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SUMMARY

This paper deals with the determination of critical earthquake load models for linear structures subjected
to single-point seismic inputs. The primary objective of this study is to examine the realism in critical
excitations and critical responses vis a vis the framework adopted for the study and constraints that these
excitations are taken to satisfy. Two alternative approaches are investigated. In the :rst approach, the
critical earthquake is expressed in terms of a Fourier series that is modulated by an enveloping function
that imparts transient nature to the inputs. The Fourier coe=cients are taken to be deterministic and are
constrained to satisfy speci:ed upper and lower bounds. Estimates on these bounds, for a given site, are
obtained by analysing past earthquake records from the same site or similar sites. The unknown Fourier
coe=cients are determined such that the response of a given structure is maximized subjected to these
bounds and additional constraints on intensity, peak ground acceleration, peak ground velocity and peak
ground displacement. In the second approach, the critical earthquake is modelled as a partially speci:ed
non-stationary Gaussian random process which is de:ned in terms of a stationary random process of un-
known power spectral density (psd) function modulated by a deterministic envelope function. The input
is constrained to possess speci:ed variance and average zero crossing rate. Additionally, a new constraint
in terms of entropy rate representing the expected level of disorder in the excitation is also imposed. The
unknown psd function of the stationary part of the input is determined so that the response of a given
structure is maximized. The optimization problem in both these approaches is solved by using sequential
quadratic programming method. The procedures developed are illustrated by considering the seismic re-
sponse of a tall chimney and an earth dam. It is concluded that the imposition of lower and upper bounds
on Fourier coe=cients in the :rst approach and constraints on amount of disorder in the second approach
are crucial in arriving at realistic critical excitations. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The method of seismic critical excitations provides a framework to deal with seismic re-
sponse of engineering structures subjected to inadequately speci:ed earthquake input. Given
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the general paucity of data on strong motion ground accelerations on one hand and require-
ments on design for low risks of important structures on the other, this method is of con-
siderable interest in earthquake engineering. Thus, for instance, for the region of peninsular
India, there are hardly few strong motion records available for the 1993 Khilari earthquake
and the 2001 Bhuj earthquake. To the best of authors’ knowledge, there are no strong mo-
tion data available for the main shock for these earthquakes. The method of critical ex-
citation has its roots in the :eld of electrical engineering and was introduced to the :eld
of earthquake engineering by Drenick [1; 2]. A brief chronology of selected literature pub-
lished prior to 1995 has been presented by Manohar and Sarkar [3]. The central idea of this
method consists of optimizing the missing information in the inputs such that a chosen re-
sponse variable of a given structure is maximized. Consequently, these optimal excitations,
not only embody partial information that is readily available on the earthquake inputs, but
also, are tailored according to the dynamic characteristics of the structure under consideration
so that these excitations produce the highest response. The available methods for :nding crit-
ical excitations can be schematized based on the following alternative criteria: (a) whether
the excitations are deterministic or stochastic, (b) whether multiple components and spatial
variability are accounted for or not, (c) whether excitations are described in terms of time
history=response spectra or via psd function and (d) whether system being considered is
linear=non-linear or singly supported=multiply supported. However, for the purpose of discus-
sion of this paper, the available methods for determining critical earthquakes can be classi-
:ed into three categories, namely, data-based models, parametric models and non-parametric
models.
In the data-based models, a set of time histories of earthquakes recorded in the given site

or on geologically similar sites are used as basis functions in de:ning the critical excitations
[2; 4]. Thus the formulation proposed by Drenick [2], Wang and Yun [4] and Bedrosian et
al. [5] represent the critical excitations as a linear combination of the basis records and the
coe=cients of this expansion are optimized to produce highest response under constraints on
earthquake intensity and peak ground acceleration. The main advantage of this method is that
the frequency content of earthquake ground motion is well-represented. The basic premise that
past earthquake records serve as basis functions to represent future earthquakes is, however,
questionable, since there is no reason why past records need to form a complete set. There-
fore, the questions on convergence of the series representation become di=cult to answer.
The study by Srinivasan et al. [6] is representative of parametric critical excitation models.
These authors modelled the earthquake acceleration as a non-stationary :ltered shot noise and
optimized the parameters of this model such that response of a given system is maximized. In
this study, the use of a speci:c model for earthquake loads provided a constraint on nature of
excitation. The earlier study by Drenick [1], in which he showed that critical excitations for
linear systems are given by their impulse response functions reversed in time, is an example
for non-parametric models. Shinozuka [7] solved the same problem by introducing an upper
bound on the Fourier amplitude spectrum of the critical excitation. Similarly, the studies on
determination of stochastic critical excitations reported by Iyengar and Manohar [8], Manohar
and Sarkar [3], Sarkar and Manohar [9; 10] and Takewaki [11; 12] provide examples of non-
parametric models within the probabilistic framework. In these studies, the input processes are
taken to be Gaussian and the functional form of the critical psd function=matrix are determined
by maximizing the structure responses. One of the de:ciencies in critical psd function=matrix
models developed so far has been that these critical excitations tend to be resonant in nature
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and often produce overly conservative responses. Clearly, there exists a need to device suit-
able constraints that would produce critical excitations that have realistic frequency content
and thereby display the disorder characteristics which recorded earthquakes ground motion
possess.
The present study develops two alternative ways to arrive at critical earthquake excitations.

The structures considered are taken to be linear and all supports are assumed acted upon
by a single horizontal ground motion. The :rst method that is considered is in the spirit of
the data-based models [2; 4; 5] but with a signi:cant diKerence. Instead of representing the
critical earthquake as a linear combination of past recorded earthquakes, it is now represented
by a product of an enveloping function and a steady-state function that can be represented
by a Fourier series. The data available on past earthquakes are used to construct upper and
lower bounds on the Fourier amplitude spectra, which, in turn, are imposed as constraints in
deriving critical excitations. Additional constraints involving peak ground acceleration, peak
ground velocity and peak ground displacement are also considered. In the second method that
is studied, the critical earthquake is modelled as a non-stationary Gaussian random process
that is obtained by multiplying a deterministic modulating envelope function with a stationary
Gaussian random process of zero mean. The critical psd of the stationary part of the excitation
is taken to be unknown and is required to be found such that structure response is maximized.
The constraints that are imposed include limits on input variance and the estimate of the
average zero crossing rate. Additionally, the paper proposes a new constraint in terms of
entropy rate of the input that reLects the measure of disorder that can be expected in realistic
earthquake ground motions. Mathematically, the problem of determining the critical excitation
in both these approaches are shown to constitute constrained non-linear optimization problems.
Numerical illustrations on critical excitations for a tall chimney and for an earth dam are
presented.

2. MODEL I: DETERMINISTIC CRITICAL EARTHQUAKES

The equation of motion for the relative displacement u(t) of a discretized N -degree-of-freedom
linear structure driven by a single component horizontal ground acceleration Mug(t) at its base
is given by [13]

M Mu(t) +Cu̇(t) +Ku(t)=−M{1} Mug(t) (1)

Here M;C;K are, respectively, the mass, damping and stiKness matrices of the discretized
structure, and {1} represents a column vector of ones. Assuming the damping to be propor-
tional, and also that system starts from rest, the kth displacement component can be shown
to be given by

uk(t)=
N∑
i=1

�i	ki

∫ t

0
Mug(
)hi(t − 
) d
; �i =−	T

i M{1}
	T
i M	i

(2)

where �i is the participation factor for the ith mode, 	 the modal matrix and hi(t) the ith
impulse response function. It may be noted that, in this model, the ground acceleration Mug(t)
is taken to be deterministic and is assumed to be represented by

Mug(t)= e(t) Mwg(t) (3)
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Here e(t) is an enveloping function that imparts transient nature to the inputs and Mwg(t) is a
steady-state function that admits a Fourier representation of the form

Mwg(t)=
Nf∑
n=1

[An cos!nt + Bn sin!nt] (4)

where An and Bn are unknown constants, and the frequencies !n, n=1; 2; : : : ; Nf , are selected
such that they span satisfactorily the frequency range (!0; !c). The envelope function e(t) is
assumed to be of the form

e(t)=A0[exp(−�t)− exp(−�t)]; �¿�¿0 (5)

Here � and � are parameters that impart the observed transient trends in the recorded ground
motions [14]. In our study, we take these parameters to be known and speci:cally it is assumed
that �=0:13 and �=0:50. This choice represents the earthquake duration to be about 30 s
that is considered typical of magnitude 7.0 earthquake.
In constructing the critical excitation model, it is assumed that e(t) is completely speci:ed

and {An; Bn}Nf
n=1 are unknowns. Furthermore, the information on intensity E1, peak ground

acceleration (PGA) M1, peak ground velocity (PGV) M2, peak ground displacement (PGD)
M3, upper bound Fourier amplitude spectra (UBFAS) M4(!) and lower bound Fourier am-
plitude spectra (LBFAS) M5(!) are taken to be available which enables the formulation of
the following constraints:

[ ∫ ∞

0
Mu2g(t) dt

]1=2
6E1

max
0¡t¡∞

| Mug(t)|6M1

max
0¡t¡∞

|u̇g(t)|6M2

max
0¡t¡∞

|ug(t)|6M3

M5(!)6| MUg(!)|6M4(!)

(6)

Here MUg(!) is the Fourier transform of the ground acceleration Mug(t). To proceed further, we
need to express the ground velocity and displacement in terms of the Fourier coe=cients An

and Bn. Accordingly, from Equations (3) and (4), one gets

u̇g(t) =
Nf∑
n=1

∫ t

0
e(
)[An cos!n
+ Bn sin!n
] d
+ C1 (7)

ug(t) =
Nf∑
n=1

∫ t

0
e(
)(t − 
)[An cos!n
+ Bn sin!n
] d
+ C1t + C2 (8)

The constants of the integrations C1 and C2 are found using the conditions [15]

ug(0)=0; lim
t→∞ u̇g(t)→ 0 (9)
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This leads to

C2 = 0; C1 =−
Nf∑
n=1

∫ ∞

0
e(
)[An cos!n
+ Bn sin!n
] d
 (10)

Subsequently, the constraints listed in Equation (6) can be expressed in terms of An and Bn
as follows: [

Nf∑
m=1

Nf∑
n=1

AmAnI1mn + AmBnI2mn + BmAnI3mn + BmBnI4mn

]1=2
6E1

max
0¡t¡∞

∣∣∣∣e(t) Nf∑
n=1

[An cos!nt + Bn sin!nt]
∣∣∣∣6M1

max
0¡t¡∞

∣∣∣∣ Nf∑
n=1

∫ t

0
e(
)[An cos!n
+ Bn sin!n
] d


−
Nf∑
n=1

∫ ∞

0
e(
)[An cos!n
+ Bn sin!n
] d


∣∣∣∣6M2

max
0¡t¡∞

∣∣∣∣ Nf∑
n=1

∫ t

0
e(
)(t − 
)[An cos!n
+ Bn sin!n
] d


−t
Nf∑
n=1

∫ ∞

0
e(
)[An cos!n
+ Bn sin!n
] d


∣∣∣∣6M3;

M5(!)6
∣∣∣∣ Nf∑
n=1

AnI1n(!) + BnI2n(!)
∣∣∣∣6M4(!)

(11)

where

I1mn =
∫ ∞

0
e2(t) cos!mt cos!nt dt; I2mn=

∫ ∞

0
e2(t) cos!mt sin!nt dt

I3mn =
∫ ∞

0
e2(t) sin!mt cos!nt dt; I4mn=

∫ ∞

0
e2(t) sin!mt sin!nt dt

I1n(!) =
∫ ∞

0
e(t) cos!nt exp(−j!t) dt; I2n(!)=

∫ ∞

0
e(t) sin!nt exp(−j!t) dt; j =

√
−1

(12)

To determine the quantities E1; M1; M2, M3, M4(!) and M5(!); it is assumed that a set
of earthquake records denoted by { Mvgn(t)}Nr

n=1 are available for the site under consideration
or from other sites that are geologically similar to the given site. The values of intensity,
peak values of acceleration, velocity and displacement are obtained for each of these records.
The highest of these values across the ensemble of the records are taken to be the respective
estimates of E1; M1; M2 and M3. The set of available records { Mvgn(t)}Nr

n=1 are further normalized
so that the PGA of each record is set to unity, and these normalized records are denoted by
{ MSvgn(t)}Nr

n=1. The bounds M4(!) and M5(!) are obtained as

M4(!) = M1 max
16n6Nr

| MSVgn(!)|

M5(!) = M1 min
16n6Nr

| MSVgn(!)|
(13)
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Here { MSVgn(!)}Nr
n=1 denote the Fourier transform of { MSvgn(t)}Nr

n=1 and these transforms are com-
puted using the FFT algorithm. It may be noted that the idea of introducing an upper bound
on the Fourier amplitude of the ground motion has been considered earlier by Shinozuka [7],
Baratta et al. [16] and, also, in a probabilistic setting, by Takewaki [11; 12]. These authors,
however, have not considered introducing the lower bound on the Fourier amplitude spectra.
It may also be remarked here that the assumption on availability of past records { Mvgn(t)}Nr

n=1 is
similar to the assumption made by Drenick [2]. While the earlier workers [2; 4; 5] employed
these records as basis functions, in our study, these records are used to derive the constraints
that the critical excitations need to satisfy.
The problem of determining the critical excitation can now be stated as :nding {An; Bn}Nf

n=1
which maximize

max
0¡t¡∞

|uk(t)| = max
0¡t¡∞

∣∣∣∣ N∑
i=1

Nf∑
n=1

�i	ki

∫ t

0
e(
)[An cos!n
+ Bn sin!n
]hi(t − 
) d


∣∣∣∣ (14)

subjected to the constraints listed in Equations (11). It is to be noted that this problem
constitutes a constrained non-linear optimization problem. The solution to this problem, in
our study, is computed using the ‘CONSTR’ program that forms a part of the MATLAB
Optimization Toolbox. This program, in turn, is based on sequential quadratic optimization
method. The steps of the maximization procedures can be summarized as follows:

1. Calculate the impulse response functions, {hi(tj − 
)}Ni=1 at time t= tj.
2. Compute {An; Bn}Nf

n=1 that maximize the response uk(tj), Equations (2)–(4).
3. Repeat steps 1 and 2 for all time points.
4. Estimate the maximum response uk(tm)=max |uk(tj)| and corresponding {An; Bn}Nf

n=1.
5. The estimated {An; Bn}Nf

n=1 de:ne the critical input (Equations (3) and (4)) and correspond-
ing critical response (Equation (2)).

It may be emphasized that the selection of past records in the above formulation is pri-
marily based on local soil condition. Any new record that brings in changes in the val-
ues of the constraints will automatically alter the critical responses. This is an inherent
feature of the method. In selecting the values of the constraints, in our study, we have
chosen the extreme values instead of average or average + factor of the standard devia-
tion as was done by Bedrosian et al. [5]. These values could perhaps be scaled by factors
greater than one to account for :nite size of the set of records. The procedure for calibra-
tion of these scaling factors, however, is not obvious. A more rational alternative is to treat
E1; M1; M2; M3; M4(!) and M5(!) as being stochastic in nature with their probability density
functions estimated from the available records. The present study, however, does not consider
these aspects.

3. MODEL II: STOCHASTIC CRITICAL EARTHQUAKES

The earthquake ground motion here is modelled as a non-stationary Gaussian random process
that is obtained by multiplying a deterministic envelope with a stationary zero mean Gaussian
random process. The ground acceleration Mug(t) is again represented as in Equation (3) but
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with the important diKerence that the coe=cients {An; Bn}Nf
n=1 are now modelled as a vector

of zero mean Gaussian random variables that satisfy the conditions:

〈AmAn〉= 2
n !mn; 〈BmBn〉= 2

n !mn

〈AmBn〉=0; ∀ m; n=1; 2; : : : ; Nf

(15)

Here, 〈·〉 denotes the mathematical expectation operator and !mn is the Kronecker delta. Under
these conditions Mwg(t) becomes a stationary Gaussian random process with auto covariance
and power spectral density (psd) function given, respectively, by

R(
)=
Nf∑
n=1

 2
n cos(!n
); S(!)=

Nf∑
n=1

 2
n !(!−!n) (16)

The total average energy ET and the average rate of zero crossing with positive slopes, n+0 ,
can be expressed in terms of e(t) and S(!) as follows:

ET =E0

∫ ∞

0
e2(t) dt; n+0 =

1
2$

√
E2

E0
(17)

Here the quantities E0 and E2 are the spectral moments of S(!) and are given by

E0 =
∫ !c

!0

S(!) d!; E2 =
∫ !c

!0

!2S(!) d! (18)

As before, the interval (!0; !c) represents the frequency range of the ground acceleration.
Referring to Equations (1) and (2), and taking into account that Mug(t) is a non-stationary
random process, it can be shown that the response variance S 2

k (t) at the kth degree of freedom
can be written in the following form:

S 2
k (t)=

∫ !c

!0

S(!)Hk(!; t) d! (19)

Here Hk(!; t) can be interpreted as the generalized frequency response function for the kth
degree-of-freedom and is expressed in terms of the impulse response function, mode shape,
participation factor and the excitation envelope function as follows:

Hk(!; t)=
N∑
i=1

N∑
j=1

�i�j	ki	kj

∫ t

0

∫ t

0
e(
1)e(
2)hi(t − 
1)hj(t − 
2) cos!(
2 − 
1) d
1 d
2 (20)

In an earlier study [3], critical psd functions that maximize response variance of a given
structure subjected to constraints not only on ET but also on n+0 have been determined. Here
the constraint on n+0 was imposed to reLect the inLuence of dominant frequency as dictated by
the local soil conditions. The resulting critical excitations were, however, found to be narrow
banded in nature with most of the average power centred around the structure natural fre-
quency with the soil layer frequency playing no signi:cant role in dictating the average power
distribution across the frequency range of interest. To remedy this, Manohar and Sarkar [3]
suggested that the ‘disorder’ that is typically found in recorded earthquakes must be con-
sidered in de:ning critical excitations. Accordingly, these authors suggested that the critical
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excitations need to maximize, not only the structural response, but also, have to maximize the
entropy rate. This was shown to lead to more realistic critical earthquake excitation models.
In this paper, we reconsider the earlier proposition made by Manohar and Sarkar. Speci:cally,
it is suggested that the actual entropy rates of earthquake records be estimated from available
data and this information be used as an additional constraint in de:ning critical excitations.
Here, it may be noted that, for a given frequency range (!0; !c), and for a given total average
power, it can be shown that a band limited white noise would possess the highest entropy
rate, and, conversely, a narrow band signal would possess the least entropy rate. A realistic
ground motion, on the other hand, is unlikely to be an ideal band limited white noise nor
an ideal narrow band signal. Consequently, the entropy rate associated with realistic ground
motion is expected to be bounded between that of an ideal band limited white noise and of
an ideal narrow banded signal. Thus, it can be expected that realistic models for critical seis-
mic inputs be obtained by requiring that these inputs possess entropy rates that are actually
observed in recorded ground motions. To do this, it is :rst noted that the entropy rate of a
stationary, zero mean, Gaussian random process Mwg(t), in terms of its psd function S(!), is
given by [17]

SHW = loge
√
2$e+

1
2(!c −!0)

∫ !c

!0

loge S(!) d! (21)

This equation can be used to estimate entropy rate from samples of Gaussian random pro-
cesses. In the context of development of critical excitation models, it is found expedient to
measure entropy rate with reference to a band limited white noise process M'g(t) with intensity
I [3]. Under the assumption that Mwg(t) is independent of M'g(t), the increase in entropy rate
when Mwg(t) is added to M'g(t) is given by

U SHW =
1

2(!c −!0)

∫ !c

!0

loge

[
1:0 +

S(!)
I

]
d! (22)

Taking into account the discretization scheme used in this study (Equation (16)), U SHW can
be shown to be given by

U SHW =
1

2(!c −!0)

Nf∑
n=1

(!n −!n−1) loge

[
1:0 +

 2
n

I(!n −!n−1)

]
(23)

The problem of :nding critical excitations can thus be stated as :nding { 2
n }Nf

n=1, that maximize

max
0¡t¡∞

S 2
k (t)= max

0¡t¡∞

Nf∑
n=1

 2
n Hk(!n; t) (24)

subjected to the constraints

Nf∑
n=1

 2
n =E0;

Nf∑
n=1

 2
n !

2
n=E2

1
2(!c −!0)

Nf∑
n=1

(!n −!n−1) loge

[
1:0 +

 2
n

I(!n −!n−1)

]
¿U SHW ;  2

n¿0

(25)
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Figure 1. Example structures considered: (a) chimney [20], (b) Earth dam [21].

This problem, again, constitutes a constrained non-linear optimization problem. As in the
previous case, the optimal solutions are computed using ‘CONSTR’ program of the MATLAB
Optimization Toolbox. Again, the optimization problem includes maximization across time
as well as frequency domain (psd function). The steps of the maximization procedures are
summarized as follows:

1. Compute {Hk(!n; tj)}Nf
n=1, Equation (20), at a speci:c time t= tj.

2. Calculate { 2
n }Nf

n=1 that maximize response variance, S 2
k (tj).

3. Repeat steps 1 and 2 for all time points.
4. Estimate the maximum response variance S 2

k (tm)= max S 2
k (tj) and corresponding { 2

n }Nf
n=1.

5. The estimated { 2
n }Nf

n=1 de:ne the critical psd function, Equation (16), and the corresponding
critical response variance, Equation (19).

It is to be noted that the proposed procedure does not exclude the possibility of ground
motions being narrow band in nature. If, indeed, at a given site, recorded motions exhibit
highly resonant characteristics, the proposed procedure, in our study, would reLect this fact
in the choice of the parameter n+0 as well as the constraint on entropy rate, U SHW .

4. NUMERICAL RESULTS AND DISCUSSIONS

Two example structures are considered for estimating the critical excitations (Figure 1). The
:rst example is a tall reinforced concrete chimney representing a one-dimensional structure,
while the second is an earth dam representing a two-dimensional structure. The two structures
are assumed to be located at a :rm soil site and are subjected to horizontal ground motion.
The critical earthquakes are calculated for the two models developed in Sections 2 and 3.
Additionally, for purpose of comparison, a third model which is based on earlier works
[2; 4; 5] is also considered. In this model, the critical earthquake is assumed to be deterministic
and is expanded as a linear summation in terms of normalized past recorded ground motions
as follows:

Mug(t)=
Nr∑
n=1

an MSvgn(t) (26)

Copyright ? 2002 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:813–832



822 A. M. ABBAS AND C. S. MANOHAR

Here {an}Nr
n=1 are the variables of the optimization that are to be determined so that the

response

max
0¡t¡∞

|uk(t)|= max
0¡t¡∞

∣∣∣∣ N∑
i=1

Nr∑
n=1

�i	kian
∫ t

0

MSvgn(
)hi(t − 
) d

∣∣∣∣ (27)

is maximized subjected to the constraints:

[
Nr∑
m=1

Nr∑
n=1

aman
∫ ∞

0

MSvgm(t) MSvgn(t) dt
]1=2

6E1

max
0¡t¡∞

∣∣∣∣ Nr∑
n=1

an MSvgn(t)
∣∣∣∣6M1

max
0¡t¡∞

∣∣∣∣ Nr∑
n=1

an Ṡvgn(t)
∣∣∣∣6M2

max
0¡t¡∞

∣∣∣∣ Nr∑
n=1

an Svgn(t)
∣∣∣∣6M3

(28)

This constitutes a non-linear constrained optimization problem is again solved using the same
method that has been previously used for the :rst and second models. The critical excitations
derived using Equation (26) are referred to as Model III in subsequent discussion.

4.1. Description of constraints

The implementation of the methods outlined in Sections 2 and 3 require, as a :rst step,
quanti:cation of the various constraints. To achieve this, a set of ten recorded earthquake
ground motions has been selected [18; 19] (see Table I). The available records contain
digitized information on acceleration, velocity and displacement. All these records are reported
to have been measured on :rm soil. Also, these ground motions have a minimum PGA of
0:27g, and epicentral distance less than about 30 km. These ground motions were seen to
produce similar Fourier spectra. Based on an analysis of these records we take E1 = 4:17m=s1:5,
M1 = 4:35 m=s2 (0:44g), M2 = 0:60 m=s; M3 = 0:15 m. Figure 2 shows the plots of M4(!)
and M5(!), which, respectively, are the upper and lower bounds on the Fourier amplitude
spectra as de:ned in Equation (13). In the numerical calculations it is assumed that the
frequency range of interest lies in 0.20–25:00 Hz. The envelope parameters are taken as
�=0:13, �=0:50 and A0 = 2:17, which :x the duration of the critical earthquake to be about
30 s and maximum value of envelope e(t) to unity. Similarly, the constraints that are relevant
in deriving the stochastic critical excitations (Section 3) are taken to be E0 = 1:45 m2=s4 and
n+0 =1:64 s−1. The value of n+0 was selected based on the dominant frequency observed in
Fourier transformation of recorded accelerograms. This value is consistent with the dominant
frequency of 2Hz that is prescribed for the Kanai–Tajimi spectra for a :rm soil site [13]. This
leads to ET =11:40m2=s4 and E2 = 153:96m2=s6. Moreover, the assumed value for ET implies
that the expected PGA is about 0:44g which is same as the PGA used in the deterministic
model.
The estimates of U SHW obtained from individual records is also listed in Table I. Here, the

intensity of the reference white noise M'g(t) is taken to be 0:02m2=s3. In estimating U SHW , each
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Table I. Information on basis earthquake records for a :rm soil site [18; 19].

SNo. Earthquake Site Magni- Epicentral Compo- PGA PGV PGD Inten- U SHW

tude distance nent (m=s2) (m=s) (m) sity
(km) (m=s1:5)

1 Mamoth lakes Convict 6.2 1.5 W 4.02 0.21 0.05 3.73 0.6164
05.25.1980 Greek

2 Loma prieta Capitola 7.0 9.7 W 3.91 0.31 0.07 3.82 0.6307
10.18.1989

3 Morgan hill Halls 6.1 4.5 S60E 3.06 0.40 0.07 2.33 0.6276
04.24.1984 valley

4 San Fernando Castaic, old 6.6 27.6 N21E 3.09 0.17 0.04 2.07 0.6158
02.09.1971 ridge route

5 Park:eld Park:eld 5.0 9.1 N 3.80 0.10 0.01 1.74 0.6358
12.20.1994 fault zone

6 Caolinga Cantua 6.5 30.1 N 2.83 0.26 0.10 2.67 0.6168
05.02.1983 creek school

7 Northridge Canoga 6.7 5.9 S16W 3.81 0.60 0.12 4.17 0.6303
01.17.1994 park

8 Cape Mendocino Petrolia 7.0 5.4 N 3.25 0.45 0.15 2.44 0.6256
04.25.1992 general store

9 Westmorland Westmorland 5.0 6.6 S 4.35 0.44 0.15 3.26 0.6171
04.26.1981 :re station

10 Imperial valley Calexico 6.4 17.4 S45W 2.68 0.22 0.10 2.30 0.6369
10.15.1979 :re station

Figure 2. Upper and lower bound Fourier amplitude spectra constraints.

record is assumed to be representable in the form of Equation (3). An estimate of the envelope
of the form given in Equation (5) is obtained by selecting A0, � and � to match the transient
trend of the earthquake record. Subsequently, samples of the stationary part of acceleration,
namely Mwg(t) are obtained by dividing the given record by the estimated envelope. This is
followed by estimation of sample psd of Mwg(t) which, in conjunction with Equation (22),
leads to the estimate of U SHW . As can be seen from Table I, the average value of U SHW
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Table II. Nomenclature combinations of constraints used for Model I: Deterministic model of Section 2;
Model II: Stochastic model of Section 3 and Model III: Data based model of Section 4.

Case Model I Model II Model III

1 Intensity & PGA ET & n+0 Intensity & PGA
2 Intensity, PGA & UBFAS ET, n+0 & U SHW Intensity, PGA, PGV & PGD
3 Intensity, PGA, PGV, PGD & UBFAS — —
4 Intensity, PGA, UBFAS & LBFAS — —

across the ten records turns out to be about 0.63. For sake of comparison, the increase of
entropy rate U SHW was also computed for a Kanai–Tajimi psd valid for :rm ground, that
is, with soil natural frequency !g = 2:50 Hz, soil damping +g = 0:60 and intensity parameter
0:02 m2=s3 [13]. This value was computed to be 0.64, which is close to the value estimated
for the recorded ground motions in Table I.

4.2. Example 1: seismic response of a chimney

A 46 m tall reinforced concrete chimney with a uniform circular cross-section, of 3:80 m
outer diameter, 3:30 m inner diameter, constant mass density of 2500 kg=m3 and modulus
of elasticity E=2:0× 1010 N=m2 [20] is considered (Figure 1(a)). A :nite element analy-
sis using 20 two-noded beam elements, with one translational and one rotational degree of
freedom at each node, showed that the :rst :ve natural frequencies of the chimney were
0:94; 5:90; 16:52; 32:36 and 53:51 Hz, respectively. Since only the :rst three modes lie in the
assumed frequency range of 0.20–25:00 Hz, we retain only the :rst three modes in the sub-
sequent analysis. A modal viscous damping of 5 per cent was assumed for all the three
modes.
A detailed parametric study involving three response variables (tip relative displacement,

base bending moment and base shear force) and diKerent combinations of constraints has
been conducted with an aim to discern characteristics of associated critical excitations and the
highest responses. The nomenclature used for describing various models and the constraint
combinations considered is summarized in Table II. As has been already mentioned, the opti-
mization problems in developing Models I, II and III have been tackled by using ‘CONSTR’
program of MATLAB Optimization Toolbox. While implementing this procedure, several al-
ternative starting solutions from within the feasible region were considered and it was observed
that all the starting solutions lead to the same maximum. The question of number of terms
to be retained on the series representations used in Model I (Equation (4)) and Model II
(Equation (16)) on the convergence of critical response was considered :rst. In either case,
about 30 terms were found to give satisfactory representation. It is to be noted here that in
distributing {!n}Nf

n= 1 in the interval (!0; !c), it was found advantageous to select some of
these !n to coincide exactly with the structure natural frequencies that lie in (!0; !c) and also
to place relatively more points within the modal half-power bandwidths. In the subsequent
numerical work it is assumed that Nf = 31.

The eKect of imposing alternative constraints on the critical excitations (Model I) is studied.
Figures 3 and 4 show the critical excitations and their Fourier amplitude spectra for cases 3
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Figure 3. Example 1: Critical ground acceleration, Model I, case 3; (a) Time
history (b) Fourier amplitude spectrum.

Figure 4. Example 1: Critical ground acceleration, Model I, case 4; (a) Time
history (b) Fourier amplitude spectrum.

and 4, respectively. Here, the response variable to be maximized is taken to be the tip relative
displacement of the chimney. Given the series representation adopted for critical excitations,
see Equation (4), the imposition of constraints on lower and upper bound Fourier amplitude
spectra, has been possible only at discrete frequencies given by !=!n, n=1; 2; : : :; Nf . Re-
sults from stochastic critical excitation models are shown in Figure 5 for case 2. Here again
the critical response is the standard deviation of the tip relative displacement. The results on
critical responses are summarized in Tables III and IV. Table III gives the maximum dis-
placements corresponding to constraint cases 1–4 for Model I. The highest bending moment
and shear force at the base that the corresponding critical excitations produce are also listed
in this table. Similar results obtained using Models II and III are shown in Table IV. For
purpose of comparison, the chimney responses to the recorded earthquake inputs { Mvgn(t)}Nr

n=1
were also computed. It was found that the highest tip relative displacement, base bending
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Figure 5. Example 1: (a) psd of Mwg(t); (b) sample realization of critical Mug(t), Model II, case 2.

Table III. Summary of maximum responses for Model I: (a) chimney (response variable is tip relative
displacement), (b) Earth dam (response variable is horizontal tip displacement).

Case Chimney response Earth dam response

umax (m) BMmax (MN m) SFmax (MN) uxmax (m) uymax (m)

1 0.8520 125.0811 3.7516 0.5357 0.0365
2 0.6348 92.1632 2.8706 0.5353 0.0366
3 0.5489 80.5604 2.5755 0.4863 0.0401
4 0.3475 50.0173 1.6672 0.2895 0.0493

moment and base shear force were, respectively, 0:2067 m, 30:2081 MN m and 1:0728 MN.
Based on the extensive numerical investigations carried out and based on results presented in
Figures 3–5 and Tables III and IV, the following observations are made

1. For Model I, the magnitude of critical response produced and frequency content of critical
excitations are strongly dependent on constraints imposed (Figures 3 and 4, Table III).
If available knowledge on future earthquake is limited to its intensity and PGA (case 1),
the critical excitations are highly resonant and response produced is overly conservative
(Table III). Additional constraints on bounds on Fourier amplitude spectra (case 4) makes
the critical excitations realistic in terms of their frequency content and the responses that
they produce. To see this, the critical responses produced by alternative constraint scenarios
can be compared with the highest tip relative displacement of 0:2067 m that is produced
by the recorded motions { Mvgn(t)}Nr

n=1. Thus for the case of constraints on intensity and PGA
(case 1), the critical response is 4.12 times the highest response produced by { Mvgn(t)}Nr

n=1
while, for case 4 this ratio is about 1.68.

2. Similar feature is also observed in Model II, where imposition of constraints on input en-
tropy rate makes the critical psd non-resonant in nature. Subsequently, the critical response,
namely the standard deviation of tip displacement, drops from a value of 0:41 to 0:24 m
as the constraint on entropy rate is brought in.
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3. The imposition of constraints on bounds on Fourier amplitude spectra in Model I and
on the entropy rate in Model II, essentially force the input energy to get redistributed at
frequencies other than the structure fundamental frequency. In Model I, it was observed
that the Fourier coe=cients at the :rst two modes reach their respective upper bounds
and the energy also gets distributed across other frequencies that are not the structure
frequencies. On the other hand, for Model II, upon imposition of a constraint on entropy
rate, the critical psd continues to possess a dominant peak at the structure fundamental
mode but with signi:cant average power smeared across other frequencies with no bias at
higher structure natural frequencies.

4. In the numerical studies, it was observed that the qualitative nature of critical inputs did
not change as alternative critical response variables, namely, tip relative displacement, base
bending moment and base shear force were considered. This is to be expected, given the
one dimensional nature of the structure. Here, all the three response variables considered
are likely to be dominated by the fundamental mode. Table IV summarizes the maximum
values of critical responses produced by Models I, II and III as the critical response
variables are varied. It is to be noted that results from Model II refer to the highest standard
deviations. It can be seen that the responses produced by Model I (case 4) compare well
with corresponding results from Model III. To compare the results from Model II with
those from deterministic models, one has to multiply results from Model II by a peak
factor before this comparison can be carried out. An approximate analysis, with an assumed
duration of 30 s, revealed a peak factor of about 2.70. Based on this, results from Model
II with constraints on intensity and entropy rate, are seen to produce relatively higher
responses.

With a view to understand the sensitivity of critical response with respect to variations in
values of constraints, as well as variations in values of envelope parameters, a limited amount
of sensitivity analyses using numerical methods have been carried out. For this purpose both
deterministic model (Model I) and stochastic model (Model II) are considered. The parameters
in Model I are E1; M1; M2; M3; M4(!); M5(!); � and �, while for Model II, the parameters
are ET; n+0 ; � and �. To study the sensitivity of critical response with respect to a speci:c
parameter, the value of this parameter is changed by 1 per cent while all other parameters
are held :xed at their respective speci:ed values. The optimization problem is re-solved with
this change in place. This leads to the calculation of the percentage change in the critical
response, denoted by .1, and also the ratio of change in the response value to the change in
the parameter value, denoted by .2. Table V summarizes the results of this calculation for
the cases of critical responses being the tip relative displacement and the standard deviation
of the tip relative displacement for Models I and II, respectively. For the bounds M4(!)
and M5(!), the change of 1 per cent is taken to be uniform across all frequencies. In the
deterministic model, the results presented in Table V corresponding to M2 and M3 are for
case 3, while others correspond to case 4 of the same model. Results of stochastic model
correspond to case 2. It can be observed from Table V that the change in intensity parameter,
E1, and LBFAS, M5(!), for Model I, alters the optimum solution considerably compared
to similar changes in other parameters. For the stochastic model, entropy rate, U SHW and
intensity, ET, produce noticeable changes in the optimum solution compared to changes in
other parameters. The optimum solution is less sensitive to the envelope parameters, � and �
for both the models.
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Figure 6. Example 2: Critical ground acceleration, Model I, case 4; (a) Time history (b) Fourier
amplitude spectrum, response variable is horizontal tip relative displacement.

Figure 7. Example 2: Critical ground acceleration, Model I, case 4; (a) Time history (b) Fourier
amplitude spectrum, response variable is vertical tip displacement.

4.3. Example 2: seismic response of an earth dam

The dam structure considered has modulus of elasticity E=8:09× 1010 N=m2, mass density
of 1:84× 108 kg=m3 and Poisson’s ratio /=0:45 (Figure 1(b)). The seismic response of this
structure has been considered earlier by Clough and Chopra [21]. The dam is modelled using
seven 2-D, plane strain, eight-noded, quadrilateral elements with two translational degrees of
freedom at each node. Free vibration analysis is carried out using NISA :nite element package
and the :rst :ve natural frequencies were found to be 1:24; 1:99; 2:37; 2:97 and 3:47 Hz,
respectively. These values match well with those presented in Reference [21]. Only the :rst
:ve modes are considered in the subsequent analysis and modal damping is assumed to be 5
per cent for all the :ve modes.
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Figure 8. Example 2: (a) psd of Mwg(t); (b) sample realization of critical Mug(t), Model II, case 2, response
variable is horizontal tip relative displacement.

Figure 9. Example 2: (a) psd of Mwg(t); (b) sample realization of critical Mug(t), Model II, case 2, response
variable is vertical tip displacement.

The critical excitations, as per Models I, II and III, and for alternative scenarios listed in
Table II were studied for this structure also. The nature of dependence of critical input and
the responses on alternative constraint scenarios was broadly similar to the one observed in
the previous example. However, given the two-dimensional nature of the earth dam structure,
it may be expected that alternative response variables, such as horizontal tip displacement and
vertical tip displacement, are dominated by distinct structure modes. Consequently, the nature
of critical inputs for these alternative response variables can be expected to be diKerent from
each other. This is illustrated in Figures 6–9, in which results on critical inputs for Models
I and II are presented for the cases of two critical response variables, namely, tip horizontal
displacement and tip vertical displacement. It may be observed from Figures 6(b), 7(b), 8(a)
and 9(a) that the frequency content of critical input change noticeably as the response variable
is changed from tip horizontal displacement to tip vertical displacement. The results on the
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Table VI. Maximum responses for the earth dam for alternative critical response variables.

Response variable Model I, case 4 Model II, case 2 Model III, case 1

uxmax (m) uymax (m) S xmax (m) S ymax (m) uxmax (m) uymax (m)

Horizontal displacement 0.2895 0.0493 0.1154 0.0224 0.3292 0.0586
Vertical displacement 0.1784 0.0720 0.0835 0.0300 0.1613 0.0801

critical responses produced are summarized in Table VI. The highest horizontal and vertical
tip displacement produced by { Mvgn(t)}Nr

n=1 were, respectively found to be 0.1946 and 0:0531m.
The critical responses for Model I case 4 is seen to compare well with results from Model
III case 1. While responses from Model II case 2, are seen to be higher. Again, it has to be
noted that results from model II are to be multiplied by a peak factor of 2.7 before these
results can be compared with results from Models I and III. Detailed study on Model I,
for constraints as in cases 1–4 (Table II) was also carried out and the critical responses
produced are summarized in Table III. The qualitative trends observed here were similar to
the one observed in the previous example. The highest horizontal displacement corresponding
to Model I case 1 is observed to be 2.75 times the highest response produced by { Mvgn(t)}Nr

n=1,
while for vertical displacement this ratio is 2.21. For case 4, these ratios drop to 1.49 and
1.36 for horizontal and vertical displacements, respectively.

5. CONCLUDING REMARKS

Critical seismic excitations, by de:nition, depend upon reliably known features of earthquake
and on dynamic characteristics of the structure under consideration. The dependence of these
excitations on structure properties introduces elements of arti:cialness into their characteristics.
The realism contained in critical excitations is dependent on the set of constraints that these
excitations are required to satisfy. The present study has explored the dependence of the
nature of critical excitations on a set of constraints that reLect intensity, peak values of
ground acceleration, velocity and displacement, upper and lower bounds on Fourier amplitude
spectra and measures of disorder expressible in terms of input entropy rate. Studies within
the frameworks of deterministic and stochastic analysis have been reported. The illustrative
examples include a one-dimensional and a two-dimensional structures. Based on this study, we
reach the conclusion that the constraints involving lower and upper bound on Fourier amplitude
spectra for deterministic models and constraints on entropy rate for stochastic models are
crucial in developing realistic critical excitation models.
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