÞ being the weightedMonte Carlo representation for

pðjkÞ. The above pdf is again a weighted mixture of Gaussian densities, and it can
easily be computed in order to derive theweights in a recursivemanner via equation
(3.7). A pseudo code of the proposed algorithm is given in appendix B in the
electronic supplementary material.

Remarks

(i) In the case where the process and measurement equations conform to the
format given in equation (3.9), the optimal non-Gaussian ispdf (equation
(4.9)) may be shown to reduce to the ideal Gaussian ispdf valid for the
system in equation (3.9). Details are available in appendix D in the
electronic supplementary material.

(ii) Non-Gaussian noise terms in the present study essentially arise due to the
application of Ito–Taylor expansion while discretizing the process
equation or in the treatment of the nonlinear terms appearing in the
measurement equation. The extent to which these terms appear in the
formulation depends upon the nature of the process and measurement
equations and, of course, the number of terms retained in the truncated
Ito–Taylor expansion.

(iii) In the cases where the discretization of the process SDE or the treatment
of the measurement equation does not lead to non-Gaussian MSIs, it is
verified that the optimal ispdf in equation (4.9) reduces to a Gaussian pdf.
In that case, drawing samples and calculating the corresponding weights
become simpler. For further details, refer to appendix C in the electronic
supplementary material.

(iv) It is well known that the Ito–Taylor expansion is a convergent series for
sufficiently smooth drift and diffusion functions. Hence, for general
nonlinear cases, the formal accuracy of the estimated states by the
proposed method increases as the number of terms retained in the
expansion increases (or as the time-step size decreases for a given number
of terms in the truncated expansions).

(v) In the context of the treatment of the non-Gaussian MSIs, it may be
useful to recall the representation of continuous local martingales,
vanishing at tZ0, as time-changed Brownian motions (Revuz & Yor
1991). In particular, considering any such non-Gaussian MSI IaðtÞ
(a being an appropriate multi-index), there is a time-changed Brownian
representation for IaðtÞ via the identity BtZIaðtÞ, where tZ inffs :
hIa; IaisR tg (h$; $i denotes the quadratic variation operator). The use of
such representation should then enable one to use Gaussian character-
izations of the MSIs, thereby simplifying the filter algorithm to a great
extent. This point of view will however be explored elsewhere.
5. Numerical illustrations

We illustrate the formulations presented through three examples. First, we
consider a nonlinear dynamical system governed by a scalar first-order SDE with
parametric and external excitations. Second, we consider the problem of state
Proc. R. Soc. A (2008)
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and parameter estimation in an externally driven single degree-of-freedom
Duffing oscillator, wherein measurements are made on the reaction transferred to
the support. Finally, we consider state and parameter estimation in an Euler–
Bernoulli beam undergoing geometrically nonlinear oscillations under external
harmonic excitations and measurements are made on bending strains at a set of
points on the beam surface. In all the examples, measurement time histories are
synthetically generated using numerical simulations. Since the ‘true’ states are
known in such cases, a metric of performance of the filter can be formulated. The
implementation of the filter requires the sample size to be chosen and the estimates
obtained are clearly subject to sampling fluctuations. To gain insights into the
performance of the filter for a given sample size, we repeat the filtering process Nf

times. We employ a measure of root mean square error (r.m.s.e.) given by

czj ðiÞZ
1

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
kZ1

x j
kðiÞKx̂ j

kðiÞ
h i2vuut ; i Z 1; 2;.;Nf ; ð5:1Þ

where x j
kðiÞ is the true state of j th state in the ith performance of the experiment at

tZ tk and x̂ j
kðiÞ is the corresponding estimate obtained by filtering. The three

examples taken together bring out the various features of the formulation, including
the occurrence of non-Gaussian MSIs in process equations and the treatment of
nonlinear measurement models. Limited comparisons with the results via the UPF
are also made to highlight the conceptual and computational superiority of the
proposed method.
(a ) Example 5.1: a nonlinear first-order system

We consider the process equation given by a first-order scalar SDE,

dxðtÞZ ðKax3ðtÞC ~q cosðltÞÞdtKKxðtÞðdtC31xðtÞdB1ðtÞÞCs dB2ðtÞ: ð5:2Þ

The measurement model is given by

yk Z xkð1C32h1kÞCsmh2k ; ð5:3Þ

with h1k ; h2kwNð0; 1Þ being mutually independent. The Ito–Taylor expansion
for the process equation with an accuracy of order 1 (Milstein 1995) leads to the
discrete map

xk Z xkK1 C ½KKxkK1KaðxkK1Þ3 C ~q cosðltkK1Þ�DKK31xkK1I1 CsI2

CðK31Þ2xkK1I11KsK31I21: ð5:4Þ

From equations (5.3) and (5.4), we get

yk Z ðxkK1CðKKxkK1KaðxkK1Þ3 C ~q cosðltkK1ÞÞDKK31xkK1I1 CsI2

CðK31Þ2xkK1I11KsK31I21Þð1C32h1kÞCsmh2k : ð5:5Þ
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The vector of non-Gaussian random variables is given by

qk Z q1k q2kf gT

Z ðK31Þ2xkK1I11KsK31I21 ðK31Þ2xkK1I11KsK31I21KK31xkK1I1CsI2
� �� �T

ð5:6Þ
In order to treat the MSIs appearing in equation (5.6), we introduce a set of
mutually independent Gaussian random variables with zero mean and unit
standard deviation as

xj ; zj;1;.; zj;p; hj;1;.; hj;p;mj;p;fj;p

� �2
jZ1:

Following Kloeden & Platen (1992), we obtain

I1 Z
ffiffiffiffi
D

p
x1; ð5:7aÞ

I2 Z
ffiffiffiffi
D

p
x2; ð5:7bÞ

I11 Z
1

2
I 21 KD
� �

and; ð5:7cÞ

I �p2;1 Z
1

2
Dx1x2K

1

2

ffiffiffiffi
D

p
x2a1;0K x1a2;0

� �
CA�p

2;1D; ð5:7dÞ

where �p denotes the number of terms retained in the series expansion of A2;1,
given by

A�p
2;1 Z

1

2p

Xp
rZ1

z2;rh1;rKh2;rz1;r
� �

; a1;0 ZK

ffiffiffiffiffiffi
2D

p

p

Xp
rZ1

1

r
z1;rK2

ffiffiffiffiffiffiffiffiffi
Drp

p
m1;�p;

rp Z
1

12
K

1

2p2

Xp
rZ1

1

r2
; a2;0 ZK

ffiffiffiffiffiffi
2D

p

p

Xp
rZ1

1

r
z2;rK2

ffiffiffiffiffiffiffiffiffi
Drp

p
m2;�p:

Process and the measurement equations are written in terms of q as

xk Z bkK1Cq1kKK31xkK1I1 CsI2; ð5:8Þ

yk Z bkK1Cq1k C32fbkK1 Cq2kgh1kKK31xkK1I1 CsI2 Csmh2k ; ð5:9Þ
with bkK1ZxkK1CðKKxkK1KaðxkK1Þ3C ~q cosðltkK1ÞÞD. Equations (5.8) and (5.9)
are in the format as in equations (2.8) and (4.3), and, consequently, the formulation
outlined in §4 becomes applicable to solve the state estimation problem.
The measurement data are generated with KZ3 N mK1, aZ9 N mK3, ~qZ15 N
and lZ2p rad sK1. The process noise intensity is fixed at 1%of the r.m.s. value of the
force, sZ0.11 N. The simulation is carried out for 3 s with a step size of DZ0.01 s.
The additivemeasurement noise level is taken tobe 5%of the noise-free displacement
amplitude (smZ0.056 m). Multiplicative noise intensities in the process and
observation equations are taken as 31Z0:1 and 32Z0:4, respectively. The sample
size is fixed at 50. Number of samples from qk is taken to be 10. The threshold sample
sizebelowwhichresampling is needed isfixedat two-thirdsof theoriginal sample size.
�pZ3 is used while evaluating MSIs using equation (5.7a)–(5.7d ).
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Figure 1. Results for example 5.1: (a) state estimation; (b) proposal density and weighted mixture
components, tkZ0.3 s; (c) marginal histograms of q1 and q2, tkZ0.3 s.
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Figure 1a compares the conditional expected value of xk with the reference
trajectory along with the noisy observation yk. The estimated trajectory appears
to closely follow the reference trajectory. The optimal ispdf in this case is non-
Gaussian and is obtained as weighted-sum Gaussian pdfs. Figure 1b provides the
details of these pdfs. The corresponding plots of histograms of the non-Gaussian
random variables q1 and q2 are shown in figure 1c.
(b ) Example 5.2: a hardening Duffing oscillator

We consider a Duffing oscillator driven by harmonic excitations. The process
equation in this case is

dx1 Z x 2 dt and

dx 2 Z
1

m
Kcx 2KKx1Caðx1Þ3 C

Xnf
iZ1

pi cos lit

" #
dtCs dB1ðtÞ:

ð5:10Þ

Here, (c, K, a) are the system parameters to be identified. We augment the above
equations with additional state equations

dx3 Zs2 dB2ðtÞ; dx4 Zs3 dB3ðtÞ; dx5 Zs4 dB4ðtÞ:
We have c; k;að ÞZðx3; x4; x5Þ. The discretized equations based on a 1.5 local-
order Ito–Taylor expansion are obtained as

x 1
k Z x1kK1 Cx2kK1DC

1

2

 
Kx 5

kK1x
1
kK1Kx4kK1x

2
kK1Kx3kK1ðx1kK1Þ3

C
Xnf
iZ1

pi cosðlitkK1Þ
!
D2Cs1I1;0;

x 2
k Z x2kK1 C Kx5kK1x

1
kK1Kx 4

kK1x
2
kK1Kx3kK1ðx1kK1Þ3C

Xnf
iZ1

pi cosðlitkK1Þ
 !

D

C
1

2
K
Xnf
iZ1

pili sinðlitkK1ÞCx 2
kK1 Kx5kK1K3x3kK1ðx1kK1Þ2
� � 

K Kx5kK1x
1
kK1Kx 4

kK1x
2
kK1Kx3kK1ðx1kK1Þ3C

Xnf
iZ1

pi cosðlitkK1Þ
 !!

D2

Cs1I1Ks1x
4
kK1I1;0Ks2ðx1kK1Þ3I2;0Ks3x

2
kK1I3;0K s4x

1
kK1I4;0

x 3
k Z x3kK1 Cs2I2

x 4
k Z x4kK1 Cs3I3

x 5
k Z x5kK1 Cs4I4:

ð5:11Þ

The measurements are presently on the reaction transferred to the support and,
accordingly, the measurement equation is obtainable as

yk Z x4kx
2
k Cx5kx

1
k Cx3kðx1kÞ3 Csmmk ; mk ZNð0; 1Þ: ð5:12Þ
Proc. R. Soc. A (2008)



39SIS filter for nonlinear system estimation
The nonlinear terms appearing in equation (5.12) are expanded using Ito–
Taylor’s expansion and, retaining terms up to 1.5 local order, we get

x 5
kx

1
k Z x 5

kK1x
1
kK1Cx 5

kK1x
2
kK1DCa1x

5
kK1

D2

2
Cs4x

2
kK1I4;0 Cs1x

5
kK1I1;0

Cs4x
1
kK1I4Cs4x

2
kK1I04 ð5:13aÞ

x4k x
2
k Z x4kK1x

2
kK1K x4kK1ðx1kK1Þ3Cx4kK1x

5
kK1x

1
kK1 Cðx4kK1Þ2x2kK1

� �
D

K 3ðx1kK1Þ2x2kK1x
3
kK1x

4
kK1 Cx4kK1x

5
kK1x

2
kK1Cðx4kK1Þ2a1 Cs23x

2
kK1

� �D2

2

Cs3x
2
kK1I3Cs3a1I03Cs3s1I13Cs1x

4
kK1I1Cs3s1I31

Cs2x
4
kK1ðx1kK1Þ3I20 Cs3x

3
kK1ðx1kK1Þ3I30Cs4x

4
kK1x

1
kK1I40

Cs3x
5
kK1x

1
kK1I30C2s3x

4
kK1x

2
kK1I30Cs1ðx4kK1Þ2I10 ð5:13bÞ

x3k ðx1k Þ3 Z x3kK1ðx1kK1Þ3C 3x3kK1ðx1kK1Þ2x2kK1

� �
D

C 6x3kK1ðx2kK1Þ2x1kK1 C3x3kK1ðx1kK1Þ2a1
� � D2

2
Cs2ðx1kK1Þ3I2

C3s2x
2
kK1ðx1kK1Þ2I20C3s1x

3
kK1ðx1kK1Þ2I10C3s2x

2
kK1ðx1kK1Þ2I02 ð5:13cÞ

where a1ZKx5kK1x
1
kK1Kx4kK1x

2
kK1Kx3kK1ðx1kK1Þ3C

Pnf
iZ1 pi cosðlitkK1Þ. Note that the

approximation of the measurement equation presently results in two non-Gaussian
MSIs (I31 and I13) in the second term and the filtering problem is handled within the
framework outlined in §4. In the numerical work to synthetically generate the
measurements, we take mZ1 kg, KZ17 N mK1, aZ120 N mK3, cZ2.47 N s mK1,
nfZ3, piZ15 N (iZ1, 2, 3), l1Zp rad sK1, l2Z2p rad sK1 and l3Z4p rad sK1. The
process noise intensity is fixed at 1% of the r.m.s. value of the force, sZ0.11 N.
The simulation is carried out for 5 s at an interval of 0.01 s. The measurement noise
level is taken to be 5%of the r.m.s. value of the true (noise-free) reaction (smZ4.21 N).
The filtering problem is solved with 2000 samples and NthreshZ1330. The system
parameters c;K ;að Þ at kZ0 are taken as distributed uniformly: ainiwUð80; 150Þ;
KiniwUð2; 20Þ; ciniwUð1; 5Þ. Figure 2a compares the estimate of the reaction
transferred to the support along with the corresponding reference trajectory. Also
shown in figure 2a is the contribution from only the linear terms to the reference
trajectory. The influence of nonlinearity on the reaction is amply evident. The
conditionally expected values of the parameters c;K ;að Þ are shown, respectively, in
figure 2b–d. The estimates are observed to approach their reference values as
measurements are increasingly assimilated during the filtering. The evolution of the
pdf of one of the system parameters, viz. a, is illustrated in figure 2e.

The state estimation problems being studied in this work may also be tackled
using suboptimal filtering strategies currently available in the existing literature.
Among these, the UPF is recognized to be one of the successful filtering methods.
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Figure 2. Results for example 5.2: (a) reaction transferred to the support; (b) estimate of
conditional expected c; (c) estimate of conditional expected K; (d ) estimate of conditional expected
a; (e) time evolution of the estimated pdf of the nonlinearity parameter.
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Thus, it is of interest to examine the performance of the present method vis-à-vis
the existing UPF. For this purpose, we restrict ourselves to the problem of state
estimation of Duffing’s oscillator when all the system parameters are known.
Accordingly, we derive the reduced process equation involving only x1 and x2,
with the measurement still being made on the reaction transferred to
the support. For the purpose of illustration, we take mZ1 kg, KZ17 N mK1,
aZ120 N mK3, cZ6.5 N s mK1, nfZ1, p1ZpZ15 N and lZ2p rad sK1. The
process noise intensity is at 1% of the r.m.s. value of the force, sZ0.12 N. The
Proc. R. Soc. A (2008)
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state estimation is carried out for 3 s using a step size of 0.01 s. To gain an insight
into the influence of sampling fluctuations and robustness of state estimates as
experiments are repeated, we consider the following two cases: (i) case I
corresponds to repeated runs of the filter using different sets of particles with the
same measurement time history and a fixed sample size, and (ii) case II
corresponds to repeated runs of the filter, again with a fixed sample size but with
different sets of particles and different measurement time histories. In each case,
we consider two different measurement noise levels, namely 1% (sub-cases I(a)
and II(a)) and 5% (sub-cases I(b) and II(b)) of noise-free reaction magnitude.
While the Ito–Taylor expansion for the measurement equation is presently of
(local) order 2.5, the process equation is expanded with 1.5 local order. Standard
deviations of noise processes are fixed as smZ0.18 and 0.85 N. The sample sizes
in these two cases are fixed as 90 (high measurement noise) and 300 (low
measurement noise), respectively. In both the cases, the threshold sample size
(below which resampling is needed) is two-thirds of the sample size. The number
of repetitions of filtering is taken to be 20. In implementing the UPF, we use the
procedure as outlined by Merwe et al. (2000) and take the scaling parameters
a0Z1, bZ2 and kZ0. Results on the performance of the proposed filter and the
UPF are summarized in table 1. It emerges that the proposed strategy is
computationally more efficient (with the UPF consuming approx. five times more
CPU time) and more accurate (as discerned from the values of r.m.s.e. for the
two methods). From the sampling variance of the estimates of r.m.s.e., it is also
observed that the present filter shows lesser sampling fluctuations than the UPF.
Further studies are clearly needed to understand the nature of sampling
fluctuations and convergence characteristics of the proposed method.
(c ) Example 5.3: state and parameter estimation in a nonlinear
Euler–Bernoulli beam

We consider the dynamics of a simply supported, one-span, Euler–Bernoulli
beam undergoing large-amplitude oscillations under the action of harmonic
excitations. One of the simplified models for this system, incorporating nonlinear
strain–displacement relations, is given by (Nayfeh & Mook 1979)

mðxÞ v
2n0

vt2
C

v2

vx2
EI ðxÞ v

2n0

vx2


 �
K

EAðxÞ
2l

ð l
0

vn0

vx


 �2

dx


 �
v2n0

vx 2
Z f ðx; tÞ; ð5:14Þ

where x 2 0; l½ � is the independent spatial variable; n0ðx; tÞ is the transverse
displacement field; EI(x) is the flexural rigidity; EA(x) is the axial rigidity; m(x)
is the mass per unit length; l is the beam span; and f(x, t) is the externally
applied load. Measurements are presently made on the strain component 3xxðx; tÞ
evaluated at a set of points on the beam surface. This strain component may be
approximately related to the transverse displacement v0ðx; tÞ and axial
displacement ~u0ðx; tÞ through the equation

3xxðx; y; tÞy
v~u0

vx
Ky

v2v0
vx2

C
1

2

vv0
vx


 �2

with ~u0ðx; tÞZK
1

2

ðx
0

vv0ðs; tÞ
vs

� �2
dsC

x

2l

ð l
0

vv0ðs; tÞ
vs

� �2
ds:

ð5:15Þ
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43SIS filter for nonlinear system estimation
To proceed further, we take the displacement field v0ðx; tÞ to be expressible by
the series v0ðx; tÞZ

PN
jZ1 ujðtÞ4jðxÞ, with 4jðxÞ being the jth linear beam mode

shape and ujðtÞ being the jth generalized coordinate. Applying a Galerkin
projection, the governing equations for the generalized coordinates (after
including viscous damping) are

mn

d2un
dt2

CKnun Ccn
dun
dt

ZK
EA

2l

n2p4

4l 2


 �
un
XN
pZ1

p2u2
pC fnðtÞ; n Z 1; 2;.;

ð5:16Þ

with mnZ
Ð l
0 mð4nðxÞÞ2 dx; KnZmnðn2p2=l 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEI=mÞ

p
and fnZ

Ð l
0 f ðx; tÞ4n

ðxÞdx. We truncate the series for v0ðx; tÞ at the third term and account for the
effect of unmodelled dynamics by a set of Gaussian white noise processes. Now,
we define the augmented set of states as UðtÞZ U 1;U 2;U 3;U 4;U 5;U 6;U 7

� �T
d

fu1; u2; u3; _u1; _u2; _u3;EgT. Thus, Young’s modulus E is declared as an additional
state. This leads to the process equations

dUiZUiC3 dt

dUiC3Z K
Ip4

ml 4
U 7UiK

ci
mi

UiC3K
Ap4

8mil
3
U 7U i ðU 1Þ2C4ðU 2Þ2C9ðU 3Þ2

� �
CfnðtÞ

� �
dt

CsiC3 dBiC3

dU 7Zs7 dB7 iZ1;2;3. ð5:17Þ

Assume that two (noisy) strain measurements are available at two different beam
locations ðx1;y1Þ;ðx2;y2Þf g and that the channel noises are independent. The
measurement equation is then given by

Y ðtkÞZ
31ðtkÞ
32ðtkÞ

( )
ZHUðtkÞCUðtkÞTCUðtkÞCBkmk ; ð5:18Þ

with

HZ
Ky1Fddðx 1Þ ½0�1!4

Ky2Fddðx 2Þ ½0�1!4

" #
; FddðxÞZ

v2f1ðxÞ
vx2

v2f2ðxÞ
vx2

v2f3ðxÞ
vx2

" #
;

BkZ
sm1 0

0 sm2

" #
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2
FT

dFdC
1

2l

ð l
0
FT

dFd dxK
d

dx

1
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ðx
0
FT

dFd dx

� �
;

FdZ
vf1
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vf2

vx

vf3

vx

" #
; mkZ xm1 xm2f gT;

where xm1 and xm2 are mutually independent Gaussian random variables with
zero mean and unit standard deviation. The quadratic terms appearing in the
measurement equation are further expanded in the Ito–Taylor series with 1.5
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Figure 3. Results for example 5.3: (a) estimate of conditional expected E (inset: zoomed part up to
0.01 s); (b) estimate of initial and final pdfs of E (inset: zoomed part up to 0.5 on the y-axis); (c)
estimated displacement and velocity at xZl/4.
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local order, and thus we obtain

ðUpðtkÞUqðtkÞÞZUp
k U

q
k ZUp
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kK1C Up

kK1U
qC3
kK1 CUq
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kK1 Ca kK1
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� D2

2

CsqC3U
p
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q
kK1IpC3;0; p; qZ 1; 2; 3;.:

ð5:19Þ
Here, aj denotes the jth drift term in the governing SDE (5.17). Based on this,
the measurement equation is obtained in the form of equation (4.3). It may be
noted that all the MSIs that appear in the discretized process and approximate
measurement equations are Gaussian in nature (see Saha & Roy (2007) for
further details). This simplifies the filtering strategy considerably.
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In the numerical work, we take the beam to have a rectangular cross
section (0.025 m!0.003 m), lZ0.75 m, mass densityZ7850 kg mK3,
ciZ0.1 N s mK1 (iZ1, 2, 3) and EZ2.05!1011 N mK2. The external load is
given by f ðx; tÞZ f0 cos½ltCqi�, for ðiK1Þðl=5Þ!x!ðil=5Þ; iZ1, 2,., 5 with

f0Z70 N mK1, lZ10 rad sK1 and fqig5iZ1Z{5.97, 1.45, 3.81, 3.05 and 5.60}T.

The process noise intensity is fixed at 1% of the r.m.s. value, with siZ0.1 N, for
iZ1, 2, 3. The simulation has been carried out for 1 s at an interval of 0.0001 s.
The measurement noise level is 6% of the r.m.s. value of the maximum strain
time history (smZ9.28!10K5). The sample size of 500 with NthreshZ167 is
used. As the initial guess, we assume E to be uniformly distributed, i.e.
EiniwUð1!1011; 20!1011Þ N mK2. Axial strains on the bottom fibre of the beam
at xZl/4 and l/2 are measured.

In the numerical work, it is verified that nonlinearity in the strain–displacement
equation indeed makes significant contributions to the strain. Figure 3a,b shows
the estimates and pdf of Young’s modulus of the beam. While the initial guess
of the pdf of E has a wide support (EiniwUð1!1011; 20!1011Þ N mK2),
the conditional expectation of E begins to converge to the reference value,
EZ2.05!1011 N mK2, within a short time of assimilating the measured strains.
Estimates of displacement and velocity at xZl/4 are observed to compare well
with the corresponding reference trajectories in figure 3c.
6. Conclusions

The present work deals with state and parameter estimation in dynamical
systems with nonlinear and non-Gaussian state-space models. The emphasis is on
dynamical systems of interest in structural mechanics. Nonlinearity in these
systems typically arises in relating strains with displacements and/or stresses
with strains. Moreover, in problems of parameter identification, the parameters
to be identified are declared as additional state variables and the governing
equations are thus nonlinear even though the mechanical system is strictly linear
for a given set of parameters. In addition, measurements made on quantities,
such as forces transferred to the supports and strains, are often nonlinear
functions of system displacements and velocities. In the present study, we have
treated the noise terms appearing in the process and the measurement equations
as white noise processes and integrations of the resulting stochastic differential
equations are performed within Ito’s theory. The study reveals that, even as
noise terms in the governing SDEs are Gaussian in nature, discretizations of the
SDEs through Ito–Taylor series lead to maps that contain both Gaussian and
non-Gaussian sequences of random variables. The study addresses the
complications in state and parameter estimation problems arising out of the
coexistence of nonlinear and non-Gaussian terms in the system equations.
Specifically, we develop a scheme to formulate the optimal ispdf applicable to
this general class of problems, and this ispdf is embedded into an SIS filtering
strategy. We show that the optimal ispdf is non-Gaussian and admits a
representation as a weighted sum of Gaussian pdfs, and that we can effectively
sample from this representation. While selecting the optimal ispdf, the proposed
method incorporates knowledge of both the process dynamics and the current
observation. A crucial aspect in the formulation is the use of Ito–Taylor
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expansions for the nonlinear terms in the measurement equation. Such
expansions permit (at least formally) an improvement of the accuracy of
representation by retaining higher-order terms. Limited comparisons of the
performance of the proposed method with the UPF indicate that the present
method offers substantial computational and numerical advantages.

C.S.M. thanks the Aeronautical R&D Board, Government of India, and D.R. thanks the Naval
Science and Technological Laboratory, Government of India, for the financial support provided to
conduct this work.
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