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This paper studies the random eigenvalue problem of systems governed by the 
one dimensional wave equation. The mass and stiffness properties of the system 
are taken to vary spatially in a random manner. The probability distribution 
function of the natural frequencies is characterized in terms of the solution of a 
first order nonlinear stochastic differential equation. Analytical solutions are 
obtained based on the method of stochastic averaging. The effect of the mean and 
autocorrelation of the mass and stiffness processes and also the uncertainty in 
specifying the boundary conditions are included in the analysis. The theoretical 
predictions are compared with digital simulations. 

INTRODUCTION 

Uncertainties are unavoidable in the specification of  
mass and stiffness of  engineering structures. Tradition- 
ally in random vibration studies these uncertainties are 
overlooked. If  these uncertainties are to be taken into 
account in response analysis one faces many intricate 
questions. For  instance, the system natural frequencies 
and mode shapes will be stochastic in nature and in a 
dynamical analysis information on the joint probability 
distributions of  these quantities would be required. This 
problem is associated with the determination of  the 
eigenvalues of  random matrices and with stochastic 
boundary value problems. Very few past studies are 
available on such problems. A review on the related 
literature is available in the works of  Boyce, 1 Scheidt 
and Purkert 2 and Ibrahim. 3 A variety of  methods based 
on transfer matrix approach, perturbation analysis 
variational formulation etc., have been employed in 
the determination of  statistics of  natural frequencies 
and mode shapes. By and large the available studies 
on random eigenvalues aim at estimating the first 
two moments and often end up establishing bounds on 
them. 

A fundamentally different approach to random 
eigenvalue problems has been outlined by Iyengar and 
Athreya 4 who have studied a second order stochastic 
boundary value problem with reference to the distri- 
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bution of  the eigenvalues. They have converted the 
problem to that of  studying the zeros of  a random initial 
value problem. A significant feature of  this approach is 
that it enables the application of  Markovian methods in 
the analysis of  random eigenvalues. Recently the present 
authors 5 have studied this approach further and have 
shown that, although an exact solution is rarely 
possible, for specific types of  stochastic variations the 
associated initial value problem can be readily handled 
using approximate techniques. This paper is a continu- 
ation of the above study and it considers the case of the 
stochastic string equation in which both the mass and 
stiffness are assumed to be random processes. The 
physical motivation for considering this kind of  
randomness arises out of  modelling the uncertain 
variations of  the material and geometric properties o f  
the system. Thus, for example, in the case of  soil layers 
the mass and stiffness could be stochastic in nature on 
account of  the inhomogeneities in the soil medium. The 
aim of  the present study is to obtain an approximation 
to the probability distribution function (PDF) of the 
associated random eigenvalues. First, a first order 
stochastic nonlinear differential equation, which leads 
to the PDF of  nth eigenvalue, is derived. This closely 
follows the earlier work of  Iyengar and Athreya 4 but is 
generalized to incorporate different types of  boundary 
conditions and possible uncertainties in their specifi- 
cation. Analytical solutions of  this first order equation 
are obtained based on the method of stochastic 
averaging. This requires the assumption that there 
exists a clear cut separation between the characteristic 
lengths of the system and the stochastic coefficients. The 
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solution obtained takes into account the mean, autocorre- 
lation and cross correlation of the mass and stiffness 
processes. The scope of the approximate solutions is 
further examined through digital simulations. 

INITIAL VALUE APPROACH TO A RANDOM 
EIGENVALUE PROBLEM 

The stochastic wave equation is encountered in the 
vibration analysis of strings, bars, soil layers and shafts 
which have randomly varying material properties. In 
analysing the homogeneous equation for free vibration 
characteristics, after the space and time variables are 
separated, one needs to solve a second order stochastic 
boundary value problem. In general this problem can 
be stated as finding the nontrivial solutions of the 
equation 

d {  [ l a x  +6g(x)]~xx} +Az[1 + e f ( x ) ] y = O  (1) 

together with the boundary conditions 

dy 
a l y ( 0 ) + a 2 ~ x ( 0 ) = 0 ;  y ( 1 ) = 0  (2) 

Nontrivial solutions are possible for certain values of A, 
which are the eigenvalues of the system. In the above 
equation g(x) andf (x )  are taken to be jointly stationary 
random fields which are bounded in a mean square sense 
and the parameters e and 6 are such that (1 + ef) > 0 
and (1 + 6g) > 0. For the instance when the governing 
equation is that of a string, these quantities respectively 
correspond to the random stiffness and the mass fields. 
The dependent variable y would in this case correspond 
to the displacement field of the string. The independent 
variable, x, has been suitably normalized so that it takes 
values in the interval (0, 1). By assigning different values 
to al  and a2 one can simulate different fixity conditions. 
Thus, for example, for a string fixed at both ends, al  = 1 
and a 2 = 0 and similarly, for a bar fixed at one end 
and free at the other, al  = 0 and a2 = 1. However, in 
the ensuing analysis al  and a2 can, in general, be 
random variables with a specified joint distribution. The 
eigenvalue parameter A in this case clearly is a random 
variable. The aim here is to obtain the PDF of An, the 
nth eigenvalue. This is achieved by first converting 
the above boundary value problem into an associated 
initial value problem. For this purpose, we consider the 
solution y* (x, A) of eqn (1), such that 

dy* 
cqy*(0) + a  2 (0) = 0 ;  --~-x (0) = 1 (3) 

Clearly eqns (1) and (3) no longer constitute an 
eigenvalue problem and hence in these equations A is 
not an eigenvalue. For a given value of A, let Zn(A) 
denote the nth zero of the solution y* (x, A) of the initial 
value problem given by eqns (l) and (3). It is known 

from Sturm-Liouville theory 6 that Zn(A), n = 1 ,2 , . . . ,  
are nonincreasing in A. The function y*(x, A) can be a 
solution of eqns (1) and (2) only for a specific choice of 
A for which the condition y* (1, A) = 0 is satisfied. These 
As are in fact the eigenvalues of eqns (1) and (2). In 
other words the solution An of the equation 

Zn(A ) = 1 (4) 

will be the nth eigenvalue of eqns (1) and (2). The study 
of Zn(A ) can be simplified by introducing the Pruffer 
substitutions 6 given by 

y* (x) = r(x) sin 4~(x) 

(1 + 6g) = r(x)Acos(9(x) (5) 

In the transformed (r, 4~) coordinate system, eqns (1) 
and (3) can be shown to be equivalent to 

d___~ = A{[cos 2 ~b/(1 + 6g)] + (1 + ef) sin 2 ~b} (6) 
dx 

dr 
d---~ = 0"5Ar sin24~[1 - (1 + ef)(1 + 6g)]/(1 + 6g) (7) 

4~(0) = tan -1 {-a2A/[al  + al6g(O)]} (8) 

r(0) = {(a2/cq) 2 + ([1 4- 6g(O)]2/A2)} 1/2 (9) 

From the above equations we can observe that q~(x, A) is 
nondecreasing in x and also that the nth zero of y* (x, A) 
is the root of the equation 

¢~(x, A) = nTr (10) 

Thus Zn(A) is a random variable satisfying 

q~[Zn(A), A] = mr (11) 

Thus the study of Zn(A ) reduces to the study of q~(x, A). 
Since ~(x, A) is nondecreasing in x, it follows 

p[z.(A) _ x] = e[ (Zn, A) _< A)] 

= P[nzc <_ (9(x, A)] (12) 

Further, Zn(A) is nonincreasing in A and hence 

P[A n < A] = P[Zn(A ) < 1] 

= P[mr < ~b(1, A)] (13) 

Thus, in order to find the PDF of An, it is necessary 
to solve eqns (6) and (8) for every value of A and 
obtain the probability density of the process ~b at x --- 1. 
Although an exact solution of this problem is unlikely, 
the problem can, however, be handled by approximate 
methods for analysing stochastic initial value problems. 
It should be noted that in particular cases where al  
and a2 are random variables the probability measure 
in eqn (13) must be regarded as conditional on al and 
a2. To obtain the unconditional PDF of An, further 
integration on the distributions of al  and a2 would be 
required. 



Random eigenvalues of stochastic wave equation systems 59 

For further analysis, it is convenient to rewrite the 
processes g(x) and f (x)  as follows 

1/[1 + 6g(x)] = go + ag(x) 

= go[1 + ug(x)] 

go = (1/[1 + 6g(x)]) 

u = cr/go 

a 2 = (1/[1 + @(x)l 2) - (1/[1 + 6g(x)]) z 

(~) = O; (g2(x)) = 1 

f (x)  = mf+f(x);  ( f )  = 0 (14) 

Here (-)  denotes the expectation operator. The process 
g(x) can be interpreted as the randomness in the flexibility 
of  the system. Furthermore, the phase process can be 
redefined as 

A) = Ax + O(x, A) (15) 

With these substitutions, eqns (6) and (8) are equivalent 
to 

dO 
d--x- = A[(go - 1)cos2(O + Ax) + emfsin2(O + Ax) 

+ g0~cos2(O + AX) + efsin2(O + Ax)] 

O(o) = tan-l {--azA/[al + al6g(o)]} (16) 

The PDF  of An is now given by 

I i  mr-A) 
P[An < A] = 1 - p(O,A) dO (17) 

Here p(O, A) is the probability density of  the process 
O(x, A) at x = 1. 

STOCHASTIC AVERAGING 

Equation (16) is a nonlinear differential equation 
with stochastic coefficients. The exact solution of  this 
equation, even with simple models for f (x)  and g(x) is 
difficult to obtain. For instance, i f f  and g are obtained 
as filtered white noise processes, one can derive the 
Fokker-Planck equation for the transitional probability 
density function of  the response vector (O, f ,  g). How- 
ever, the exact solution of  this equation is not possible. 
Alternatively, one can obtain approximate solutions of  
eqn (16) which are acceptable over limited ranges of  
system parameters. Thus, under the assumption that the 
quantities (go - 1), e and u are much less than unity and 
also that the correlation lengths of  processes g(x) and 
f (x)  are much less than the relaxation length of  the 
process O(x), one can employ the method of  stochastic 
averaging to further analyse eqn (16). In the case of  
random vibration problems this method is a powerful 
tool for analysing problems in which the correlation 
time of the excitation is small compared to the 
relaxation time of  the system. 7 It is interesting to examine 

the scope of  the method when applied to stochastic 
differential equations in spatial variables such as eqn 
(16). It is first noted that for small values of  e, v and 
(go - 1), O(x) will be a slowly varying random process. 
The trigonometric terms present in the right side of  
eqn (16) give rise to rapid oscillations of  small magnitudes 
in O. Thus this equation may be approximately replaced 
by an averaged equation in which these rapid oscillations 
are suitably eliminated. First, the terms not containing 
f (x)  and ¢(x) are replaced by their spatial averages over 
(0, 27r/A) to get 

dO 
d-'-~- = 0'5(g0 - 1)A + 0.5cAm/+ vg0$cos2(O + Ax) 

+ eAfsinZ(e + Ax) (18) 

It is important to note that in the above equation 
f (x)  and g(x) are not delta-correlated and hence O(x) 
will be correlated with them. This implies that O(x) is 
not a Markov process. In the next stage of  averaging, 
based on the assumption that the band widths o f f  and 
g are much greater than that of  O, the fluctuating 
components in the above equation are replaced by 
equivalent delta-correlated processes. This leads to a 
Markovian approximation for O(x). The simplified 

1-'2 = (24) 

r3 = [o +,l-e(xl:Ix + o-//sin2A, d,  
d- 00 

(25) 

F 4 = I  °-o~ (2 - cos 2Ao-) 

x [(g(x)f(x + o-) + ~(x + o-)f(x))] do- (26) 

Here S: and S~ are respectively the power spectral 
density function of  the processes f and g. It may be 
noted that the parameters F3 and F4 are in terms of the 
cross correlation functions of  the processes $ and f. It 
follows from eqn (19) that O(1, A) is a gaussian random 

equation for further analysis is found to be 

dO 
dx A + BW(x) (19) 

where 

(W(xl) W(x2)) = 6(xl - x2) (20) 

A = 0"5A(g 0 - 1) + 0"5eAmf + 0"25ezA2I'l 

-4- 0"25g02u2A2I~ 2 - 0'25eg0uA2F3 (21) 

B 2 = 0" 125e2Az[2sf(o) + Sf(ZA)] 

+ O'125gZu2A212S~(o) + S~(2A)] 

+ O'125eAZgouF4 (22) 

F, : fo (f(x)f(x+o-))sin2Ao-do- (23) 
d- OO 

J00G / g(x)g(x "4- O-) / sin 2A'~- do- 
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variable with mean A + O(o) and variance B 2. Accord- 
ingly, the PDF of  )~, as per eqn (17) is given by 

P[,~, _< A] = 1 - erf{[mr - A - A - O(o)]/B} (27) 

where erf ( . )  denotes the error function. 

NUMERICAL RESULTS 

Numerical results were obtained to illustrate the above 
theoretical solution. It was assumed that the parameters 
al and a2 and hence the boundary conditions of  eqn 
(2) were deterministic. Four  specific examples were 
considered which highlight different features of  the 
theoretical solution. 

Example 1 

Here go = 1, v = 0, al = 1, a2 = 0 a n d f ( x )  is taken to 
be a stationary random process with power spectral 
density function given by 

S/(A) = 2D/(c~ 2 + A 2) (28) 

This corresponds to a case of a fixed-fixed string with 
randomly distributed mass. The PDF of  the first two 
eigenvalues obtained using eqn (27) for mf = 1, D = 0.2, 
c~ = 4.0 and various values of e are shown in Figs 1 and 
2. The accuracy of  these solutions has been further 
examined through the use of digital simulation results, 
obtained by assuming a solution of  the form 

10 

y(x) = Z aj~bj(x) (29) 
j=l 

for eqns (1) and (2). In the present case y(o) = y(1) = 0 
and hence ~bj (x) are taken to be 

4~j (x) = sinjyrx (30) 

In the simulation work samples of f (x)  with power 
spectral density given by eqn (28) are to be generated. 

This requires knowledge of  the PDF of  the process f (x ) .  
In situations where this information is not readily 
available it is expedient to assume that f(x)  is gaussian 
distributed. Accordingly samples of f(x)  can be gen- 
erated as the stationary solution of the equation 

d f  c~f= I~'(x) (31) 
Uxx + 

Here l,~'(x) is a gaussian white noise process with 
(l~'(xl)l~(x2)) = 2D6(x l -  x2). In the numerical work 
the above equation is integrated with a step size = 0.005. 
The first 200 numbers of  the solution are ignored to 
ensure that the transients are dissipated. For  every 
sample of  f(x),  the series solution of  eqn (29) via 
Galerkin's approximation leads to sample realization 
of  eigenvalues and eigenvectors. One hundred such 
samples are obtained for the first two eigenvalues to 
construct the PDF which are shown in Figs 1 and 2. 

Example 2 

Here the system parameters are as in the previous 
example but the process f (x)  is taken as 

f (x)  = F 2(x) (32) 

where F(x) is a zero mean gaussian stationary random 
process with autocorrelation 

(F(xl)F(x2)) = 32 exp (-alXl - x2 [) (33) 

The process f (x)  can be written in the form 

f(x)  = mf q-/(x) 

ms= 32 

f(x)  = F2(x) - 32 

Sf(~) = 2cr4/(4a 2 + A2) (34) 

It may be noted that the form of  the above power 
spectral density function is similar to that considered in 
the previous example. The process f ( x )  in the present 

"ll"x 1.0[ " £  = 0 .0  

0 

~' 0 " 9 ~ ~ t o c h a s l i c  averag ing .  
o o o S imula t ion  

0.3 + £ = 0 . 0 5  
x 6 = 0 . 1  

0 .8  • £ = 0-2 
o £ = 0 . 3  

I ~ , , , I , I I 
0-0001 0-001 0.01 0.1 0.9 0-99 0 9 9 9  0-9996 

, , I 
0.5 

P (X~ ~;~) 

Fig. 1. Probability distribution of the first eigenvalue. Example 1; my = 1.0, a = 4-0, D -- 0.2. 
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Fig. 2. Probability distribution of the second eigenvalue. Example 1; mf = 1.0, a = 4.0, D = 0.2. 

example is, however, nongaussian. The PDF of the 
first two eigenvalues for /~2= 0.75, a = 3.0 and for 
different values of  c are shown in Figs 3 and 4. These 
figures show two sets of  simulation results obtained 
using eqns (29) and (30). In the first set (I set) gaussian 
distributed samples of F(x) are generated using a 
procedure similar to the generation o f f ( x )  in Example 
1 and the samples o f f ( x )  are then obtained using the 
relat ionf(x) = FE(x). In the second set (II set) samples 
o f f (x )  of eqn (34) are generated under the assumption 
tha t f (x)  is a gaussian random process. It is important to 
note that the process f(x) in both these sets has the 
same mean and autocovariance but the corresponding 
probability density functions are different. 

Example 3 

Here a string fixed at both ends with random variations 
in both the mass and the stiffness is considered. The 
processes f and ~ are assumed to be jointly stationary 

independent processes with power spectra given by 

ST(A ) = 2 D u / ( a  2 + A 2) 

Sg (A) = 2D22/(# 2 + A 2) 
(35) 

The theoretical PDF of A= given by eqn (27) for 
Dll ~-0"2, D22----1.0, a = 4, # = 1 and for different 
values of go, e and u are shown in Fig. 5. 

Example 4 

The system parameters here are identical to those in the 
previous example except that the boundary conditions 
are now chosen such that al  = 0 and a2 = 1. These 
conditions correspond, for example, to a stochastic 
shear beam fixed at one end and free at the other. Figure 
6 shows the PDF of the first eigenvalue for different 
values of go, e and v. 

]l'x 1.0 R 8 

o : - 

0 "  + 

Stochastic averaging. 
~' Simutat ion 

÷ I Set 
0 £ = 0105 

0.8 A 6 = 0.1 
+ 6 = 0 . 2  

I Set  
+ e 6 = 0 .05 

x £ =0 -1  
o ¢ = 0 . 2  

0"7 I , , I , I I , I I 
0.0001 0.001 0-01 0.1 0.9 0.99 0.999 0-9998 

= i i I 

0.5 
P (;~IK P,) 

Fig. 3. Probability distribution of the first eigenvalue. Example 2; 2 = 0-75, a = 3.0. 
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Fig. 4. Probability distribution of the second eigenvalue. Example 2; 0 .2 = 0.75, a = 3.0. 

A penalty which one must pay in applying the method of  
stochastic averaging to eqn (16) is that one gets a 
gaussian approximation to the process O(x). This would 
mean that there will be a small nonzero probabili ty of  
the process ~b(x), given by eqn (15) becoming negative 
which as per eqn (6) is not admissible. However, in the 
numerical work, for the parameter  ranges considered, 
this probabili ty is found to be negligibly small. Thus, in 
Example 1, for x = 1, a = 2"0 and e = 0" 1 the maximum 
value of  this probabili ty is 4-9 x 10 -3 and for x = 1, 
a = 4.0 and e = 0-1 (Fig. 1) the value is 1.19 × 10 -7. 

It is important  to note that the applicability of  the 
stochastic averaging method does not impose any 
restriction on the P D F  of  the random functions. Since 
the method cannot take into account the P D F  of  the 
random quantities, the information on these distri- 
butions is, however, not required to apply the method. 
On the other hand, this information is essential in a 
Monte  Carlo simulation study. In Example 1, f(x) is 
assumed to be gaussian distributed. In this case, the 
mean and the autocovariance completely specify the 
process. It  should be noted that, since the quantity 
(1 + e f )  represents the mass process, it is required to 
be strictly positive. Thus, the assumption that f(x) is 

1.2 

1-1 1[ 

No. £ 6 go 
1 0 0.075 0.75 
2 0.1 0.075 0-75 
3 0 0.025 0.75 
4 0.1 0.025 0.75 
5 0 0 1 

0"8WI  I , , I I , I i , A J i i I I 
0"0001 0"001 0.01 0"1 0.5 0-9 0-99 0"g99 o.ggg8 

P (X 1 ~ X) 

Fig. 5. Probability distribution of the first eigenvalue. Example 3; D l l  = 0-2, D22 : 1.0, c~ = 4.0, # = 1-0. 
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Fig. 6. Probability distribution of the first eigenvalue. Example 4; D 1 ! ---- 0.2, D22 = 1.0, c~ = 4.0, # -- 1-0. 

gaussian distributed introduces a certain amount  of  
error into the analysis. For  small variations this error is, 
however, expected to be negligibly small. The theoretical 
solutions shown in Figs 1 and 2 are found to compare 
well with the digital simulations. In Examples 1 and 
2, since v = 0 ,  the case of  ~ = 0  corresponds to a 
deterministic system. In this case P[A, = mr] = 1. This 
result is also shown in Figs 1 to 4. When e = 0, for the 
type o f f ( x )  considered, additional mass would be added 
to the system which leads to a decrease in the natural 
frequencies. This is reflected in Figs 1 to 4 where the 
PDF corresponding to a higher value of e always lie 
below the functions corresponding to lower e. 

The scope of  the stochastic averaging solution for 
different probability distributions o f f ( x )  is examined in 
Example 2. Here the simulation results corresponding to 
two different mass processes, having the same mean and 
autocovariance but different probability distributions, 
are compared with the theoretical solution. Since both 
processes have the same mean and covariance they lead 
to the same theoretical solution. On the other hand, the 
results obtained using digital simulations, which take 
into account the additional information on the prob- 
ability distributions, would be different for the two 
cases. From Figs 3 and 4 it is observed that the 
theoretical results do not compare well with the 
simulation results corresponding to the case where 
f ( x )  is nongaussian. On the other hand, this compari- 
son is quite good for the case o f f ( x )  being gaussian 
distributed. This would indicate the limitation of  the 
stochastic averaging method when the random functions 
involved are not gaussian distributed. 

In Examples 3 and 4 the effect of randomness in both 
the flexibility and the mass terms on the PDF of  the first 

eigenvalue is investigated. Here, larger values of  the 
parameter v imply a wider variation in flexibility which 
in turn results in wider ranges for the system natural 
frequencies. Thus it can be observed from Fig. 5 that for 

= 0, 6 = 0.025 the range of  first eigenvalue is about 
0.17r whereas for e = 0 and 6 = 0-075 it is more than 
0.37r. For  the system considered in Example 4 (Fig. 6) 
the boundary conditions are y(1) = 0 and dy/dx(O) = O. 
It may be noted that the deterministic solution in this 
case is given by P[A, = 0.5mr] = 1. 

CONCLUSION 

The eigenvalues of a second order stochastic boundary 
value problem can be characterized in terms of  zeros of 
an associated initial value problem. It has been shown 
that the PDF of  eigenvalues is related to the solution of 
a first order nonlinear stochastic differential equation. 
This equation is treated analytically using the method of  
stochastic averaging. The solution is valid when the 
random variations are small and when the characteristic 
length of  the system is much greater than the correlation 
length of  the random fluctuations. The solution takes 
into account the mean and the correlations of the 
random coefficient processes and also the uncertainty in 
specifying the boundary conditions. The theoretical 
predictions have been further verified with a limited 
number of  digital simulations. 

The extension of  the present approach to discrete 
random multidegree systems and to higher order 
systems such as stochastic beams is currently being 
investigated. 
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