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AXIAL VIBRATIONS OF A STOCHASTIC ROD
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The free and forced axial vibration of a rod with stochastically varying mass and stiffness
properties is considered. Exact probabilistic descriptions of the response variables are
shown to be obtainable for a highly idealized case. The probability distributions of the
cigensolutions, Green function and input receptance function for this case are obtained.
The usefulness of these results as benchmarks in the study of confidence limits of responses
predicted by Statistical Energy Analysis (S.E.A.) is noted.

1. INTRODUCTION

A principal aim of Statistical Energy Analysis (§.E.A.) has been the analysis of vibrating
systems as drawn from an ensemble of random systems; see the books by Lyon [1]. These
ensembles are thought of as arising out of random fluctuations in the material, geometric
and topological characteristics of the system under study. Consequently, the dynamic
characteristics, such as natural frequencies, mode shapes and transfer functions, of either
the system taken as a whole or of the individual component subsystems become stochastic
in nature. Originally, effort was cenltered on establishing the mean values of the various
responses being studied, but more recently higher order statistics have become of interest:
i.e., the calculation of confidence estimates for the predicted averages. Potentially, this
interest leads 1o a rigorous forced response analysis of the system, where the probability
density function (pdf) of the response variables must be related to the random flucluations
in the properties of the system. This problem is evidently too complicated for a general
analytical solution, and for most cases can be approached only through numerical methods
based on Monte Carlo simulation techniques.

Monte Carlo techniques are quite good at predicting mean values but become increas-
ingly poor as higher order statistics are surveyed. Even so, they must faithfully reproduce
the required statistical variation in the ensemble being studied, the size of which fundamen-
lally affecis the accuracy of the results. Before an extensive program of such numerical
simulations is undertaken for any given structural configuration, it is obviously desirabie
to establish benchmark results against which the simulation algorithm can be validated.
The present work has been focused on obtaining just such a benchmark. An exact and
fairly complete, probabilistic description of the response of an idealized random structural
system is considered: specifically, the axial vibration of a fixed-fixed rod, the stiffness and
mass properties of which vary randomly along its length has been studied. The pdf of the
eigenvalues of the rod are determined by using a procedure proposed by Iyengar and
Athreya [2], and developed further by Tyengar and Manohar {3] and Manohar and lyengar
[4]. For a specific combination of system parameters it has been shown in reference [3]
that an exact expression for the pdf of the eigenvalues is obtainable. Although highly
idealized, this result is developed further in the present study to determine the pdf of the
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eigenfunctions, the Green function and the input receptance function. As such it provides
a benchmark for other methods which deal with more physically realizable cases. In a
future study these results will be incorporated into the “exact” formulations presented by
Keane and Price [5] to determine the pdf of the energy flows in an assembly of two coupled
rods. -

2. EQUATIONS OF MOTION
The axial vibration of a viscously damped fixed-fixed rod‘is”governed by

~ 2 ~
2 [A(f)E(f) 9’?} o e T-Fw o, 50,0=0, KLo=0. (1)
0% ox ot ot
Here A(X) is the area of cross-section, E(¥) is the Young’s modulus of elasticity, p(X) is
the mass density per unit length, C(¥) is the coefficient of viscous damping, F(%, 1) is the
external force acting on the rod and L is the length of the rod. In the present study the
quantities A, £ and p are taken to vary randomly along the length of the rod %. The
damping coefficient is assumed to be proportional to the mass process and hence this also
varies randomly in space. The force F(#, )} could be random in both £ and ¢ co-ordinates,
but attention is focused in the present study on F being a point harmonic/random force.
By non-dimensionalizing both the dependent and independent variables with respect to
the length of the rod and introducing the variables,

x=%/L, y=y/L,  AX)E(x)= ALl +yg(x)], (24
px)=poll +ef(x)],  C(x)=vpo[l +¢f(x)], (5,6)
Wr=pol2fAcEy,  B=vL*/AE,, Fix, )= LF/AyEy, (7-9)

the system of equations (1} can be recast as

& F
g {[1 +yg()] %‘i}aﬂl + o () 5+ BU1 + £ (0) 2= Fex, )

Ox x (10)

w0, 3=9, (1, H=0.
Here the functions g(x) and f(x) are taken to be jointly stationary random processes which

are bounded in a2 mean square sense. Clearly, the quantities [1+ yg(x)] and [] + £f(x)]
must be strictly positive for all values of x.

3. RANDOM EIGENVALUES

The study of the eigensolutions of equation (10) involves the solution of the stochastic
boundary value problem given by

Y
c;i_x {[l +yg(x)]%)—c}+/12[1 + &f(x)]Y =0, Y{0)=0, Y(I)y=0. (11, 12)

Here the eigenvalue parameter A is a random variable and the solution ¥(x) is a random
process, A complete solution of equations (11, 12) involves the determination of the joint
probability density function of the eigenvalues and the eigenfunctions. A general solution
of this problem does not currently appear to be possible. However, for specific models for
J(x) and g(x), solutions for the pdf of the eigenvalues can be obtained by using the
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procedure outlined in references [2-4]. This procedure can be briefly summarized as
follows.

For an agrbitrarify assigned value of 4, let Y*(x, 1) be the solution of equation (11)
together with the initial conditions

Y*(0,1)=0, (dY*/dx)(1, ) =1. (13)

Letl Z,(A} denote the nth zero of Y*(x, A). It is known from the Sturm- Liouville theory
of ordinary differential equation that the Z,(1) are non-increasing in A; see, for example,
the book by Birkhoff and Rota [6]. Note that the s, which are the eigenvalues of the
equations (11} and (12), satisfy the relation

ZAA)=1 (14)

Thus, the problem of characterizing the eigenvalues of equations {11) and (12) can be
posed in terms of the study of Z,{(A4). To facilitate this study, it is useful 1o introduce a
pair of amplitude and phase functions through the co-ordinate transformation

Y¥x, ) =r(x)sinp(x). [I+yg(x}]dY/dx=r(x}Acosd(x).  (15,16)

The governing equations for r(x) and ¢ (x) can then be shown to be given by

di _Ar i B . %: [cosd; ]
dx 2 [(l+yg) (l+sf)}sm 2¢, ek ran +{1+¢f)sin’¢ (17, 18)

together with the initial conditions
rO)=[1+yg®]/L,  ¢(0)=0. (19,20}
It is observed from the above that ¢(x, A) is non-decreasing in x and also that
PlZ,(A), ] = nn. (21)
Since ¢ (x) is non-decreasing in x it follows that
PIZ(A)<x]=Pl9(ZA) < ¢(x, )]=Plan < ¢ (x, A)]. (22)
Furthermore, Z,(1) is non-increasing in A and hence
P, €A1=PZ A< ]=Plrr < (1, A)]. (23)

Thus, in order to find the pdf of 4,, equation (18) must be solved together with the initial
condition (20), for every value of A; also the pdf of ¢{x, A) at x=1 must be obtained.
When f{x) and g(x) arise as stationary, broadband random processes it is possible to
obtain acceptable approximations to the pdf of the eigenvalues by using Markov process
theory [3, 4]. A discussion of this aspect is not pursued here but, instead, a special case
which is amenable to an exact analytical treatment is considered.

4. A SPECIAL CASE
It can be seen from equations (17) and (18) that when f{x) and g(x) are such that

14 &f(x) = 1/[1 + yg(x)), (24)
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the problem is significantly simplified. In this case
Plx)=Ax+ed J flsyds,  r(x)=r(0), (25, 26)
0
and hence

Y*(x, A)=r(0) sin [lx + gh fo(s) ds]. 27

The expression for the eigenfunctions Y,{x) and eigenvalues A, can then be oblained by
using the condition Y™(1, A)=0. This leads to

Y, (x)=sin [/1,, (x+ p f ") ds)], /1,,=mr/[1 T '[ £(5) ds]. (28, 29)

Here the amplitude of the eigenfunctions has been normalized to unity, This results in no
loss of generality since r(x) as given by equation (26) is independent of x. Furthermore, it
is of interest to note that the eigenfunctions satisfy, with probability one, the orthogonality
condition

t 1
J. Yo(x} Vi1 + £f(x)] dx=l:] + e‘j fis) ds} S/ 2, (30)
0 0

where &, is the Kronecker delta function. Once the probabilistic description of the process
f(x) is available, the pdf of the eigenvalues and the eigenfunctions can easily be determined
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by using the rules of transformation of random variables. In the present study, for the
sake of mathemaltical expediency, the process f(x) is taken to be a stationary Gaussian
random process modelled as

fx)=mp+ ol (x). 31)

Here {(x) is a Gaussian random process with zero mean and an autocorrelation function
given by

Re(xy, xa)=exp [—alxi— xq|]. (32)

It must be noted that as a consequence of modelling f{x) as a Gaussian random process
the stipulation that the mass process p(x) is striclly positive is violated, albeit with a
possibly low probability. In the same sense, the stiffness and damping processes also could
become negative. Strictly speaking, this is not acceptable; however, for {(m,/o/)=3 it is
expected that this limitation is not crucial. Equations (28) and (29) together with the
model for f(x) given in equation (31) enable one to determine the pdf of any desired
eigensolution. It is useful at this stage to introduce the notation

Q(x)=f ¢(s) ds, (33)
0
Clearly, Q(x) is also a Gaussian process with zero mean and variance given by

0'.~2c=f j R;(xl,xz) dx; dx,. (34)
a Yo
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The pdf of the nth eigenvalue and the nth eigenfunction can be shown to be given, respec-

tively, by
z
nw -t jnr 1+ sm,} ]
(A= ——exp| =S §——— =0 |, (35)
Pi(A) eo, A (2m) P [20% {sof/l g0y

@ ya, (n o3
ppx)= % Z'T;\ggew[—aﬁé} (36)

1
= 37
H bd J(1 — y*)2no10./(1 — 01,)’ 37
_[Gin~'y +2may 1 2g,(sin'y +2mn) o 13
%= [ O'ibz +d20'% alﬂ'xbd 2(1 g].\:)s ( )

—2a(sin”'y+2mr)  2¢ 2004  20.c(sin”y+2mr)
G=—| 5 Taat *
oLb d o7 a,0.bd oo bd

]/2(1 - o), (39)

2 2
a4=[ P 2""“‘3]/2(1—a?x), (40)

o8 &6} o.0,bd

1 X
cr.‘~—~|:J. .[ Ri(x,x2) dx, dxz]/o‘.ox, (41)
0 Yo

1 1
crf='{ j Re{x1x7) dxy dx,, a=HnrxX-+Hanxeny, (42, 43)
0 1]

b=mracrf, c=1+emy, d= E0y. (44-46)

It may also be noted that the derivation of the joint pdf between 4,, ¥,(x,) and Yi(x,) is
fairly straightforward. However, the relevant expressions are quite complicated, and are
therefore not presented here.

5. GREEN FUNCTION

The Green function denoted by G(x, &, 1, 1) is defined as the solution of equation (10)
when F(x, t)=6(x— &) 8(¢r— 1) In terms of the natural frequency and mode shapes of the
system the Fourier transform of the Green function is given by

_ v 2Y(x)Y,()H,(w)
G(x, ¢ w) —m; Wl +e [Lf(s)ds]

Here Y,(x) is the nth eigenfunction and H.{je) is the complex frequency response function
of the nth mode. When the eigensolutions of the system are random functions it is clear
that the Green function is also random in nature and it is of interest to determine the pdf
of this function. A general solution is again not available, but for the special case considered
in the previous section, solutions can still be obtained.

From a study of equations (28), (29) and (47) it becomes apparent that for fixed values
of x and § the quantity G{x, &, @} is a function of three random variables; namely, O(x)},
Q(Z£) and Q(1). In the present study these random variables are taken to be jointly
Gaussian. It may be noted that for fixed values of x and £, G(x, &, @) is a complex random

(47)
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variable, and hence a complete description of this random variable would require the joint
pdf between the real and imaginary parts. The highly non-linear nature of the transforma-
tion involved rules out the possibility of applying the standard method of finding the pdf
of this function of random variables based on the inverse of the function, Alternatively,
one can use the characteristic function method to determine the pdf of the transformed
random variable. Thus, for instance, if one is interested in the amplitude of the Green
function defined as

Ax, &, 0)=/{Re [G(x, £, 0)]*+ {Im [G(x, £ @)]}%, (48)
one can first find the characteristic function of 4 using
q‘)A‘(Q’ X, 61 &)) = <exp [jQA(x! ga (0)]) (49)

Here { - ) denotes the expectation operator. The pdf of A can then be determined through
the inverse Fourier transform, defined by

I (" .
pala, % &, w)=;f D[, x, & o) exp (—€2a) dL2. (50)
T — a0
In fact, this procedure for finding the pdf can be shown to be equivalent to using the
identity
1 in {2 {a—- A(x, £,
pA(a, x, 5’ m)= ]]m [_]<Sln { ¢ Ia (/\, 5 fﬂ)]}> ] (5[)
2= LT {a—A(x, & o)}
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Figure 5. Contours for pdf of ninth eigenfunction: ——. 1-0E-04; ----- y Ol —— -, 1.0; —-—, 20,
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A proof of this simplification has been given by, for example, Pugachev [7]. It must be
emphasized bere that knowledge of the joint pdf of Q(x), Q(£) and Q(1) would enable one
to determine the expectation appearing in equations (49) and (51}. However, evaluation of
the integrals such as that in equation (51) in closed form is not feasible, and numerical
techniques must be resorted to. The experience gained by the present authors in this
direction has shown considerable numerical difficulties in evaluating such integrals and it
has proven more advantageous to evaluate the equivalent probability distribution function
(pdf). This entails an additional integration with respect to the state variable a and upon
this integration the expression for the distribution function becomes

1
Pa, x,{ 0)= Qlim - (Silf2.a — Q.A(x, &, )] —Si[—Q.A(x, §, 0)]D. (52)
Here Si(x) is the sine integral, defined as
Si(x)=| —ds. (53)

This function can be easily computed by using the formulae listed by Abramowitz and
Stegun {8]. It may be added that the joint probability distribution function of the real and
the imaginary parts of the Green function can also be determined by following the steps
outlined above.
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6. INPUT RECEPTANCE

The total power input to the system when a force F(x, f) acts on the system is given by
I
MAt)= .[ W, F(x, NF(x, 1) dx. (54)
0

For the case of F(x, 1) being a unit white noise process acting at a point x=x,, the average
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Figure 10. pdf of twentieth eigenfunction.

total power injected over long time periods can be written as

lim <H.-n(f)>=J.m Hin(x, @) do. (55)

s
—

The function IT,(x,, @) is termed the input receptance function, and can be shown to be
given by

(X0, @)= —jo ITm [G(xq, X0, @)]- (56)

This function is intimately related to various S.E.A. parameters and is of relevance to the
present study; see, for example, the paper by Keane and Price [5]. When the system
parameters are random quantities the pdf of this function is again of interest. For the
special case discussed in section 4 this pdf can be obtained by using an approach similar
to that already described in the previous section. It is clear from equation (47) that, for
fixed values of @ and x, the input receptance is a function of two random variables;
namely, O(xs) and Q(1). The probability distribution function of the input receptance
function can thus be determined by using a relation similar to the one given in equation
(52).
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7. NUMERICAL RESULTS AND DISCUSSION

Numerical results have been obtained to illustrate the preceding theoretical analysis. A
uniform rod having L=35-186 m, ApLy=17-85 MN, py=4-156 kg/m and v=80s"" was
randomized as per the model described in equations (24), (31) and (32). The parameters
of the random process model for f(x) were taken to be £=0-§, me=10, 6,=0-3and a=
20-0. The variation of the mass and stiffness processes for one realization of an ensemble
having these properties is illustrated in Figure 1.

The pdf is of the eigenvalues for modes 1-10 and 20-29 are shown in Figures 2 and 3,
respectively. From equation (29) it can be deduced that the standard deviation of the nth
eigenvalue is linearly proportional to n. Accordingly, from Figures 2 and 3 it can be
seen that the spread in the pdf of the eigenvalues increases with increasing mode count.
Consequently, in a probabilistic sense, there is a greater overlap of the eigenvalues in the
higher frequency ranges. It is also of interest to note that there is an intrinsic regularity in
the pdf of the eigenvalues in the sense that the pdf of the quantity (4,/#) is invariant with
respect to the changes in n. This property can be expected to be specific to the special case
considered in this study and may not hold in general for axially vibrating random rods.

The pdf’s of the first, ninth, twentieth and twenty-ninth eigenfunctions are presented as
contour maps in Figures 4-7 as functions of non-dimensional position x. To facilitate the
interpretation of these functions, three-dimensional views outlining the surface of the
functions are shown in Figure 8-11. Notice that the “spiky” nature of these three-dimen-
sional plots, particularly near the boundaries, arises from aliasing problems that occur
during plotting, and such spikes are not present in the actual functions. The contours

Figure 11. pdf of twenty-ninth eigenfunction.

shown in Figures 4-7 have also been marked in Figures 8-1] for comparison. Notice that
here the infinite summation appearing in equation (36) has been carried out over the limits
of —50 to 50, which ensures convergence. It is of interest to consider the variations in the
structure of the pdf of the eigenfunctions along the length of the rod. Since at x=0 and
at x=1 the displacements are zero, the pdf’s degenerate at these points to Dirac’s delta
function centered at zero. This may be seen from the large peaks in the pdf near x=0 and
x=1. It can further be observed from equation (28) and equations (36-46) that the
eigenfunctions are bounded in (—1, 1) and also that the pdf of the eigenfunctions has
singularities at y = % 1. At the antinodes much of the probability is seen to be concentrated
near one or other of these two extreme points. On the other hand, near the nodes, the
eigenfunctions of lower modes are seen to have a Gaussian-like structure centered around
a zero mean value, while for higher modes it tends to spread out and resemble an “arcsine”
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Figure 12. (a) pdf of ninth eigenfunction: — —, x=0:40; —. — x=041; —.. — x=042; —...—,
x=043, —. ... —, x=044; —-....— x=045; -c--. , X=046; —--~, x=047;, — — — x=048;
—— -, x=0-49. (b) pdf of twenty-ninth eigenfunction: — —, x=0-4000; — . —, x=0-4025; — .. —, x=
0-4050; — ... —, x=04075;, —. ... — x=04100; —..... —, x=0-4125; ~u--- , x=0-4150; -- -,
x=04175; — —, x=0-4200; — — -, x=0-4225.

type of function. In the region between a node and antinode the pdf undergoes a continuous
transformation between these two types of behaviour, This is illustrated in Figures 12(a)
and 12(b), where cross-sections of the pdf of the ninth and twenty-ninth eigenfunctions
are shown in a region spanning two successive antinodes. The variation in the shape of the
pdf along the length of the rod is observed to be more pronounced for the eigenfunctions of
the lower modes. This is perhaps because the higher modes have larger number of nodes
and hence are constrained to oscillate a larger number of times. Consequently, they tend
to have a more uniform structure for the pdf. As might be expected, the behaviour of the
pdf of the eigenfunctions near the boundaries is invariably controlled by the boundary
conditions which apply to all modes. It may be noted that it is possibie 1o calculate the

second order properties of the eigenfunctions such as their covariance functions, but this
study is not pursued here.
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The contours of the probability distribution function for the amplitude of the Green
function for the case of x=¢ and @ =4000 rad/s are plotted in Figure 13 as functions of
position x. The corresponding functions for the case of x# & are shown in Figure 14 for
£=02, again as functions of x. For comparison the equivalent plots of the Green function
amplitude for the deterministic case of o, =0 are shown in Figures 15 and 16. The contours
of the probability distribution of the input receptance function are presented in Figures
17 and 18 for @ =4000 rad/s and @ =20 000 rad/s. The variations of the equivalent deter-
ministic input receptance function for the case of o,=0 at these driving frequencies are
shown in Figures 19 and 20.

The values of «&» = 4000 rad/s and w = 20 000 rad/s chosen here correspond, respectively,
1o 4 values of 10 and 50. From the plots of the pdf of the eigenvalues presented in Figures
2 and 3, it can be seen that the point A= 10 lies between the fourth and fifth mode, while
the point 1=150 is centered around the twenly-fourth mode but is affected by all modes
lying between the twenty-second and twenty-sixth: that is, these two frequencies lie near
the centers of Figures 2 and 3 respectively. For the case of @ =4000 rad/s, the variations
in the contours of the probability distribution of both the Green function amplitude
and the input receptance broadly follow the pattern of variation of the corresponding
deterministic curves. The fifth mode of vibration s seen to dominate the response. Clearly,
the functions are non-stationary in nature. At higher frequencies the nature of these
functions is affected by the greater overlap in the modes, and also by the tendency of the
higher mode shapes to show rapid variations. These features are evident in Figure 18,
where the contours of the probability distribution of the input receptance function for the
case of @ =20 000 rad /s are seen 1o be fairly constant in regions away from the boundaries,
but to show wide fluctuations near them.



AX1AL VIBRATIONS OF A STOCHASTIC ROD 355

Position

00 0-02 (0-04 0-06 0-08 0-10 0-12 0-14
State variable
Figure 14. Contours for PDF of |G(x, £, w)|, @ = 400D rad/fs, & =0-2: — —, 005, —. —, 0-]; —..— D-2:
=, 0} — s — 045 -aaee Yy 0T, —— 08, -+, 09, ——, 095,

1-0 T T T T T T

08 .

-6

Position

-4 T

02

{0 1 { [ L f _
(-1 1 0n-2 -3 04 0-5 6

G (x, x. o)
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8. COMPUTATIONAL DETAILS

The probability distributions of the Green function and input receptance function have
been obtained by using the formulation given in equation (52). The evaluation of the
expectation appearing in this equation involves a multi-dimensional integration over infi-
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Flgure 7. Contours for PDF of mput power receptance function; @ =4000 rad/s; — —, 0-05; — . —, 0-1;
—_ = 02— — 03— 0-5 —. ... —07—08 ----- 097-——095

nite limits with respect to a Gaussian distribution. The dimension of this integration is
either two or three, depending on whether the case x=£ or x#¢§ is considered. Here a
seventh order integration scheme has been employed to evaluate this integral. The limits
of the integration are curtailed at five times the standard deviation away from the expected



AXIAL VIBRATIONS OF A STOCHASTIC ROD 357

Position

State variable

Figure 18. Contours for PDF of input power receptance function; @ =20 000 rad/s: — —, 0-05; — . —.
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19. Deterministic input power receptance function; @ =4000 rad/s.

value of the Gaussian variate. The limiting operation with respect to the parameter €2,
was found generally to converge at around €2,=200. The convergence of the probability
distribution function of the input receptance function for the values of x=0-2 and o=
4000 rad /s with respect to the parameter 2. is shown in Figure 21. In this case the results
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are seen to converge fairly quickly for £2,.=10-0. The terms to be retained in the summation
over mode shapes appearing in the expression for the Green function clearly depend upon
the driving frequency of interest. In these computations, for a given value of driving
frequency, the nearest equivalent mode of the deterministic rod was first identified; the
summation was then carried out from the first mode to that lying over 50 modes above
this nearest mode. This is thought to guarantee convergence of the summations.

9. CONCLUSIONS

The axtal vibration of a rod with randomly varying mass and stiffness properties has
been considered. The probability density functions of the eigensolutions have been deter-
mined for a special case in which the mass and the stiffness processes bear a fixed relation
to each other. These results are further used to evaluate the probability distribution
functions of the rod Green function and its input receptance function. It has been shown
for a specific example that the inpul receptance is only stationary with respect to posilion
along the rod at driving frequencies significantly higher than the fifth natural frequency
and then only for the central 30% of the rod’s length. These results have been obtained
by using analytical procedures and are exact in nature given the assumptions stated. 1t is
intended in a future study to extend the results developed here to determine the probability
distribution of the energy flows in an assembly of coupled rod systems. It is expected that
such a study would afford useful insights into the problem of determining confidence limits
for S.E.A. results.

The special case considered here is too limited in scope to be of any great practical
importance. The results obtained can, however, serve the important function of providing
benchmark results against which any alternative solution procedures with broader scope
can be validated. Tt is precisely with this in mind that the present study has been
undertaken. A general purpose Monte Carlo simulation algorithm is currently being devel-
oped by the present authors to study energy flows in multi-coupled rod configurations.
The theoretical results developed in the present study will be used to validaite this general
purpose simulation algorithm, Specifically, they will enable checks to be made on the
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Figure 20. Delerministic input power receptance function: e =20 000 rad/s.
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Figure 21. Convergence of PDF of input power receptance function with respect to parameter £2,: — —,
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modelling of the random processes used in the simulations and, more importantly, deci-
sions on the ensemble sizes adopted to ensure suitable convergence.
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