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Abstract. The various techniques available for the analysis of nonlinear
systems subjected to random excitations are briefly introduced and an
overview of the progress which has been made in this area of research is
presented, The discussion is mainly focused on the basis, scope and
limitations of the solution techmiques and not on specific applications.
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1. Imtroduction

Random vibration methods are extensively used in earthquake, wind, transportation
and offshore structural engineering applications. Here, the uncertainties is specifying
the forces acting on the structure are guantified using sophisticated load models based
on the theory of probability and stochastic processes. Conseguently, the response
analysis of structures is also carried out in a probabilistic framework which eventually
leads to the assessment of the safety of the structure. In order to maintain a consistent
level of sophistication in modelling, the vibrating structure also needs to be modelled
with care. This concern leads to questions on modelling nonlinear behaviour of the
structural system and-also on modelling uncertainties in specifying the structural
parameters themselves. The questions of structural nonlinearity are particularly
important while addressing the problem of failures and safety assessments, cipecially,
since the nonlinear response is, at times, radically different from the one obtained using
a simplified linear model. These questions offer considerable challenge to the analyst
and are currently being actively pursued in vibration engineering research as evidenced
by & continuous stream of publications in leading international journals. The present
paper aims at presenting an overview of the research work in this field highlighting the
developments which have taken place over the last decade. The emphasis is, therefore,
to focus on the various techniques and methodologies, which have admittedly come to
stay as powerful tools in dealing with problems encountered frequently in the area of
nonlinear random vibrations,

The sources of nonlinearities in vibration problems can be categorized into four groups:

» Geometric nonlinearities arising out of large deformations;
» nonlinear elastic and dissipation properties of the structural material;
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» topological causes as in the case of vibroimpact systems such as rocking blocks and
systems with stoppers; .
» fluid-structure interactions leading to nonlinear couplings.

Table 1 lists a few examples which have been studied in the literature in the context of
nonlinear randem vibration of enginesring structures. In these problems closed form
solutions are rarely possible. Moreover, there exists no single general analytical
procedure which leads to aeceptable solution under all circumstances. The influential
factors in formulating the solution precedures ane

s System degrees of freedom, nature of nonlinearity (that is, nonlinearity in mass,
stiffness or damping and symmetry/asymmetry of nonlinearity), predominance of the
nonlinearity in affecting the system behaviour, including quasiperiodicity and
bifurcations, in the shsence of random excitations,

» Stationarity/nonstationarity of excitation, probability distribution and strength of
excitation,

* w Execitation bandwidth in relation to system bandwidth,

# Mechanism of excitation, that 15, external or parametric,

« Response variables of interest.

Accordingly, several approximate solution precedures have been developed which lead
to acceptable solutions in specific problem domains. Maostly, the approximations are
based on the Markovian nature of the response or on the proximity of the response
probability density function (pdf) to Gaussian distributions. Many of the methods are
ingenicus extensions of deterministic nonlinear analysis procedures to stochastic
problems. A discussion on the following methods is presented in the sequel: (i) Markoy
vector approach, (1i) Perturbation, (iif) Equivalent linearization, (iv) Equivalent non-
limearization, (v) Closure, (vi) Stochastic averaging, (vii) Stochastic series solution and
(viil) Digital simulations,

2. Markov vector approach

When the imputs arise from Gaussian white noise processes the response will be
a diffusion process and the associated transitional pdf{tpdf) will satisfy the well-known

Kolmogorov equations. The governing equations of motion in thess situations can be
cast in the form of equations of the [t8 type as follows:

dX(t) = f(X (1), + G(X(t).()dB(z), (1)
under the initial conditions
Xity) =Y, i2)

where, X(t) =n = 1 response vector, [{X{1),t) = n x n matrix, G(X(t)t} = n x m matrix,
B(f) = m = 1 vector of the Brownian motion processes having the properties

E[A{(5)]=E[B,(t + A} — B,{t)1=0, 3)

and ¥ = n » 1 vector of initial conditions independent of B{t). Here E[] represents the
mathematical expectation operator. The above representation of equations of motion
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is fairly general in the sense that it allows for: (1) Multi-degree lincar/nonlinear discrete
systems, (2) external and parametric excitations, {3) nonstationary excitations, (4)
nonwhite excitations, in which case, additional filters to model inputs as filtered white
noise processes are to be appended to the system equations with a consequent increase
in the size of the problem and (%) random initial conditions. The Kolmogorov
equations satisfied by the response tpdf, p(x, 1]y, 1) are

s the Chapman-Kolmogorov-Smoluckowski (CKS) integral equation

pix ey 15)= J plx 1|z, Thplm Ty, tp)de, (5)
 the forward equation or the Fokker—Planck-Kolmogorov (FPK) equation
L]

Ly, 8
B lNL) Y E[ﬂ[mpmzlrrrgﬂ

o j=1 bR
PR o 6
" ii=1 ﬂxraxf[[ﬂﬂ Jip (%t ¥ o). (8

e the backward equation

fp{x. tly.t,) u dpix, t]¥, ta) v, O Pt 1)
XN E) R ket (L GDG"),,——— 0 (7
Bty .I'EI Tyt a, UZI [ Ty 3,35, ]

In these equations, the superscript T denotes the matrix transpose operation. The first
of these equations represents the consistency condition for the response process to be
Markov. Equation (7) is the adjoint of (6) and these two equations can be derived using
{5) topether with the equation of motion given by (1), It is of interest to note that the for-
ward eguation and backward equations are also satisfied by several other response
probability functions of interest. Thus, for instance, the probability, Qe ¥, £, ), that first
passage across & specified safe domain will not occur in the time interval £, —1t for
trajectories in the phase plane starting at y at £=1t,, can be shown to satisly the
backward Kolmogorovequation. The lormulation of these equations leads to the exaet
response characterization of a limited class of problems and helps in formulating
strategies for approximate analysis for a wider class of problems. The details of the
derivation of these eguations along with a discussion on the initial conditions,
boundary conditions, well posedness, eigenvalues and eigenfunctions and the existence,
unigueness and stability of stationary solutions can be found in the works of Bharucha
Reid (1960), Stratonovich (1963), Caughey (1963a, 1971), Feller (1966), Fuller (1969)
and Roberts (1986a). A comprehensive treatment of the FPK equation and its
application in physieal seiences is available in the monographs by Risken (1939) and
Horsthemke & Lefever (1984).

2.1  Exact solutions

The complete soletion of the FPK equation is obtainable for all externally forced linear
oscillators (Lin 1967) and for a class of first order nonlingar systems (Caughey & Dienes
1961; Stratonovich 1963; Atkinson & Caughey 196%; Atkinson 1973). In these solutions
either the Fourier and Laplace transform-techniques or the method of eigenfunction
expansion is used. Methods based on group theory have also been developed (Bluman,
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1971). The stationary solution, when it exists, can be found for all first order systems and for
a limited set of higher order systems. A general class of systems for which exact stationary
solution under external white noise excitation is possible is discussed by Caughey & Ma
{19824, 1982b), This set includes single degree of freedom (sdof) systems with nonlinear
stiffness and a class of sdof and multi-degree of freedom (mdof) systems with nonlinear
damping and stiffness. Dimentberg (1982) has obtained stationary pdf for a specific sdof
system in which both parametric and external white noise excitations are present. This
solution has been obtained through an inverse procedure ( Dimentberg 1988s), Here an
approximate solution is first obtained based on the method of stochastic averaging.
This selution is substituted into the governing FPK equation for the original system.
This equation would be exactly satisfied provided the system's parameters are related
in a certain special way. Thus, this subset of parameters defines a class of systems for
which the governing reduced FPK equation is solvable. The concept of detailed
balance developed earlier by physicists (Gardiner 1953; Risken 1989), has been used by
Yong & Lin (1987 and Langley {1988a) to obtain exact stationary solution for a class of
sdaf and mdof nonlinear systems under white noise excitations. In this method, the
components of response vector Y are classified as either even or odd depending upon
their behaviour under a time reversal of ¢ 1o — 1. The even variables do not change their
sign whereas the odd variables undergo a change of sign. These are denoted as

% =gx, DOsummationoni, (&)
where ¢, = | for even variables and &= — 1 for odd variables. The state of detailed
balance is defined as

plxfly. o) = p(F. eI 15). =1 {2
In the steady state, in terms of the drift coefficients 4, and diffusion coefficient B, this
condition is given by

AP+ 5,4, )pl) — 2~ B, x)p(x)] =0 (10
I

B(x) — &,6,B,,(X) = 0. (1)

Here summation on repeated index is implied. When these conditions are satisfied, the
stationary solution expressed as

pix}= Cexp[— Ulx)], (12)
can be obtained by solving the equation for L7 (x], the generalized potential, The class of
problems than can be solved using this method, is shown to include the problems
considered by Caughey & Ma (1982a, b) and Dimentberg (1982). Furthermore, Lin &
Cai (1988) and Cai & Lin {1988a) have shown that the exact stationary solution as in
{12} can still be obtained even when one of the conditions for detailed balance, namely
{11} is not satisfied. This class of systems hias been termed as belonging to the class of
generalized potential. More general class of exactly solvable FPK equations have been
discussed by Zhu er al (1990) and To & Li (1991).

22 Approximate methods

For analysing problems possessing no exact solutions one has to take recourse to
approximate methods. An iterative procedure based on the parametrix method for
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studying existence and uniqueness of soluticns of partial differential equations (Friedman
1964) has been used by a few authors (Caughey 1971; Mayfield 1973) It has been
shown that both transient and steady state solutions can be obtained uwsing this
method. Also, the method is useful in improving approximate results obtained by other
technigues, However, the method has not been used widely in random vibration studies
(Roberts 1981). Payne {1968) vsed 4 combination of perturbation and eigenfunction
expansion technigues to analyse nearly linear first order systems under white noise
inputs. He has derived perturbation expansion for eigenvalues and eigenfunctions of
the FPK equation up to {e*} and obtained the corresponding expression for response
autocorrelation function. Here ¢ may be denoted as 2 smallness parameter associated
with the nonlinearity. Iwan & Spanos (1978) have employed similar techniques to
obtain nonstationary response envelope distribution of a linear sdof system. Johnson &
Scott (1979, 1980) considered the first omder system studied by Payne (1968) and
extended his analysis to compute expansion lerms up to 0"} Furthermore, they have
also applied this method to second-order systems.

Atkingson {1973) has used an adjoint variational method to find the eigenvalues of the
FPK operator. He has generated trial functions that are orthogonal to known
stationary solution and has determined response power spectral density (psd) for the
case of a Duffing oscillator, a bang-bang system and a system with nonlinear damping,
Toland er al (1972) proposed a random walk analogy based on a discrete approxi-
mation to continuous Markov process, and obtained a recurrence relation for response
probabilities. This technigue is equivalent to using finite difference approximation on
the FPK equation and is time consuming especially when the domain of integration is
large. The cigenfunction expansion method is applicable when the time and space
variables in the FPK equation can be separated which is generally possible when the
drift and diffusion terms are time invariant. In a more general context, the methods of
weighted residual have been employed by several authors. Thus, Bhandari & Sherrer
(1965] have used the Galerkin technique to find the stationary response of sdof and
a two degree of freedom system with polynomial nonlinearities. Wen (1975, 1976) has
extended this analysis to nonstationary response analysis and studied the response of
the Duffing oscillator and a hystereticsystem, The use of the method in determining psd
response and the first excursion failure probabilities of response has also been
indicated. A similar technique has been used by Solomos & Spanos (1984) for obtaining
the amplitude response of a linear sdof system under evolutionary random excitation.
Another variant of the weighted residual technique, namely, the method of moments,
has been used by Fujita & Hattori (L980) for the analysis of sdof systems with collisions
under modulated white noise input. Langley (1985) has applied the finite element
method 1o solve the two dimensional FPK equation associated with the stationary
response of a Duffing oscillator and a ship rolling problem. The domain in the phase
space to be covered by finite elements was estimated using an equivalent linearization
solution. An improper selection of the extent of the domain is shown to result in
negative values for response pdf. Bergman & Spencer (1992) have studied the transicnt
solutions of the FPK equations of several second order nonlinear systems using finite
element method.

Other discretization procedures based on path integral formalisms (Wehner & Wolfer
1983; Kapitanaik 1985, 1986; Naess & Johnsen 1993) and cell mapping techniques
(Sun & Hsu 1990) have also been developed. These methods are related to the iterative
technique discussed by Crandall eral (1966) and are based on an assumption that
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the tpdf over short time steps is Gaussian. Sun & Hsu have used a Gawssian closure
approximation to evaluate the transitional probabilities, while, Maess and Johnsen
have employed cubic B-splines to represent the tpdf. It 15 to be noted that although the
analysis makes the short-time Gaussian approximation for the tpdf, the global
non-Gaussian naturs of the unconditional pdf s, nevertheless, captured by the analysis.

23 Gemeralizations and momen! eguations

Generalization of the FPK eguation to non-diffusive Markov processes has been
discussed by Pawula (1967). Here the inputs are modelled as white noise arising out of
non-Craussian processes. The response in such cases will still have the Markovian
property but the equation of motion of the transitional pdf will have infinite number
of terms. Tylikowski & Marowski (1986) have considered the response of a Duffing
ogcillator to Poissonian impulse excitation and have shown that the transitional
pdf satisfies an integro-partial differential equation. The use of truncated generalized
FPK equations in computing the lower order moments has been demonstrated by
Risken (1989).

‘When response moments are of interest, the governing equations for the moments
can be derived based on the FPK eguation (Soong 1973), Thus, the moments of the
function h[Xit),¢] of the solution X(t) of (1) can be shown to be governed by the
equation

d E dh " i*h dh
th[h{x.r}] = E' E[j‘_, axj + EL E[{GDGT},J-MJMJ:I + E[ar]. (13)
By setting h[X(r),¢] = X% X% 5% ... X and choosing different values for &, one can
derive equations for the most commonly used moments. These equations can be readily
solved for the case of deterministic nonawtonomous linear systems under white noise
inputs. This forms the basis for obtaiming approximate transient sclutions wsing
linearization procedures. In the case of linear oscillators with parametric white noise
excitations, the response 15 non-Gaussian and the associated FPK equation is not
solvable. However, the exact response maoments can be obtained by solving the
associated moment equations. In nonlinear problems these equations fortm an infinile
hierarchy and an exact solution of moment equations also i3 not possible, Based on the
pringiple of maximum entropy, Sobczyk & Trebicki (1990, 1992) and Chang (1991)
have developed approximate stationary solutions of nonlinear systems under paramet-
ric and external noise excitations. This consists of employing pdf with undetermined
coefficients which, in turn, are found by maximizing the entropy subject to the
constraints of the pdl normalization and the moment equations which are obtained
through the governing FPK equations. Roy & Spanos (1991) have utilized a perturba-
tion solution scheme for the moment equations and have shown that the scheme
overcomes the problem of infinite hierarchy. They have proposed Pade type transform-
ations of the series which enables the analysis to be applicable even for strongly
nonlinear systems. Furthermore, the same authors (Roy & Spanos 1993) have studied
the response power spectral density of nonlinear systems by utilizing formal solutions
of the FPK equation as discussed by Risken (198%) in conjunction with a power series
expansion in terms of Pade approximants for the response spectra, The method
requires the knowledge of the stationary response of the FPK equation.
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Az has been briefly indicated earlier, the Markov property of response has also been
used in the study of first passage probabilities. Here, either the forward or the backward
Kolmogorov equation is solved in conjunction with appropriate boundary conditions
imposed along the critical barriers. Alternatively, starting from the backward Kaol-
mogaroy equation, one can also derive equations for moments of the first passage time,
which, in principle, can be solved recursively. Thus, denoting by T(y), the time required
by the response trajectory of (1) initiated at the point x =y in the phase space at time
t=t, to cross a specified safe domain for the first time, the moments M, = E[T],
k=1,2,---N, can be shown to be governed by the equation

n n al”
R e W T P
i=1 ¥ u=1

o + kM =0 (k=012--),
'fﬂ_via_}rf_'- g —y { 7.5 ]'

(14

with the condition M, = 1. These equations are referred to as the generalized Pon-
triagin-Vitt (GPV) equations in the literature. Although no exact analytical solution
exists for finding M,, several approximations are avsilable and they have been
reviewed by Roberts {1986z). These methods include method of weighted residuals
{Spanos 1983), random walk models (Toland & Yang 1971, Roberts 1978), finite
difference method (Roberts 1986b), finite element method (Spencer & Bergman1985)
and cell mapping techniques (Sun & Hsu 1985}

24  Summary

The FPK equation approach is the only source of exact solutions in nonlinear random
vibration problems. It also forms a powerful tool for approximate analysis. The
application of the method is, however, limited to Markovian responses. The solution
procedures are not tractable when dealing with large number of variables or with
nonstationary inputs. Although the method is applicable when the input is 2 filtered
white noise, this elass of problems has not received much attention in the literature.

3. Permrbation method

This is a straightforward extension of the technigue used in deterministic problems.
The method is applicable when the equations of motion contain a small parameter
characterizing the nonlinearity in the system. The solution is expanded in a power
series in small parameter which leads to a set of linear differential equations which
can further be solved sequentially. The method is applicable te both sdofl and mdofl
systems under additive or multiphcative, stationary or nonstationary stochastic
inputs. It was first used by Crandall (1963) to evaluate response moments of sdof
and mdof systems with nonlinear stiffmess under stationary Gaussian excitations,
Shimogo (1963a,b) considered symmetric and asymmetric nonlinear systems under
stationary random inputs and computed the response psd using an iterative technigue,
which, in essence, is identical to the perturbation method. Crandall et al (1964)
and Khabbaz (1965) applied the method to systems with nonlinear damping and
evaluated the response psd, They also indicated the possibility of the even ordered
response moments and the psd function becoming negative for large values of the
nonlinearity parameter. To a first order of approximation, the psd function obtained
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using this method and the equivalent lingarization technique have been shown to be
identical (Crandall 1964). Manning (1975) has estimated the response of the Duffing
oscillator to stationary excitation and has shown that by evaluating the response Lo
second order of the nonlinearity parameter, it is possible to display the effects of
nonlinear resonances in the response pad. The response of the Duffing oscillator to
nonstationary random inputs has been studied by Soni & Surendran (1975). The
application of the tmethod to systems with random parametric excitation has been
discussed by Soong (1973).

Perturbation method is well suited for polynomial nonlinearities and is useful in
computing response moments and sometimes the psd function. Determination of the
response pdf using this method is, however, not possible because of the non-Gaussian
nature of the higher order corrections. Furthermore, obtaining second or higher order
corrections involves cumbersome calculations and is not practicable. It can be noted
that the method is asymptotic in nature and the accuracy markedly worsens with the
increase in the valoe of the nonlinearity parameter,

4. Equivalent linearization

This method is by and large the most popular approach in nonlinear random vibration
problems. It is extension of the well known harmonic linearization technique to
stochastic problems and is applicable to both sdof and mdof systems under stationary
or nonstationary inputs, The method consists of optimally approximating the non-
linearities in the given system by lingar models 5o that the resulting equivalent system
15 amenable for solution. For evaluating the parameters in the equivalent system,
an additional assumption that the response is Gaussian is generally made. This method
was developed in 1950°s in the context of random vibration problems (see Canghey
1963b for earlier references) and nonlinear stochastic controls (Booton 1954). The
subsequent developments of the method in vibration problems may be found in the
works of Spanos (1981a), Roberts & Spanos (1990) and Socha & Soong (1991) and
those in the field of control in the work of Sinitsyn (1974).

Caughey {1963b) applied this technique to find stationary response of nonlinear
sdof systems and a class of mdof systems under stationary inputs. The method was
generalized to a wider class of mdof systems by Foster (1968), Iwan & Yang (1972) and
Atalik (1974). When nonstationary response is of interest the equivalent parameters
will be functions of time and accordingly the equivalent linear system will be time
varying. For the case of Markovian responses [wan & Mason (19800 and Wen (1980)
have obtained the nonstationary response of mdof systems by solving numerically the
moement equations derived from the governing FPK equation. Spanos (1980b) modi-
fied the method to deal with mdof systems having asymmetric nonlinearities in which
case the response has a nonzero mean. When the inputs are nonwhite the solution of
time varying equivalent linear system is generally difficult. Ahmadi(1980b) and Sakata
& Kimura (1980) have suggested different schemes to deal with such problems. These
schemes have also been extended to analyze the nonstationary response of asymmetric
sdof and mdof systems to nonwhite inputs (Kimura & Sakata 1981, 1987). In the study
of continuous nonlinear systems, linearization can be dome after discretizing the
equation of motion or at the level of partial differential equation itsell. The latter class
of problems have been studied by Iwan & Krousgrill (1983) and Iwan & Whirley (1993).
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4,1 Extensions and improvements

The method is versatile, easy to implement and computationally efficient. It is
applicable when the nonlinearities and the excitations are such that the response is
unimodal and nearly Gaussian. This does not necessarily imply that the nonlinearity
should be small, Crandall {1973) has demonstrated that for a first order system with
cubic nonlinearities, the mean square response using this technique is fairly accurate
even when nonlinearity parameter is of the order of 100, The method invariably leads to
Gaussian response pdf and fails to display nonlinear resonances in the response psd,
Furthermore, the methed is not applicable 1o systems with parametric excitations.
Several modifications to the method hawe been proposed to overcome some of the
above limitations. Crandall (1973) has obtained a nonlinear integral equation for the
improved estimate for the stationary response autocorrelations. Generalization of the
method for the case of nonlinear svstems with both parametric and external white noise
excitations has been suggested by Bruckner & Lin (1987a). Here the original Itd
equation for the nonfinear system is optimally replaced by a linearized Tt equation so
that the first and the second moments computed from the equivalent system has
minimum mean square error. For evaluating equivalent parameters use is made of the
higher order moment equations and no appeal to the Gaussianness of the responsé nor
for invoking any other closure approximation is necessary. In the methods discussed
above the nonlinear svstem of & given order is invariably replaced by an equivalent
system of the same order. Ivengar (1988a) has explored the possibility of replacing
a given nonlinear system by an equivalent linear system of a higher order. In his study
the nonlinear terms of the given equation are substituted by new dependent variables.
Additional equations which govern these new variables and which are nonlinear in
nature are obtained by suitably differéntiating the given nonlinear equation, The
resulting higher order system of nonlinear equations is further analyzed using the usual
linearization scheme. For the case of the Duffing oscillator under white noise excita-
tion, the results obtained using this method are shown to be better than the usoal
linearization solution and in particular, the response psd obtained using this method is
shown to display the effects of secondary resonance in the form of an additional peak at
about three times the primary resonance frequency. Extensions of equivalent lineariz-
ation procedures to allow for non-Gavssian nature of the response have also been
proposed. Thus, Manohar & Tyengar (1990) considered the broad band excitation of
the Van der Pol oscillator and replaced the nonlinear oscillator by a linear system
excited by & mon-Gaussian input. The non-Gaussian excitation allowead for the limit
cycle oscillations of the system in the absence of the external noise. This enabled the
correct prediction of bimodal pdf of the response displacement and velocity which the
traditional linearization fails to predict (Zhoe & Yu 1987). Pradlwarter st al (1988),
Pradlwarter (1989) and Schueller et al {1991) have considered stochastic response of
inelastic systems and have proposed a non-Gaussian linearization scheme which is
based on the theoretical results shown by Eozin (1987) that linear systems exist which
lead, at least for white noise excitations, exactly to the first statistical moments of the
response of the respective true nonlinear systems. The method involves nonlinear
transformation between nonlinear response and the linear response which has to be
chosen based on physical considerations. Iyengar {1992) considered Duffing’s oscillator
under narrow band excitation and developed-an equivalent linear system whose stiffness
parameter is random in nature. This parameter is shown to be a function of response



Methods of nonlinear random vibration analysis 355

envelope which is approximated as a random variable. While the response conditioned on
the stifiness is Gaussian, the unconditioned res ponse becomes non-Gaussian in nature.

4.2 Nonunigueness of solutions and stochastic stability

The solution obtained using equivalent linearization is not necessarily unique in more
than one sense. Firstly, the answers depend on criterion of equivalence adopted. While
the most commonly used criterion requires that the mean square equation difference be
minimized, other criteria involving alternative norms of differences or other averaging
operators are also admissible (Spanosl981a; Bolotin 1984). Recently Elishakoff
& Zhang (1993) have applied several optimization schemes on a randomly driven first
order nonlinear system and have shown that, when the differences are averaged with
respect Lo a weight function, which, in turn, is taken to be & nonlinear function of the
system polential energy, the estimate of the response variance coincides with the known
exact solution. Casciati et al (1993) have considered second order nonlinear systems
under broad band excitation and established the equivalence by requiring that the
upcrossing rate of a specified critical level for the nonlinesr and for the equivalent linear
oscillator be equal. Obviously the success of this approximation depends upon the
accuracy with which the upcrossing statistics are known,

Another source of nonuniqueness, which is, perhaps more subtle, arises within the
framework of a specified equivalence criterion. Thus, the linearization technigue when
applied to nonlinear systems under combined harmonic and noise excitations (Tvengar
1986; Manohar & Iyengar 1991a), narrow band excitations (Richard & Amnand 1983
Davies & Nandlall 1986; Davies & Rajan 1986; Jia & Fang 1987, Ivengar 1988h, 1989,
Manchar & Iyengar 1991b; Roberts 1991; Kolioupulos & Langley 1993) or for systems
with multiple stable equilibrium states under broad band excitations {Langley 1988h;
Fan & Ahmadi 1990) leads to multivalued response statistics, [t may be noted in this
context that Spanos & Iwan (1978) have earlier demonstrated the uniqueness of
equivalent linear systems under certain conditions but not of the solutions generated by
the equivalent systems,

The oceurrence of multivalued response statistics apparently resemble the coexist-
ence of multiple steady states encountered in the deterministic nonlinear oscillation
problems. In random vibration context, however, it is important to note that stationary
response statistics, when they exist, are necessarily unigue. This follows from the fact
that the steady solution of the governing FPK equation is always unique (Fuller 1969),
The scope of this result includes all the nonlinear dynamical systems which are
governad by equations of the form as given in (1) and, as has been noted in § 2, this class
is fairly extensive, This fact was not recognized in some of the carlier studies on narrow
band excitation of the Duffing oscillators (Davies & Nandlall 1986; Davies & Rajan
1986; Jia & Fang 1987). These authors used a stability analysis of moment equations
and concluded that response statistics are multivalued and display the jump behaviour.
Ivengar (1986, 1988b, 1989) suggested that the realisability of the multiple solutions
must be decided based on the almeost sure stochastic stability of the multiple solutions
and not on the stability analysis of moment equations. His study showed that in regions
of multiple solutions, the linearization solution based on the assumption of Gaussia-
ness of the response is stochastically unstable and, therefore, not valid. Furthermore,
simulation studies on response amplitude showed that the probability density function

-~
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is bimodal in regions where linearization predicts multiple solutions. The studies by
Langley (1988b) and Fan & Ahmadi {1990) on broad band excitation of nonlinear
systems show that mean square response predicted by the linsarization technique may
not be unigue while the corresponding exact solutions are unique. The system
considered in these studies had multiple stable equilibrium states and the random
response had multimodal probability density functions. The question of possible
relationship between the multiple solutions predicted by linearization and local
behaviour of the sample functions has been considered by few authors (Dimentberg
1988%h; Roberts 1991: Koliopulos & Langley 1993) It 15 suggested that the multiple
solutions correspond to local behaviours near the modes of the response pdll The
relationship between such local behaviour and global behaviour in an ensemble sense 1s
not obvious and further research 15 clearly required to resolve this issue.

5 Equivalent nonlinearization

This method is conceptually similar to the method of equivalent linearization and can
be viewed as a generalization leading to non-CGaussian estimates for the response, The
method has been introduced by Caughey (1986). Tt consists of replacing the given
nonlinear system by &n equivalent nonlinear system which belongs to the class of
problems which can be solved exactly. This method is related to the class of exactly
solvable FPK equations and thus is applicable only to systems under white noise
inputs. The eriterion of replacement is a gain the minimization of the mean square error.
The method leads to non-Gaussian stationary response pdf and estimates correctly the
random response of limit cycle systems in which case, equivalent linearization fails.
Cai & Lin(1988b) have developed a similar technigue and have applied it to systems in
which parametric excitations are also present. Here, the replacement oscillator belongs
to the class of systems possessing peneralized stationary potential and is selected on the
basis that the average energy of dissipation remains unchanged. For a specific system,
the selution obtained using this method is shown to be superior to that obtained by
stochastic averaging. The application of the method to randomly excited hysteretic
structures has also been developed (Cai & Lin 1990). The method has also been studied
by Zhu & Yu (1989) who have chosen equivalent nonlinear systems which are energy
dependent. They have indicated that the method is asymptotically exact and is
equivalent to the method of stochastic averaping of the energy envelape. In a study on
random response of limit cycle systems, Manohar (1989) has developed equivalent
nonlinearization solutions for the ramdomly driven Yan der Pol oscillator. In one
scheme, the Van der Pol oscillator under white nodse excitation is replaced by a Van der
Pol-Rayleigh oscillator which can be solved exactly. Thisinvolves linearization of only
a part of the original equation and the equivalent parameters are found based on
minimization of mean square error. In an attempt to model the multimodal pdf of the
response phase process, Manohar has applied a similar partial linearization procedure
Lo the simplified equations for the response amplitude and phase processes which, in
turn, were obtained using & second order stochastic averaging procedure, Furthermore,
the same procedure was also used to investigate the effect of noise on frequency
entrainment of harmonically driven Van der Pol oscillator (Manchar & Iyengar 1991a)
and in the study of rocking of rigid blocks under random base motions (lyengar &
Manohar 1991). The scheme of partial linearization has also been studied recently by
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Elishakoff & Cai (1993). To & Li (1991) have presented a systematic equivalent
nonlinearization procedure which is again based on the broad class of exactly solvable
FPK equations and atilizes caleulus of variations to derive the optimal replacement
system. In a study on systems with asymmetric nonlinezrities, Spanos & Donley (1991)
and Li & Kareem (1993) have developed equivalent systems with quadratic nonlineari-
ties. The evaluation of the equivalent parameters is baséd on an approximate analysis
of the equivalent systems using Volterra serizs representations (see § 8.

6. Closare approximations

In nonlinsar random wibration problems the equations for response moments and
correlations form an infinite hierarchy and exact solutions are not possible, This is true
even for the class of systems for which exact response pdf is obtainable using the FPK
equation. The closure problem consists of approximately replacing the infinite hier-
archy of equations with a finite set so that estimates for the important lower order
moments can be obtained.

6.1  Closure using assumed probability density function

The closure approximation can be made either in conjunction with an assumed
rezponse pdl or directly on the moment equations. Dashevskii (1967), Assaf & Zirkle
(1976 and Crandall (1980, 1983) have employed a serizs representation for response pdf
in terms of the Hermite polynomials. The series is truncated after a finite number of
terms. The first term in the series has the form of a Gaussian pdf. The unknown
coefficients of the series are related to the response cumulants, central moments or
expectations of the Hermite polynomials in response variables, The equations needed
to determine these coefficients are generated from the governing equation of motion.
This procedure can be viewed as the generalization of equivalent linearization tech-
nigue wherein the response was assumed to be Gaussian and the parameters in the
distnibution were determined using moment identities derived from eguations of
motion. Lin & Davies (1988) have applied Hermite polvnomial approximation for the
pdf and studied the nonstationary response of nonlinear second-order systems. Fur-
thermore, the same authors (Davies & Lin 1992) have also studied the power spectrum
of Duffing's oscillator using a similar procedure. Iyengar (1975) and Ivengar & Dash
(1976, 1978) have developed a closure technigue in which the response variables and
input variables, either as they appear or afler a transformation, are assumed to be
jointly Gaussian. It is possible in this formulation to take into account Aon-Gaussian
excitations and amplitude limited responses. The method handles nonlinear and
stochastically time varying systems in a unified manner (Dash & Ivengar 1982).

6.2 Closure in terms of moments or cumulants

In the second approach, one directly deals with moment equations. Here the unknown
higher order moments are approximated as functions of lower order moments, thereby
truncating the hierarchy of these equations, Thus, Ibrahim (1978), Ibrahim et al (1985},
Bolotin (1984) and Wu & Lin (1984) have considered different schemes for closing
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hierarchy of moment equations, Appeal is generally made to the quasinormal approxi-
mation which connects are higher order moments to the lower order moments through
relations that are strictly valid only for Gaussian variables. This can be expressed in
terms of either the direct moments, central moments or cumulants. The guazsinormal
approximation using cumulants amounts to setting cumulants beyond a given order to
zero. For a Gaussian random varjable, it may be recalled, all the cumulants beyond
order two vanish. Other closure schemes such as discarding the direct ar central
moments beyond an order or ignoring the correlations emong the response variables
have also been proposed (Soong 1973). Bellman & Richardson (1968), Wilcox &
Bellman (1970) and Sancho (1970) have used a mean square closure technique in which
the unknown higher order moment is expressed as an optimal linear combination of
lower order moments. ’

6.3 Limirations and improvements

The closure methods are applicable to a wide class of systems and excitations, They
have been extensively used in the response and stability analysis of sdof and mdof
systems with parametric and nonparametric excitations. However, it has not been
possible to justify closure approximations through analytical approaches. Most of the
closure schemes are theoretically inconsistent at some level as they violate well-known
identities and inequalities of probability theory, Thus, for example, the moment closure
scheme of setting direct moments beyond order n to zero violates the inequality
E[x*] = E[x"]*. The cumulant closure wiolates the theorem dus to Marcienkiswicz
(Gardiner 1983) which states that the cumulant generating function cannot be a poly-
nomial of order higher than two, that is, either all but the first two cumulants vanish or
there are an infinite number of nonvan ishing cumulants.

Bellman & Richardson (1968) have derived a condition under which the truncated
equations obtained using the mean square closure technique preserves moment
properties. No similar results are available for other closure schemes, Although it has
been demonstrated with a specific example that the accuracy of closure scheme
systematically improves as the order of approximation is increased, examples to
counter this are also readily available (Crandall 1985). Instances of the estimated pdf
becoming negative have also been encountered (Crandall 1985) Sun & Hsu (1987) have
applied second, fourth, and sixth-order curulant neglect schemes to a specific problem
for which exact stationary selution is available and they have delineated regions where
the schemes yield acceptable results. In certain parameter fegions the fourth- and
sixth-order schemes are shown to predict erroneous behaviour including a faulty jump
in the response. Fan & Ahmadi (1590) have considered a system with multiple stable
equilibrium driven by white noise excitation, They have shown that the stationary
response statistics generated by Gauvssian closure and non-Gravssian cumulant neglect
closure techniques are not unique and are dependent on initial conditions. This
contradicts the uniqueness property of the stationary solutions of the FPE equation
(see §4-1). Pawletn & Socha ( 1992) have compared Approximate nonstationary sol-
utions obtained using closure approximations with the corresponding exact solutions
for the case of parametrically excited linear systems and have shown that near stability
boundaries the approximations are not acceptable,

The second-order cumulant neglect and the Gaussian closure technigques are similar
lo equivalent linearization method and are consistent closure schemes. However, they
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vield acceptable results only when the response has features of Gaussian variables. For
example, when applied to random vibration of self-excited systems (Bolotin 1984) they lead
to drastically wrong results (Zhu & Yu 1987 Manohar & [vengar 1990 (see §2 1) Recently
Grngoriu (1991) has developed a consistent closure procedure which is based on an
estimator of the response pdf that consists of superposition of specified kernels weighted by
undetermined parameters. These unknown parameters are determined hased on the
eriterion that the moment equations are optimally satisfied up to a specified closure level.

7. Stochastic averaging methods

In these methods the response of lightly damped systems to broad band excitation is
approximated by a diffusion process. The cosfficients of the associated FPK eguation are
derived based on an appropriate averaging of the equations of motion. The appeal of these
methods lies in the fact that they often reduce the dimensionality of the problem and
significantly simplify the solution procedures. On account of this advantage they are also
applied to systems wherein the response is already Markov, Different versions of the
method are available and are widely used in the problems of response prediction, stability
analysis and the first passage and fatigue failure analyses. Extensive surveys of related
literature have been published (Tbrahim 1985, Roberts & Spanos 1986 Roberts 1986a;
Zhu 1988).

L1 Averaging of amplitude and phase

The method was originally proposed by Stratonovich (1963, 1967) as a generalization
of the deterministic averaging method developed earlier by Bogoliubov and Mitropolsky
(1961). He considered sdof nonlinear systems under random excitation and showed that
when the relaxation time of the oscillator is large comparad to the correlation time of the
excitation, the response can be approximated by a diffusion Markov process. Subse-
quently, Khasminiskii {1966) provided a rigorous mathematical proof for Stratonavich's
arguments, The necessary requirements for applying the method are satisfied if the system
is lightly damped and the excitation power spectrum is slowly varying in the neighbour-
hood of the system’s natural frequency. The response in such a case will be a narrow band
process with slowly varying amplitude and phase. The averaging procedure is a combina-
tion of temporal and ensemble averaging and it aims at eliminating rapid oscillations from
the dominant slowly varying components and also at replacing randomly fluctuating
components by equivalent delta correlated processes. This results in a pair of Itd differential
equations for amplitude and phase which will have to be analvsed using the FPK equation.
In many cases the equation for amplitude gets uncoupled from that of the phase thus
enabling the determination of the stationary distribution of the amplitude process, In fact
this is the main advantage of this method. In order to determine the stationary pdf of
displacement and velocity variables, the knowledge of joint pdf of amplitude and phase is
essential. But it is in general difficult to obtain this pdf. However under the assumption that
amplitude and phise are independent it is still possible to obtain an approximation to pdf
of displacement and velocity,

Stratonovich used this method to examine the response of sdof self-excited systems
to parametric and nonparametric excitations. Subsequently, the method has been
generalized to include mdof systems and nonstationary inputs and widely used in
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random vibration studies (Roberts & Spanos 1986), The method has also formed the
basis for the study of first passage failures (Roberts 1986a) and stability analysis
{Thrahim 1935). For problems wherein the time varying nature of the system such as
deterministic excitations or nonstationary inputs needs to be preserved, Lin (1986) has
proposed that the temporal averaging in Stratonovich's procedure may be dispensed
with. Heuristic arguments for relaxing restrictions on time constants of input and
response for problems of stability analysis have also been given.

7.2 Quasistatic averaging

A varigtion of the standard stochastic averaging method, known as the method of
quasistatic averaging, has also been developed by Stratonovich (1967). The method is
applicable to problems in which the correlation time of the excitation greatly exceeds
the relaxation time of the system. This requirement is contrary to the one stipulated for
the applicability of the standard stochastic averaging method, The method consists of
only temporal averaging. The ensemble averaging with its attendant Markovian
approximation is dispensed with. In applying this method, envelope representation is
used for both the input and the response processes. During temporal averaging the
amplitude and phase angle are approximated a5 random variables and hence as
constants. This finally leads to 2 nonlinear memoryless transformation relating the |
input and the output amplitudes and phase angles. Thus the solution of the given
random differential equation is converted to a problem in nonlinear transformation of
random variables. The method has been used in the study of nonlinear svstems under
narrow band excitations by several authors (Lennox & Kuak 1976; Sato et ol 1985;
Richard & Anand 1983; Ivengar 1986).

T.3  Averaging of energy envelope

The stochastic averaging method is found to give acceptable results for systems with
nonlinear damping. In fact when damping is amplitede dependent and the excitation is
white nose, the method leads to the known exact solutions (Roberts 1978). However, for
a system with nonlinear stiffness, such as Duffing's oscillator, the solution does not display
the effects of nonlinearity. In such cases a higher arder averaging procedure needs to be
used (Stratonovich 1967, Tbrahim 1985). This, however, involves cumbersome caleulations.
Acsimpler alternative is to examine whether a one dimensional Markovian approximation
can be obtained for the energy eavelope of the response. This was originally proposed by
Stratonovich (1963) who considered systems under white noise inputs and reduced the two
dimensional Markovian vector consisting of a slowly varying energy envelope and
a rapidly varying displacement component to a one dimensional Markovian approxi-
mation for the energy envelope. This method has further been developed by Roberts
[19’?6. 1978) and generalized to incorporate nonwhite inputs (Roberts 1982), parametric
mlauuns {Zhu 1983) and nonstationary inputs (Red-Horse & Spanos 1992), Here, the
averaging is carried out over a period equal to the undamped natural period of the system,
which, now depends on the energy of the response. The results obtained using this method
also agree with the available exact solutions. Zhu & Lin (1991) and Zhu et al {1994} have
considered systems with correlated Gaussian excitations and have incloded the
additional contributions to damping and stiffiness made by the Wong-Zakai correction
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terms. These additions are incorporated into the definition of the energy envelope and
the consequent new results are shown to be improvements over earlier averaging
results, Another version of stochastic averaging is also available (Sunahara et al 1977),
In thiz a deterministic averaging is carried out directly on the coefficients of the
governing FPK eguation. This method has been shown to be equivalent to the
averaging of the amplitude or the energy envelope of the response (Zhu 1988).

74 Combination of averaging with other methods

The method of stochastic averaging has also been used in combination with other
methods of random vibration analysis. Thus, Iwan & Spanos (1978) proposed a combi-
nation of equivalent linearization and stochastic averaging to analyze systems with
nonlinear stiffness. For the case of the Duffing oscillator under white noise input, the
method improves the results obtained using averaging of response amplitude but does
not lead to the exact solutions, Furthermore, Ariaratnam (1978) has questioned the
consistency of approximations made in this analysis. Stratonovich (1967) has used
equivalent linesrization technigue to solve simplified equations obtained using
stochastic averaging. Bruckmer & Lin (1987h) have adopted & complex form of
stochastic averaging which eases the application of non-Gaunssian closure technique to
the simplified equations and is particularly useful in analyzing nonlinear mdof systerns.
In the study of nonlinear systems under combined harmonic and random excitations or
when a higher order averaging in Cartesian co-ordinates is done, the resulting
simplified equations do not get uncoupled, and, in general, are unsolvable within the
framework of the Markov process theory, Under such situations Manohar & Tyvengar
{1990, 1991a) have proposed combining averaging with equivalent nonlincarization
technigue. This procedure is shown to give satisfactory results for the case of ¥an der
Pol's oscillator under broad band and combined harmonic and white noise excitations.

7.5 Method of stochastic normal forms

An alternative way of reducing the dimensionality of the problem using modern
hifurcation theories, viz, center manifold theory (Guckenheimer & Holmes 1983), has
been developed by Sri Wamachchivaya & Lin (1991). The method consists of eliminat-
ing certain response variables which are asymptotically stable as being unimportant
with the essential behaviour of the system restricted to the dynarmics of the remaining
critical variables. The differences between this method and the traditional averaging
arise in carrying out the ‘temporal’ part of the averaging, while, the ensemble averaging,
with the consequent Markovian approximation, remains essentially the same. In fact,
the equivalence of this method with a higher order stochastic averaging has been
demonstrated (Sri Namachchivaya & Leng 1990}, The approach has been employed in
the study of the effects of noise on bifurcations in nonlinear systems and for specific
cases, the method is shown to be more generally applicable than the stochastic
averaging (561 Mamachchivaya 1991; Leng er al 1992),

T8  System stochasticity problems

Although, the averaging methods are widely used in vibration problems, the idea of
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applying them to problems of spatial variability is novel. Thus, the usefulness of the
averaging method in the study of stochastic boundary value problems has been
investigated by Manohar & Iyengar (1993, 1994) in the context of the determination of
the eigensolutions of stochastic wave equations. Here, the given boundary value
problem is converted into a sel of initial value problems and, these are, in ten,
simplified by averaging over spatial domain, The results obtained on the pdf of the
eigensolutions using this approximation is found to compare very well with digital
simulation results.

7.7 Summary

The methods of stochastic averaging enhance the scope of the FPK equation approach
in random vibrations. The different versions of this method are mathematically well
founded [Zhu 1988). This is in contrast to other approximate techniques discussed
earlier, The other merit of these methods is that they lead 1o non-Gaussian estimates for
the response.

8. Stochastic series solutions

A widely used method in deterministic problems is the one based on the representation
of the soluticn in an infinite series. Here an unknown function is expanded in a set of
known Munctions. A few studies based on the extension of this concept to stochastic
problems are available in random vibration literature. Thus, [vengar & Dash (1976)
have considered a linear sdof system with both parametric and external random
excitations, The parametric excitalion is taken to be 2 nonwhite process. The response
is expanded in a power series in the random coefficient process. The unknown
coefficients in this series are taken to be determimistic and are determined based on the
minimization of the mean square error in an interval of time, Ahmadi and his coworkers
{Ahmadi 1980a; Jahedi & Ahmadi 1983 Orabi & Ahmadi 1987a, 1987h, 1958)
have used the Weiner—Hermite functions in the study of the Duiffing oscillator
under stochastic excitation. These functions are a set of statistically orthogonal
functions and form a complete random basis for expanding a given random process.
See the book by Schetzen (1980) for a systematic account of the Volterra and Wiener
thearies of nonlinear systerns. In the solution both the input and the response processes
are expanded in a set of thess functions, The orthogonality property further leads
to & set of nonlinear coupled integro-differential equations for the unknown kernels in
the expansion. These equations have been further solved using an iterative technigue.
Fora Gaussizn random process the series consists of only one term and thus the higher
order terms in the series are non-Gaussian corrections. Thus the method systematically
leads to non-Gaussian estimates for response statistics. However, it is not possible to
obtain the expressions for the non-Gaussian pdf with this method. Using a single term
in the expansion has been shown to be equivalent to the technique of equivalent
linearization (Ahmadi & Orabi 1987). Recently, Ghanem & Spanos|1993) have studied
random response of second order nonlinear systems using series expansions for both
the extitation and response processes which consist of unknown deterministic
functions of time which are weighted by known set of orthogonal random variables.
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The excitations are represented exactly using the Karhunen—Loeve expansions, Fol-
lowing the concept of Galerkin expansions, the response is also expanded using the
same basis random variables which are used for representing the excitation. This leads
to & set of deterministic ordinary differential equations for the unknown functions
which can be solved numerically. The method has been applied to the résponse analysis
of Duffing’s oscillator subjected to filtered white noise excitation yielding satisfactory
results,

9. Digital simulation technigue

For problems which are beyond the reach of exact or approximate analysis, the digital
simulation technique forms the only means of solution. This technigue is also useful in
checking the validity of approximate analysis procedures. Here one follows a sample
function approach in which the problem is handled largely in a time domain determin-
istic framework. The application of this method consists of three steps: (i) Simulation of
random inputs, (i) discretization of the stochastic mode] and gensration of response,
and (iii) statistical processing of samples of response. Thus, at every stage, the method
requires the availability of efficient computers. The basic tool for generating random
inputs is the psende-random number generator which is a deterministic algorithm that
produces a set of numbers which are statistically indistinguishable rom uniformly
distributed random numbers (Chambers 1967). Scalar and vector random variables of
specified distributions can be obtained by suitably transforming the uniformly distrib-
uted random numbers {Ripley 1987). Comprehensive reviews on generation of random
processes and fields using spectral representations and discrete time series models are
available respectively, in the works of Shinozuka & Deodatis (1991) and Spanos &
Mignolet (1989), In the response analysis numerical schemes such as Runge—Kutis or
predictor-corrector algorithms are used to solve the equations of motion. The method
has been widely used in nonlinear response analysis (see, for example, Lutes & Shah
1973 Vaicatis et ol 1974, Spancs 1980a, 1981k, Zhu et al 1993, Manohar & Iyengar
1990) and in first passage problems (Crandall et ol 1966; Roberts 1976 Pi er al 1971;
Spanos 1983; Ivengar & Manohar 1991). It had also been extensively used in problems
of system stochasticity, parametric excitations and stochastic stability analyses
(Shinozuka & Deodatis 1991)

The simulation technigue has vast scope and is uniformly applicable to nonlinear
and parametric response analysis of sdof and mdof systems. However, in order to
obtain reliable estimates of response variables, sufficiently large size of samples
should be used in the analysis. This fact makes the method significantly expensive.
This is particularly true in response analysis involving estimation of rare events
and in the stedy of large mdof systems. The method 15 well suited for stationary
response analysis where assumption of ergodicity is admissible. Spanos (1981a) has
estimated that the cost of simulation studies is typically 100 to 1000 times that of an
approximate analysis using equivalent linearization. It has been found that the cost of
simulation inereases linearily with sample size while the accuracy improves in propoe-
tion to the square root of sample size (Spanos & Lutes 1987). Nevertheless, given the
strides made over the last few years in computer technology, one can readily forsee the
broadening of the scope of digital simulation technigues in engineering stochastic
analyses.
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10. Summary and conclusions

Varions methods for stochastic response analysis have been outlined in the previous
sections. Exact solutions are obtainable from the FPK equation approach but are
scarce. It is generally necessary to take recourse to one of the several approximate
procedures available. Many of the approximations are based on the assumption that
the response process is nearly Gaussian distributed and/or is Markovian or nearly
Markeovian in nature. The approximate techniques based on the FPK equation are
applicable to Markovian responses and are largely confined to lower order systems,
The perturbation method is applicable to weakly nonlinear systems under weak
gtochastic inputs. They are useful in getring non-Giaussian estimates for response
moments but gre cumbersome and relatively inefficient. Equivalent linearization is
useful for systems with Gaussian inputs and is applicable over a wide range of
nonlinearity. The method leads to Gaussian estimates for the response and hence is
suited for problems where the excitation and the system are such that the response is
unimodal and nearly Geussian. When applied to systems with multimodal response
probability densities, the method leads to nonunique response statistics and requires
careful interpretation. The method is not applicable for evaluating parametric re-
sponses. Equivalent nonlinearization methods are based on the class of exactly solvable
FPK equations and are limited to systems driven by white noise excitations. The
closure schemes are an improvement over equivalent linearization as they can take into
mecount parametric excitations and can lead to non-Gaussian estimates for the
response. The methods are however mathematically not well founded. The perturba-
tion, eguivalent linearization and closure methods are all fairly general and are
applicable to both transient and steady state analysis of sdof and mdof systems,
Stochastic averaging methods are applicable to lightly damped systems with paramet-
ric and external broad band inputs. They are mathematically well founded and in the
case of systems under white noise for which the FPK equations are solvable, the
methods lead to the exactly known solutions. These methods reduce the dimensionality
of the problem and widen the scope of the FPK equation approach. Their applicability,
however, is largely limited to sdof systems. Digital simulation technique is universally
applicable and leads to estimates of the response to any desired level of accuracy. The
method relies on the availability of a fast computer and is quite expensive, especially, in
the study of large scale systems and in the analysis of rare events.

The above methods have been applied in the past to study a variety of nonlinear
problems such as structures undergoing large amplitude vibrations, yielding systems,
self-excited systems, hysteretic systems, vibroimpact systems and rocking of blocks.
The developments of these methods are characterized by two conflicting objectives.
Firstly, the methods are expected to be viable when applied to large-scale engineering
structures, while, on the other hand, they need to capture-correctly, the qualitative
behaviour of nonlinear systems. The lineanzation and closure methods are, perhaps,
the only feasible analytical methods which can be used in conjunction with computa-
tional structural models for studying large scale mdof systems. One of the major
drawbacks of these methods, however, lies in their inability to capture correctly the
interactions between equilibriom states of the unforced system and external random
excitations. It has been noted by Andronov and others as far back as in 1933 (Bolotin
1967, Kozin 1969) that, for systems under white noise excitations, the most probable

response states correspond to the stable equilibrium states of the unforced system (also
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see Kapitanaik 1956). Similar behaviour can be expected in the study of the random
response of systems exhibiting complicated bifurcation patterns such as those asso-
ciated with jumps, limit cycles, nonlinear resonances and entrainments. It is impaortant
to recognize that corresponding to multiple stable solutions of the unforced system, the
stochastic response probability density functions can be multimodal. Evidently, the
linearization and closure technigues are ill equipped to model these nonlinear features
satisfactorily. On the other hand, the averaging and FPK equation based approaches
are mathematically well founded and perform well when applied to simple systems
displaying the above mentioned complicated response patlerns, but are, however, of
limited use in analysing large scale stroctures. Thus, methods to overcome these
limitations still need to be developed.
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