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Abstract

The problem of detecting local and/or distributed loss of stiffness in beam structures using vibration data generated

by passage of a moving oscillator is considered. A time domain structural damage detection scheme, within finite

element modeling framework, that takes into account time varying structural matrices, structural nonlinearities and

spatial incompleteness of measured data, is developed. The damage parameters associated with changes in structural

stiffness are shown to be governed by a set of overdetermined nonlinear equations which are solved iteratively. Illus-

trative examples on a geometrically nonlinear Euler–Bernoulli beam carrying a moving single degree of freedom os-

cillator are provided.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Research into the use of vibration data in damage

detection is presently attracting wide attention. Most of

the currently available methods aim to relate the chan-

ges in natural frequencies, modeshapes, or frequency

response functions to the occurrence of structural

damage. Thus, these methods are developed essentially

as applications of the traditional experimental modal

analysis procedures [1–3]. The methods developed in the

context of finite element (FE) model updating also serve

as valuable tools in damage detection procedures [4,5].

Thus, the method of inverse eigensensitivity and re-

sponse function method form powerful tools for element

level identification of structural damages. One of the

questions that is attracting significant research attention

is related to the use of structural response to operational
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dynamic loads in damage detection procedures: see, for

example, the papers by Wang and Haldar [6] and Her-

mans and Auweraer [7]. In fact, the review paper by

Doebling et al. [8] identifies this class of problems as

requiring further research attention.

In the context of civil structural health monitoring,

the use of vibration data in damage detection has been

discussed by a few authors. Thus, Mazurek and Wolf [9]

have studied theoretically and experimentally a two span

aluminum plate girder under the action of moving loads

with view to identify structural deterioration using vi-

bration signature analysis. Hearn and Testa [10] con-

ducted studies on fatigue damaged welded steel building

frames and wire ropes and studied shifts in frequency

spectra caused due to damage. Yao et al. [11] considered

the redistribution of energy upon the occurrence of

damage and discussed the concept of strain modeshapes

in characterizing the local structural damage. Alampalli

and Fu [12], Alampalli [13], Allampalli et al. [14] and

Alampalli and Cioara [15] address the problem of modal

testing and analysis of structures under operational

loads. The use of dynamic response as an inspection tool

to assess bearing conditions and girder cracking in
ed.
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Fig. 1. Beam–oscillator system with partially immobile bear-

ings.
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concrete bridge structures has been investigated by Ca-

sas and Aparicio [16]. Issues related to the mismatch

between measured and modeled degrees of freedom in

large scale building frames have been examined by Koh

et al. [17] in the context of damage detection problems.

Liu [18] has examined the identifiability of inverse

problems and influence of input errors on identification

process in the context of damage detection in truss

structures. The study by Salawu and Williams [19] de-

scribes full-scale vibration tests conducted before and

after structural repairs on a multi-span reinforced con-

crete highway bridge. Wahab and Roeck [20] describe

the results of field vibration tests on three concrete

bridges with a view to correlate FE models with test

results. The use of residual force vector and a sensitivity

analysis has been made by Kosmatka and Ricles [21] in

their study on a 10-bay space truss.

Recently, the present authors have developed a time

domain formulation to detect beam damages using data

emanating from linear beam–oscillator dynamic inter-

actions [22]. This study has been conducted as a prelude

to the study of damage detection in bridge structures

using vibration data generated by the passage of a test

vehicle. Thus, to a first approximation, the bridge

structure is idealized as a simply supported beam and the

vehicle as a moving single degree of freedom (sdof) os-

cillator with sprung and unsprung masses. The governing

equations of motion in this case are known to constitute

a set of differential equations with time varying coeffi-

cients. Thus, data coming from such a system are not

useful in damage detection if conventional frequency/

modal domain approaches are to be employed. Conse-

quently, the present authors employed a time domain

formulation to detect damages. The present study aims

to extend the capabilities of this formulation to include

the possibility of the damaged beam structure undergo-

ing nonlinear vibrations. This we believe is important,

especially, since the dynamical behavior of nonlinear

systems many a times could be significantly different

from that predicted from a simplified linear model. It

may be noted in this context that nonlinearity in moving

oscillator structure interaction can arise because of one

or more of the following reasons:

• nonlinear strain–displacement relation in beam and/

or the oscillator structure;

• nonlinear stress–strain relation and/or presence of

nonlinear dissipation mechanism in the oscillator

and/or beam structure;

• the possibility of oscillator losing contact with the

beam structure as it traverses the beam. The propen-

sity for such a separation to occur is enhanced, espe-

cially, if oscillator accelerates while on the beam and

the beam deck is significantly uneven;

• presence of cracks, mainly in the beam structure,

which open and close during vibrations.
The studies by Hino et al. [23], Yoshimura et al. [24]

and Lee [25] are representative of investigations into

computational modeling of nonlinear oscillator-struc-

ture interaction problems. In the present study, we

consider the problem of damage detection in beam

structures using vibration data that originate from

nonlinear oscillator interactions. The structural and

motion characteristics of the oscillator are assumed to be

known. This would mean that the oscillator that is being

used is deemed to be a ‘‘test’’ oscillator whose charac-

teristics are well understood. We limit our attention in

this study to only one source of nonlinearity, namely,

the presence of nonlinear strain–displacement relations

in the beam structures. Issues arising out of spatial

incompleteness of measured data are also discussed. Il-

lustrative examples involving beam structure modeled as

a Euler–Bernoulli beam and the oscillator as a moving

sdof oscillator are presented.
2. Finite element model for nonlinear VSI

Fig. 1 shows an idealized model for a beam–oscillator

system. Here the beam structure is modeled as a single

span Euler–Bernoulli beam and the oscillator is modeled

as a moving sdof oscillator with a sprung and an un-

sprung mass. The beam, in its undamaged state, is taken

to be simply supported and is allowed to have spatially

varying flexural rigidity. The types of damages that are

considered in this study include local and/or distributed

loss of stiffness in the beam structure and the possibility

of the bearings becoming partially immobile. In a

practical structure, in case the bearings become immo-

bile due to inadequate maintenance, it would then offer

unanticipated resistance to rotations at the support,

thereby leading to unwanted bending stress near the

supports. In the present study, the effect of partially

immobile bearings is idealized by the emergence of a

rotary spring at the ends as shown in Fig. 1. For the

beam, in its undamaged state, the value of the rotary

springs at the ends would clearly be zero. The oscillator

is assumed to travel with a velocity v0 and an accelera-
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tion a0. The oscillator enters the beam at t ¼ 0 and exits

the beam at t ¼ tf . At t ¼ 0, the beam is assumed to be at

rest and the beam deck is taken to be free from any

surface irregularities. The strain–displacement relation-

ships for the beam structure are assumed to be nonlinear

while the stress–strain relations are taken to be linear.

Furthermore, the oscillator is assumed to be in contact

with the beam deck at all times while it traverses the

beam. Under these assumptions, the equation of motion

for the beam–oscillator system, valid for the time in-

terval 06 t6 tf , can be shown to be given by [23]
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In these equations m1 ¼ oscillator sprung mass, m2 ¼
oscillator unsprung mass, c1 ¼ damping coefficient for

the oscillator suspension, k1 ¼ spring stiffness of the os-

cillator suspension, g¼ acceleration due to gravity, x¼
spatial coordinate, t¼ time, yðtÞ¼ vertical displacement

of the oscillator sprung mass, wðx; tÞ¼ transverse dis-

placement of the beam, uðx; tÞ¼ axial displacement of

the beam, AEðxÞ¼ axial rigidity of the beam, ca ¼ dam-

ping coefficient in axial motion, mðxÞ¼mass per unit

length of the beam, EIðxÞ¼ flexural rigidity of the beam,

c¼ damping coefficient in transverse motion, and dð
Þ¼
Dirac’s delta function. The total derivative D=Dt ap-

pearing in the above equations takes into account the

Coriolis effect arising from the rolling of the oscillator

mass on the deflected profile of the beam. The boundary

conditions appropriate for the system under consider-

ation are
uð0; tÞ ¼ 0; wð0; tÞ ¼ 0;

EIð0Þ o
2wð0; tÞ
ox2

� �
þ kh1

owð0; tÞ
ox

¼ 0;

uðL; tÞ ¼ 0; wðL; tÞ ¼ 0;

EIðLÞ o
2wðL; tÞ
ox2

� �
� kh2

owðL; tÞ
ox

¼ 0:

ð5Þ

In these equations L¼ beam span, and kh1 and kh2 ¼
rotary stiffness at the beam ends that develop due to

bearings becoming immobile. After the oscillator exits

the beam, that is, for t P tf , the governing equations for

the beam are given by Eqs. (2) and (3) with f ðx; tÞ ¼ 0.

Furthermore, the initial conditions, at t ¼ tf , for these

equations are obtained by solutions of Eqs. (1)–(3) at

t ¼ tf .
To obtain a FE model, commensurate with the above

equations of motion, the beam is divided into ne number

of elements, and, in the kth element, the displacement

fields uðx; tÞ and wðx; tÞ are represented using cubic and

quadratic polynomials, respectively [26] (see, Fig. 3).

Subsequently, using Galerkin’s finite element formula-

tion, the governing equation of motion in the discretized

form for the beam–oscillator system, for 0 < t6 tf , can
be shown to be of the form
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Upon the exit of the oscillator from the beam, that is, for

t P tf , the governing equation of motion reads
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� �
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0

� �
: ð7Þ

The initial conditions for these equations, at t ¼ tf , are
obtained from solution of Eq. (6) at t ¼ tf . Appendix A

provides the details of expressions for the elements of

the structural matrices appearing in the above equa-

tions. It must be noted that the governing equations of

motion, as given in Eqs. (6) and (7), constitute a set of

coupled nonlinear ordinary differential equations (ODE)

with time varying coefficients.
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3. Problem of spatial incompleteness of measurements

The FE model developed in the previous section

serves as the baseline model in the damage detection

strategy considered in this paper. An important question

that needs to be addressed in this context is the problem

of spatial incompleteness of measured data. It can gen-

erally be expected that not all structure dofs, that are

included in the FE model, can actually be measured.

This is because of one or more of the following reasons:

• It is not easy to measure rotational dofs,

• Number of dofs that could be measured simulta-

neously is limited by the number of channels avail-

able in the measurement set-up, and

• Not all dofs need be accessible for measurement.

As a result, there exists a mismatch of dofs in ana-

lytical baseline model and the experimental model,

which, in turn, poses significant difficulties in developing

damage detection strategies. To deal with this difficulty,

one could use a suitable FE model reduction scheme so

that the dofs that are not measured are reduced in terms

of the dofs that are measured. In this context it is of

interest to note that the problem of nonlinear model

reduction is widely encountered in the study of large

scale nonlinear dynamical systems: see, for example, the

works of Sirovich [27–29], Berkooz et al. [30], and

Newman [31,32]. The review paper by Noor [33] on re-

duction methods addresses both mathematical aspects

and applications to various areas including problems of

nonlinear vibrations. The recent paper by Matthies and

Meyer [34] contain extensive references to related liter-

ature. In the context of linear time-invariant FE model

reduction, there exists several reduction schemes in the

literature, such as, the static and dynamic condensation

techniques [26] and system equivalent reduction and

expansion process (SEREP) [35]. All these schemes, even

when applied to linear time invariant systems, are es-

sentially approximate in nature and are applied with the

objective that the reduced model captures, to reasonable

level of approximation, the main features of the original

larger model. In the context of the problem on hand, as

has been already noted, the model to be reduced is not

only time varying but also nonlinear. Thus, when model

reduction schemes such as SEREP are used here, they

introduce further approximations. To proceed further,

however, one needs to accept these additional approxi-

mations.

To implement the reduction schemes for the problem

on hand, we assume that oscillator response yðtÞ is

measured and we designate all the beam dofs that are

measured as master dofs and denote them by dmðtÞ, and,
the remaining beam dofs are called the slave dofs, and

are denoted by dsðtÞ. Thus, the beam dofs are partitioned

as
fdðtÞgT ¼ ½fdmðtÞgfdsðtÞg	: ð8Þ

Accordingly, the beam mass, stiffness and modal ma-

trices also get partitioned as

K ¼
Kmm Kms

Ksm Kss

� �
;

M ¼
Mmm Mms

Msm Mss

� �
;

½U	 ¼
Um

Us

� �
:

ð9Þ

The reduction scheme here is proposed to be applied

only to the beam dofs. The essence of all the alternative

reduction schemes is to introduce the transformation

fdðtÞg ¼ ½W 	fdmðtÞg: ð10Þ

Here ½W 	 is the n � nm transformation matrix that relates

the n � 1 beam dofs with the nm � 1 master dofs. For

SEREP reduction, the transformation matrix reads

½W 	 ¼ Um

Us

� �
½UT

mUm	�1UT
m: ð11Þ

In arriving at this transformation matrix, the displace-

ment vector fdðtÞg is expressed in terms of the general-

ized coordinates fzðtÞg as fdðtÞg ¼ ½U	fzðtÞg. Upon

partitioning the displacement vector into master and

slave dofs, as in Eq. (8), and partitioning the modal

matrix as in Eq. (9), it follows that fdmðtÞg ¼ ½Um	fzðtÞg
and fdsðtÞg ¼ ½Us	fzðtÞg. This leads to the expression for

the generalized coordinate vector fzðtÞg ¼ ½Um	þfdmg
where ½Um	þ ¼ ½UT

mUm	�1½Um	T is the pseudo-inverse of

½Um	. This leads to the transformation matrix as given in

Eq. (11). The relative merits of the above mentioned

reduction schemes are widely discussed in the literature,

see, for instance, the paper by Callahan et al. [35]. The

accuracy of static and dynamic condensation techniques

is affected by the choice of active dofs. On the other

hand SEREP provides features, that the other two re-

duction schemes do not, such as [35]

• the arbitrary selection of modes that are to be pre-

served in the reduced system model,

• the quality of the reduced model is not dependent

upon the location of the selected active dof, and

• the frequencies and the mode shapes of the reduced

system are exactly equal to the frequencies and mode

shapes (for the selected modes) of the full system

model.

Upon reducing the dofs, as indicated in Eq. (10), the

reduced mass, stiffness and damping matrices for the

beam structure are obtained as
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½Mr	 ¼ ½W 	T½M 	½W 	; ½Kr	 ¼ ½W 	T½K	½W 	;
½Cr	 ¼ ½W 	T½C	½W 	: ð12Þ

Now, Eq. (6) can be written as
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€yy
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@
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1
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0

� �
fdbg
fdag

� �
¼ fF g: ð13Þ

See Appendix A for expressions for elements of

above structural matrices. Upon applying the model

reduction transformation, and premultiplying both side

of equation ½W 	T, one gets

½MNr 	f€ddmg þ ½CNr 	f _ddmg þ ½KNr 	fdmg

þ ½W 	T �k1 N x ¼ v0t þ 1
2
a0t2

� �� �T
f0g

� �
y

þ ½W 	T �c1 N x ¼ v0t þ 1
2
a0t2

� �� �T
f0g

� �
_yy

þ ½�kkNr	fdmg
� �

¼ ½W 	T N x ¼ v0t þ 1
2
a0t2

� �� �Tðm1 þ m2Þg
f0g

� �
; ð14Þ

where

½MNr 	 ¼ ½W 	T
½M 	 þ ½m	� f0g

f0g ½Maa	

� �
½W 	;

½CNr 	 ¼ ½W 	T
½C	 þ ½c	� f0g

f0g ½Caa	

� �
½W 	;

½KNr 	 ¼ ½W 	T
½K	 þ ½k	� f0g

f0g ½Kaa	

� �
½W 	;

½�kkNr	 ¼ ½W 	TfkNg½W 	;

ð15Þ

are the reduced structural matrices. Upon the exit of

the oscillator, that is, for t P tf , after applying model

reduction transformation, the governing equation of

motion for beam–oscillator system reads

½MNa 	½W 	f€ddmg þ ½CNa 	½W 	f _ddmg þ ½KNa 	½W 	fdmg
þ fkNg½W 	fdmg
¼ f0g; ð16Þ

where

½MNa 	 ¼
½M 	 f0g
f0g

Pne
k¼1 mk

R lk
0
½SðxÞ	Tk ½SðxÞ	k dx

 !
;

½CNa 	 ¼
½C	 f0g
f0g

Pne
k¼1 ca

R lk
0
½SðxÞ	Tk ½SðxÞ	k dx

 !
;
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½K	 f0g

f0g
Pne

k¼1 AEk

R lk
0

o½SðxÞ	Tk
ox

o½SðxÞ	k
ox dx

 !
:

Premultiplying both sides of Eq. (16) by ½W 	T, one gets

½MNar 	f€ddmg þ ½CNar 	f _ddmg½KNar 	fdmgf�kkNrgfdmg ¼ f0g;
ð17Þ

where

½MNar 	 ¼ ½W 	T½MNa 	½W 	;
½CNar 	 ¼ ½W 	T½CNa 	½W 	;
½KNar 	 ¼ ½W 	T½KNa 	½W 	;
f�kkNrg ¼ ½W 	TfkNg½W 	:

ð18Þ

The reduced set of equations, as given in Eqs. (14) and

(18), thus, again constitute a set of nonlinear ODEs with

time varying coefficients.
4. Damage detection algorithm

Attention is focussed in the present study on two

types of damage scenarios: Firstly, we assume that the

flexural rigidity, EIk, of the kth finite element of the

beam, upon the occurrence of damage, becomes akEIk .

Secondly, we consider the possibility of the bearings

becoming partially immobile. This is modeled by emer-

gence of rotary stiffnesses, represented by the springs

with stiffness kh1 and kh2, (see, Fig. 1) at the beam ends

which otherwise are absent in an undamaged beam. The

problem of damage detection, thus, can be stated as

finding ðakÞnek¼1, kh1 and kh2 based on measurement of

yðtjÞ, _yyðtjÞ, €yyðtjÞ, fdðtjÞg, f _ddðtjÞg, and f€ddðtjÞg for j ¼
1; 2; . . . ; s. Here ne ¼ number of finite elements into

which the beam structure is divided. Clearly, for the

undamaged structure, ak ¼ 1 for k ¼ 1; 2; . . . ; ne and kh1,

kh2 ¼ 0. Thus, any departure in the values of ak , from the

reference value of unity, and, in the values of kh1 and kh2,

from the reference value of zero, indicates the occur-

rence of damage. It is also clear that the determination

of these variables also helps to locate the damage and

also to quantify its severity. It is assumed in the present

study that the characteristics of the oscillator, namely,

m1, m2, c1, k1 and its velocity and acceleration are

known. It is also assumed that the beam mass and

damping matrices are unaffected by the occurrence of

the damage and hence are taken to be known a priori.

To describe the damage detection algorithm, we

begin by considering the case of kh1 ¼ kh2 ¼ 0. The beam

itself is taken to have undergone changes in its flexural

rigidity. The stiffness matrix of the damaged beam

structure is expressed in the form

K ¼
Xne
k¼1

ak ½A	Tk ½K	k ½A	k : ð19Þ

Here ½K	i ¼ the ndof · ndof stiffness matrix of the ith
element in its undamaged state in the global coordinate
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system and ½A	k ¼ the ndof · n matrix of extended ele-

ment nodal displacement that facilitates automatic as-

sembling of global stiffness matrix from the constituent

element stiffness matrix. Based on the values of the beam

and oscillator responses measured at t ¼ tj, Eq. (14) can
be recast to read

ð ½KNr 	 þ ½�kkNr	 ÞfdmðtjÞg

¼ ½W 	T ½NðxÞ	Tðm1 þ m2Þg
f0g
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2
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2
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ð20Þ

and
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ð21Þ

This can be simplified to read
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Using Eq. (19), Eq. (22) can be recast as
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½A	Tk ð½KNr 	
(

þ ½�kkNr	Þk ½A	k

)
½W 	fdmðtjÞg;

06 t6 tf ð27Þ

and

fBmðtjÞg ¼ ½W 	T
Xne
k¼1

½A	Tk ð½KNar 	
(

þ ½�kkNr	Þk½A	k

)
½W 	fdmðtjÞg;

t P tf : ð28Þ

Eq. (26) can also be written as

BmðtjÞfag ¼ fFrðtjÞg: ð29Þ

Here fag is the ne · 1 vector of damage indicator factors.

If the response measurements are made for the time

instants t ¼ t1; t2; . . . ; ts, equations governing a, as given
by Eq. (29), can be written for each of these time in-

stants. Consequently, one gets the reduced set of equa-

tions:

½Lm	fag ¼ fFrg; ð30Þ

where ½Lm	 is a snm � ne matrix given by

½Lm	T ¼ ½Bmðt1ÞBmðt2Þ 
 
 
BmðtsÞ	 ð31Þ

and fFmg is a snm � 1 vector given by

fFmgT ¼ ½Frðt1ÞFrðt2Þ 
 
 
 FrðtsÞ	: ð32Þ

Eq. (30) represents snm number of equations for the

unknowns ak , k ¼ 1; 2; . . . ; ne. Since the transformation

matrix W is a nonlinear function of a, it follows that Eq.
(30) constitutes a set of overdetermined nonlinear alge-

braic equations. To obtain an approximation to a we

follow an iterative strategy. This involves the following

steps:

Step 1. Determine the first approximation to W from

the structural matrices of the undamaged structure.

Obtain an initial approximation ~aa to a using the

equation
fag ¼ ½Lm	þfFrg; ð33Þ

where ½Lm	þ is the left pseudo-inverse given by

½Lm	þ ¼ ½LT
mLm	�1

LT
m: ð34Þ

Step 2. Determine the modified structure stiffness ma-

trix by treating ~aa as an approximation to a. Deter-

mine the modal matrix ½U	 and hence the updated

transformation matrix W using Eq. (11).

Step 3. Update the estimate of a using the improved

estimate of W obtained in step 2.

Repeat steps 1–3 till satisfactory convergence on a is

obtained. In the numerical work it was generally ob-

served that acceptable convergence (with a tolerance of
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10�04 on elements of a) was reached within about 3–5

iterations.

The above equations for the damage indicator factors

a have been derived by assuming that kh1, kh2 ¼ 0. This

would mean that the above procedure would not apply

to detect the possibility of the bearings becoming par-

tially immobile. In this context it must be noted that

the damage indicator factor, ak , essentially multiplies the

stiffness parameter in the undamaged state to yield the

corresponding stiffness parameter in the damaged state.

Since, in the undamaged state kh1 ¼ 0 and kh2 ¼ 0, in-

troducing a multiplying parameter to detect a nonzero

kh1 and kh2 is clearly infeasible. To overcome this diffi-

culty, the notion of a reference structure is introduced.

This structure has two hypothetical rotary springs, with

respective stiffnesses k�h1 and k�h2, attached to it at the two

ends. To detect the possibility of bearings becoming

partially immobile, two parameters al and ar are intro-

duced, such that, the bearing stiffness against rotation in

the damaged state is given by

kh1 ¼ alk�h1; kh2 ¼ ark�h2: ð35Þ

With this additional feature, the detection of damage

can now be carried out using the steps as described in

deriving Eq. (33). The damage indicator vector a in this

case reads

a ¼ fa1 ¼ al; a2; . . . ; an�1; an ¼ arg: ð36Þ

Clearly, the estimates of al and ar depend upon the

values chosen for the reference parameters k�h1 and k�h2.
To make an optimal choice, a nondimensional quantity,

�ðk�h1; k�h2Þ ¼
Xn

j¼1

Xs

i¼1

fdjðti; k�h1; k�h2Þ � dM
j ðtiÞg2

½dM
j ðtiÞ	2

ð37Þ

is introduced. Here djðti; k�
h1, k�h2Þ¼ estimated displace-

ment at jth dof at t ¼ ti with kh1 ¼ k�
h1, kh2 ¼ k�h2 and

dM
j ðtiÞ¼measured response of the damaged structure at

jth dof at time t ¼ ti. The best choice for k�h1 and k�h2 is

taken to be the one that minimizes �ðk�h1; k�
h2Þ. This

minimization itself could be carried out by conducting a

parametric study on �ðk�h1; k�
h2Þ by varying kh1 and kh2.
143 10751

1 7
64 532

L

2 4 6 8

11 12 13

9

Fig. 2. Nonlinear FE model of the damaged beam that includes

axial dofs. Numbers within the circles indicate the element

number.
5. Numerical results and discussion

The formulation presented above is illustrated with

reference to the beam–oscillator system shown in Fig. 1.

It is assumed that the beam has uniform cross sectional

properties with L ¼ 45 m, EI¼ 1.62· 1011 Nm2,

AE¼ 3.88· 1011 N, m ¼ 4625 kg/m, c ¼ 1850 N s/m,

ca ¼ 1 N s/m. For the oscillator, it is assumed that

m1 ¼ m2 ¼ 500 kg, k1 ¼ 40� 107 N/m and c1 ¼ 160 N s/

m. The oscillator is assumed to travel with a velocity of

15 m/s and acceleration a ¼ 0. The synthetic data that

double for actual measurements are generated by inte-
grating Eq. (6) using a fourth order Runge–Kutta pro-

cedure that is embedded into the ODE45 subroutine of

the MATLAB software. In this calculation, the relative

tolerance and the vector of absolute error tolerance, that

the ODE45 subroutine requires as inputs, have been set

at 10�3 and 10�6, respectively. This ODE solver reports

the response at time steps at which the specified toler-

ances are met. In implementing the proposed damage

detection algorithm it is required to choose time win-

dows over which the vibration data is gathered and,

also, the time step at which the data is discretized. In the

numerical work it was found that data window over

0 < t6 1:5tf , where tf ¼ time that the vehicle spends on

the bridge, lead to satisfactory performance of the

damage detection algorithm. The data beyond t P 1:5tf ,
represents free vibration decay of the beam to increas-

ingly lower values, and, hence, were found to provide no

useful information on the influence of beam damage on

the response. Furthermore, in discretizing the time for the

purpose of damage detection, the time steps at which

the ODE solver reported the response were themselves

used. Typically, it was observed that, for a set of 12

damage indicator factors, the number of equations that

lead to satisfactory convergence were of the order of

8000–12,000. Similarly, in calculation of �ðk�
h1; k

�
h2Þ, as

given by Eq. (37), the summation on ti was taken over all

the time instants at which the response time histories

were discretized.

As can be seen from Fig. 2, there are five beam ele-

ments used in the spatial discretization and, conse-

quently, the size of vector a in this case would be 12 · 1
with a1 corresponding to the rotary spring kh1 , a2–a6,

respectively corresponding to flexural rigidities fEIkg5k¼1,

a7 corresponding to rotary spring kh2 , and a7–a12, re-

spectively corresponding to axial rigidities. Thus, intro-

ducing the vector

kT ¼ fkh1;EI1;EI2;EI3;EI4;EI5; kh2;AE1;AE2;

AE3;AE4;AE5g;

we get

fkgdamaged ¼ Iafkgundamaged; ð38Þ
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Fig. 3. kth beam element showing displacements at the nodal

coordinates; the element has flexural rigidity EIðxÞ, axial ri-

gidity AEðxÞ; and mass/unit length mðxÞ.
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where, I is an identity matrix of size equal to number of

rows in k. As a prelude to the illustration of damage

detection procedures, in Figs. 4 and 5, we examine the

performance of model reduction schemes (Section 3) as

applied to problem on hand. The results in these figures

correspond to the case of master dofs being 2, 4, 11, and

12. The results from SEREP and Guyan’s reduction for

one of the master dof (midspan transverse deflection)

and one of the slave dof (midspan rotation) are shown,

respectively, in Figs. 4 and 5. In obtaining results from

SEREP scheme, the first four modes are included in the

reduction. As can be seen from these figures, the SEREP

scheme performs relatively better than other schemes.
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Fig. 4. Comparison between measured response from full non-linear

using different reduction techniques, for master dof 4 (deflection at mid

from full non-linear analytical model; Result II: estimated response fr

from reduced model using Guyan’s reduction technique.
The different aspects of the damage detection proce-

dure are illustrated with the help of the following case

studies.

5.1. Studies on undamaged beam

We begin by considering the case in which vibration

data emerges from an undamaged beam–oscillator sys-

tem. The objective here are as follows:

• To ascertain that the damage detection algorithm

does not report false alarms when vibration data is

from an undamaged structure,

• To quantify the effect of model reduction on the abil-

ity of the damage detection algorithm to report no

false alarms, and

• To demonstrate the importance of including geomet-

ric nonlinearity in the implementation of damage de-

tection.

Thus, for the case, when the proposed algorithm was

used in conjunction with vibration data from undam-

aged structure, the damage indicator vector a was ob-

tained to be

aT ¼ f1:0000; 0:9924; 0:9959; 0:9954; 0:9912; 0:9992;
1:0000; 1:0032; 1:0101; 0:9983; 0:9995; 1:0002g:
3 3.5 4 4.5 5
(s)

Result I  
Result II 
Result III

analytical model and estimated response from reduced model

span) of beam–oscillator structure; Result I: measured response

om reduced model using SEREP; Result III: estimated response



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5
x 10

-5

time(s)

M
id

sp
an

 r
ot

at
io

n(
ra

d)

Result I 
Result II 
Result III

Fig. 5. Comparison between measured response from full non-linear analytical model and estimated response from reduced model,

using different reduction techniques, for slave dof 5 (roatation at mid span) of beam–oscillator structure; Result I: measured response

from full non-linear analytical model; Result II: estimated response from reduced model using SEREP; Result III: estimated response

from reduced model using Guyan’s reduction technique.
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In this calculation, the reference values k�h1 and k�
h2

were

both obtained to be equal to 1.83· 10�8 Nm/rad. It

follows that the maximum error of damage detection

emax ¼ 0:76%. Next, we consider damage detection in

which the dofs 2, 4, 11, 12 (Fig. 2) are treated as master

dofs and the rest as slave dofs and the SEREP reduction

scheme with first four modes is employed. The damage

indicator factor in this case turns out to be

aT ¼ f1:0000; 0:9919; 0:9950; 0:9918; 0:9912; 0:9989;
1:0000; 1:0032; 1:0121; 0:9903; 0:9995; 1:0011g

with k�h1 ¼ k�h2 ¼ 1:83� 10�8 Nm/rad. It can be observed

that emax ¼ 1:21%. Thus, the effect of model reduction is

seen to result in an increase in emax from 0.76 to 1.21%

which we believe is acceptable. This indicates that, to an

acceptable level of accuracy, the structure is undamaged,

as indeed is the case.

To study the difference that the presence of structural

geometric nonlinearity makes in structural damage de-

tection, results from a nonlinear undamaged structure

(see, Fig. 6) are input to damage detection algorithm

that ignores geometric nonlinearity effects. This algo-

rithm forms a specific case of the formulation presented

in Section 4 and this has been discussed in greater detail

in Ref. [22]. Since, in a linear finite element model for

beam–oscillator system, there exists no coupling be-

tween bending and axial deformation of the beam, the
associated damage detection algorithm also does not

provide indicators on values of axial stiffnesses. The

linear algorithm predicts that the beam parameters are

{EI1, EI2, EI3, EI4, EI5}¼ {1.668 ·1011, 1.684· 1011,
1.817· 1011, 2.151· 1011, 1.801· 1011} Nm2. Thus, in

this case, it turns out that emax ¼ 32:7% which clearly

demonstrates that the linear damage detection algorithm

shows a significant false alarm and, hence, is inapplica-

ble to the present problem.

5.2. Studies on damaged beam

To demonstrate the efficacy of proposed damage

detection algorithm, we consider three scenarios of oc-

currence of damage:

Damage scenario 1

Here we assume that two bearings become par-

tially immobile leading to kh1 ¼ kh2 ¼ 4:00� 1011 Nm/

rad. The master dofs are taken to be 2, 4, 11, 12,

and first four modes are employed in SEREP reduc-

tion. The damage indicator vector in this case is ob-

tained as

aT ¼ f0:9900; 0:9903; 0:9953; 0:9907; 0:9950; 1:0019; 1:0002;
0:9980; 0:9966; 0:9959; 0:9997; 0:9998g

with emax ¼ 1:0% and k�h1 ¼ k�h2 ¼ 4:00� 1011 Nm/rad.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.5

0

0.5

1

1.5

2

2.5

3
x 10

-5

time(s)

M
id

sp
an

 d
ef

le
ct

io
n 

(m
)

Linear Model    
Non linear Model

Fig. 6. Transverse deflection at midspan for undamaged structure obtained using full FE model: Result I, linear model; Result II,

nonlinear model.
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Fig. 7. Beam with immobile bearing restraints kh1 ¼ 4:0� 1011

Nm/rad; kh2 ¼ 0:0; the hatched portion refers to damaged

beam element with 5% reduction in EI and AE in the fifth

element.
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Damage scenario 2

Fig. 7 shows the damaged structure with one of the

bearings becoming immobile and one of the beam ele-

ments developing 5% of loss of stiffness in both axial and

flexural directions. The first four columns of Table 1

show actual beam parameters together with the corre-

sponding estimates obtained using linear damage de-

tection theory and nonlinear damage detection theory.

As has been noted already, prediction of axial stiffness is
Table 1

Results of damage detection for damage scenarios 2 and 3

Beam parame-

ters

Damage scenario 2 (Fig. 7) Damage scenario 3 (Fig. 8)

Actual values Detected values

from full linear

model

Detected values

from full non-

linear model

Actual values Detected values

from full non-

linear model

Detected values

from reduced

nonlinear model

kh1 (Nm/rad) 4.0000· 1011 4.0003· 1011 4.0003· 1011 4.0000· 1011 3.961· 1011 4.0005· 1011
EI1 (Nm2) 1.621· 1011 2.091· 1011 1.605· 1011 1.621· 1011 1.607· 1011 1.605· 1011
EI2 (Nm2) 1.621· 1011 1.684· 1011 1.606· 1011 1.539· 1011 1.533· 1011 1.545· 1011
EI3 (Nm2) 1.621· 1011 1.990· 1011 1.612· 1011 1.621· 1011 1.613· 1011 1.606· 1011
EI4 (Nm2) 1.539· 1011 2.074· 1011 1.530· 1011 1.621· 1011 1.626· 1011 1.631· 1011
EI5 (Nm2) 1.621· 1011 1.843· 1011 1.632· 1011 1.459· 1011 1.458· 1011 1.458· 1011
kh2 (Nm/rad) 0.0 1.832· 10�8 1.822· 10�8 0.0 1.822· 10�8 1.822· 10�8

AE1 (N) 3.881· 1011 – 3.884· 1011 3.881· 1011 3.871· 1011 3.892· 1011
AE2 (N) 3.881· 1011 – 3.876· 1011 3.687· 1011 3.656· 1011 3.682· 1011
AE3 (N) 3.881· 1011 – 3.873· 1011 3.881· 1011 3.855· 1011 3.8778· 1011
AE4 (N) 3.686· 1011 – 3.681· 1011 3.881· 1011 3.893· 1011 3.871· 1011
AE5 (N) 3.881· 1011 – 3.849· 1011 3.493· 1011 3.496· 1011 3.493· 1011
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Fig. 8. Beam with immobile bearing restraints kh1 ¼ 4:0� 1011

Nm/rad; kh2 ¼ 0:0; the hatched portions refer to damaged beam

elements with 5% reduction in EI and AE in the third element

and 10% reduction in EI and AE in the sixth element.
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not possible using linear damage detection algorithm,

and, consequently, these values are not reported. In

these calculations it was observed that k�h1 ¼ 4:00� 1011

Nm/rad and k�
h2 ¼ 1:83� 10�8 Nm/rad. It was also

observed that emax ¼ 34.74% for linear damage detec-

tion and 0.81% for nonlinear damage detection algo-

rithm. This, again, clearly demonstrates the need to

include geometric nonlinear effects in damage detection

for the example structure studied herein.

Damage scenario 3

The damage scenario assumed here is as shown in

Fig. 8. Here, one of the bearings is taken to be immobile

and the beam is taken to suffer loss of axial and bearing

stiffness at two different places. The values of the actual

beam parameters, together with corresponding values

predicted from damage detection algorithm using full

and reduced nonlinear models, are shown in the columns

5–7 of Table 1. In the reduced model, as before, the dofs

2, 4, 11, 12 are taken as master dofs and first four modes

are included in SEREP. The maximum error of damage

detection using full FE model and the reduced FE model

were observed to be approximately equal with emax ¼
0.97%. These errors however are observed to occur at

two different locations (in element 4 for full finite ele-

ment model and in element 2 for reduced FE model).

This points towards the efficacy of SEREP scheme in

model reduction. The reference values of rotary spring in

these calculation were found to be k�h1 ¼ 4:00� 1011

Nm/rad and k�
h2 ¼ 1:83� 10�8 Nm/rad.
6. Conclusions

A time domain approach, within the framework of

FE modeling, has been developed in this study to detect

damages in beam structures using data on vibration

induced by a moving oscillator. In studies of this kind it

is important to recognize that the accuracy of damage

detection crucially depends upon the ability of FE model

employed to capture changes in structural response

caused due to damages. This calls for greater sophisti-

cation in FE modeling than what perhaps is needed in

problems of response prediction. The study reported in

this paper accounts for a few complicating features as-

sociated with response of beam–oscillator system. This

includes the effects due to nonlinear dynamic interaction
between oscillator and beam and spatial incompleteness

of the measured data. Specifically, we have limited our

attention to the nonlinear effects that emanate from

nonlinear strain–displacement relations for the beam

structure. The governing equations of motion in this

case constitute a set of coupled nonlinear differential

equations with time varying coefficients. Consequently,

the damage detection problem is not amenable for so-

lution using modal domain techniques. The time domain

approach developed in this study leads to a set of

overdetermined linear algebraic equations for the dam-

age indicator variables which is solved using matrix

pseudo-inverse theory. An interesting feature of this

formulation is that the governing equation for damage

indicator factor a remains linear as long as the mea-

surements made are spatially complete. This is true, not

withstanding the fact that the structure behaves non-

linearly. Of course, when measurements are spatially

incomplete, as is going to be the case in most practical

applications, the governing equation for a becomes non-

linear in nature and needs an iterative strategy for its so-

lution. The limited set of numerical illustrations reported

in this paper demonstrates the accuracy of the method

developed. Using the procedures recommended in this

study, the maximum error that is found to occur in de-

tection of damage is seen to remain less than about 1.5%

for all the cases reported in this investigation. To extend

the scope of the present study to address real life prob-

lems, the following further studies need to be conducted:

• The development of the proposed damage detection

algorithm when elaborate FE models for the

bridge–vehicle structures are considered.

• Development of the algorithm to incorporate the ef-

fect of noise in the measurement of bridge–vehicle re-

sponses and other sources of uncertainties such as

guideway unevenness, environmental effects such as

presence of wind and temperature changes. This

study can be carried out within the framework of the-

ory of stationary random processes and perturbation

formalisms. In the context of damage detection using

linear vehicle structure interactions, the present au-

thors have reported in Ref. [22] a first order pertur-

bation method to predict random variabilities in

damage indication factors due to measurement noise.

The extension of this work to include nonlinear vehi-

cle-structure interactions needs to be conducted.

• Inclusion of material nonlinearity, vehicle suspension

nonlinearity and nonlinearities due to loss of contact

between beam and oscillator in the damage detection

algorithm.

• To validate the algorithm developed based on exper-

imental/field studies.

Work on achieving these extensions is currently being

conducted by the present authors.
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Appendix A

Elements of mass matrix appearing in Eqs. (6) and (13):

MbbðtÞ ¼
Xne
k¼1

mk

Xnd
r¼1

Z lk

0

½Nrð1Þ	Tk ½Nrð1Þ	k d1

þ
Xne
k¼1

m2

Xnd
r¼1

Nr v0t
��

þ 1

2
a0t2
��T

k

� Nr v0t
��

þ 1

2
a0t2
��

; ðA:1Þ

Maa ¼
Xne
k¼1

mk

Xmd

z¼1

Z lk

0

½Szð1Þ	Tk ½Szð1Þ	k d1; ðA:2Þ

½m	� ¼
Xne
k¼1

m2

Xnd
r¼1

Nr v0t
��

þ 1

2
a0t2

��T
k

Nr v0t
��

þ 1

2
a0t2

��
k

:

ðA:3Þ
Elements of damping matrix appearing in Eqs. (6) and

(13):

CbbðtÞ ¼
Xne
k¼1

c
Xnd
r¼1

Z lk

0

½Nrð1Þ	Tk ½Nrð1Þ	k d1

þ
Xne
k¼1

c1
Xnd
r¼1

Nr v0t
��

þ 1

2
a0t2
��T

k

� Nr v0t
��

þ 1

2
a0t2

��
k

þ 2m2 _11

� Nr v0t
��

þ 1

2
a0t2

��
1k

Nr v0t
��

þ 1

2
a0t2
��T

k

;

ðA:4Þ

CbyðtÞ ¼ �
Xne
k¼1

c1
Xnd
r¼1

Nr 1

��
¼ v0t þ

1

2
a0t2
��

k

; ðA:5Þ

Caa ¼
Xne
k¼1

ca

Xmd

z¼1

Z lk

0

½Szð1Þ	Tk ½Szð1Þ	k d1; ðA:6Þ

½c	� ¼
Xne
k¼1

c1
Xnd
r¼1

Nr v0t
��

þ 1

2
a0t2

��T
k

Nr v0t
��

þ 1

2
a0t2
��

k

þ
Xne
k¼1

2m2ðv0 þ a0tÞ
Xnd
r¼1

Nr 1

��
¼ v0t þ

1

2
a0t2
��

1k

� Nr v0t
��

þ 1

2
a0t2
��T

k

: ðA:7Þ
Elements of stiffness matrix appearing in Eqs. (6) and (13):

KbbðtÞ ¼
Xne
k¼1

EIk
Xnd
r¼1

Z lk

0

o2½Nrð1Þ	Tk
o12

o2½Nrð1Þ	k
o12

d1

þ
Xne
k¼1

k1
Xnd
r¼1

Nr 1

��
¼ v0t þ

1

2
a0t2
��T

k

� Nr 1

��
¼ v0t þ

1

2
a0t2
��

k

þ
Xne
k¼1

c1
Xnd
r¼1

Nr 1

��
¼ v0t þ

1

2
a0t2
��T

k

ðv0 þ a0tÞ

� Nr 1

��
¼ v0t þ

1

2
a0t2
��

1k

þ
Xne
k¼1

m2t2
Xnd
r¼1

Nr 1

��
¼ v0t þ

1

2
a0t2
��T

k

� Nr 1

��
¼ v0t þ

1

2
a0t2
��

11k

þ
Xne
k¼1

m2a0

Xnd
r¼1

½Nrð1Þ	Tk Nr 1

��
¼ v0t þ

1

2
a0t2
��

1k

;

ðA:8Þ

KbyðtÞ ¼ �
Xne
k¼1

k1
Xnd
r¼1

Nr v0t
��

þ 1

2
a0t2

��
k

; ðA:9Þ

Kaa ¼
Xne
k¼1

AEk

Xmd

z¼1

Z lk

0

o½Szð1Þ	Tk
o1

o½Szð1Þ	k
o1

d1; ðA:10Þ

KybðtÞ ¼ �
Xne
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c1
Xnd
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ðv0 þ a0tÞ Nr 1

��
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2
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