
Nonlinear systems under random differential support
motions : response analysis and development of

critical excitation models

C S Manohar, R Ravi and Ch Srinivas

Department of Civil Engineering
Indian Institute of Science
Bangalore 560 012 India.

Abstract

The response of single degree/multiple degrees of freedom structural
systems with nonlinear multiple supports, which are excited by differ-
ential, jointly stationary, Gaussian random support motions is consid-
ered. The study consists of two parts. In the first part, an approximate
response analysis, based on the method of equivalent linearization in
conjunction with dynamic stiffness matrix formalisms, is presented.
The acceptability of the approximate solutions is examined with the
help of Monte Carlo simulation results. The next part of the study
addresses the issue of highest response of the system under a set of
partially defined inputs. Specifically, it is assumed that the knowl-
edge on auto-power spectral density functions of the support motions
is available while the corresponding cross power spectral density func-
tions are considered to be unknowns. These unknown functions are
determined such that the steady state variance of a chosen response
variable is maximized. The relevance of the study to problems in
earthquake engineering is discussed.

Key words : Multi-support excitations; critical excitations; random vibra-
tions.

1.0 INTRODUCTION

The present study deals with the seismic response analysis of structural sys-
tems which are supported at multiple points on nonlinear springs. The sup-
port motions are taken to be a vector of jointly stationary Gaussian random
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processes. Typical examples for such type of structural systems arise in the
earthquake response analysis of piping structures housed in industrial power
plants. These structures are multiply supported and, in the event of an earth-
quake, the supports suffer differential random motions. Nonlinearity in the
supporting system might arise due to the inelastic behavior of the primary
structure or due to special supporting devices, such as snubbers and gaps,
which are activated during earthquakes.

The literature on random vibration analysis of nonlinear structural systems
is extensive (see for example, Roberts and Spanos 1990, Socha and Soong
1992, Ibrahim 1996, Manohar 1995 and Schueller 1997). However, the stud-
ies on nonlinear system response to multi-component and multi-support mo-
tions are rather limited. The available literature on this topic mostly deal
with response analysis of multi-supported secondary piping systems under
earthquake excitations; see the review papers by Chen and Soong (1988),
Lin (1991) and Villaverde (1997) for overviews on seismic response of sec-
ondary systems. Besides, most of these studies treat excitations as being
deterministic. Shah and Hartman (1981) employed direct and modal space
time integration methods to analyze the response of a typical nuclear power
plant piping system. Accurate representation of effect of rigid body motions
required a large number of modes to be included in the analysis. Based on
results of shake table tests, Suzuki and Sone (1989) have proposed a response
reduction factor to compute nonlinear response from the estimates of linear
response. The nonlinearities arising from gaps and friction were considered.
The reduction factors were reported as a function of input maximum accel-
eration with the maximum reduction of about 30 % for acceleration of about
0.3 g where g is the accelerations due to gravity. Igusa and Sinha (1991)
presented a procedure for linear secondary systems with nonlinear supports
subjected to random excitation. Equivalent linearization method was used to
linearize the nonlinear behavior of hysteresis loops. This method separates
the nonlinear analysis of supports from the linear analysis of secondary sys-
tems. They conclude that the mode shapes of equivalent linear structure are
the indicators of the effect of stress distribution in the secondary structure.
Park (1992) studied seismic response of three dimensional piping systems. An
approach was presented to evaluate the stochastic response statistics using
plastic hinge method and random vibration theories. An orthotropic bi-axial
hysteretic model was used to describe the plastic behavior under stochastic
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dynamic loads. A response spectrum approach was used in the application of
equivalent linearization. Messmer (1993) evaluated the influence of snubbers
and gap elements on the response of piping systems under seismic excita-
tions. Based on experimental and theoretical results, the study concluded
that the modeling of structures by equivalent linear damping, based on to-
tal energy, cannot predict accurately deformation history of piping system.
In the context of long span land based structures, studies addressing struc-
tural nonlinearities and spatially varying ground motion models appear to
be very limited; see the study by Gillies and and Shepherd (1981) on multi-
component inputs to inelastic bridge structures and the study by Monti et
al., (1996) on multi-span inelastic bridges subjected to non-synchronous in-
put support motions.

The concept of critical random earthquake ground motions is also of rele-
vance to the present study. This concept was introduced by Drenick (1970)
and since then it has been studied by several authors. Thus, critical earth-
quake load models in the form of time histories, response spectra and power
spectral density (psd) functions have been developed in the existing litera-
ture; the relevant literature has been briefly reviewed by Manohar and Sarkar
(1995). We mention here briefly the papers dealing with critical excitations
for nonlinear systems. Iyengar (1972) considered inputs having known to-
tal energy and obtained critical excitations for a class of nonlinear systems
in terms of impulse response function of corresponding linear system. He
also treated the input total energy as a random variable and obtained the
worst possible distribution of the critical response. Drenick and Park (1975)
pointed out that the procedure used in the above analysis enforced additional
constraints on the input involving the system response. By linearizing the
given nonlinear equation around the critical excitation-response pair, Drenick
(1977) obtained critical excitations in terms of impulse response of linearized
equations. Philippacopoulos and Wang (1982) presented an approach for
generation of critical inelastic response spectra. They applied it to a simple
single degree of freedom (sdof) nonlinear system with stiffness nonlinear-
ity. They obtained the approximate solution to the problem by equivalent
linearization. Westermo (1985) determined the critical responses of linear,
elastoplastic and hysteretic sdof systems. For linear systems, the critical ex-
citations were shown to be harmonic and were derivable from the frequency
response functions of the systems. The critical excitations for elastoplastic
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systems, however, were not harmonic. Pirasteh et al., (1988) presented a
methodology for constructing the most critical accelerogram from among a
broad class of candidate accelerograms for a given site and structure. The
critical accelerograms were obtained based on the nonlinear response of struc-
ture.

Recently Sarkar and Manohar (1996, 1998) have extended the concept of
random seismic critical excitations to cover the cases of multi-component and
multi-support excitations. These studies dealt with linear systems subjected
to multi-component/multi-support earthquake support motions. These sup-
port motions were modeled as a vector of jointly Gaussian random processes
with limited knowledge on the power spectral density matrix. The following
models were considered

1. The auto-psd functions are known and the amplitude and phase of the
cross-psd functions are unknown. In this case the highest response
was shown to be produced by fully coherent motions having system
dependent phase spectra.

2. The auto-psd functions and the phase spectra associated with the cross-
psd functions are known and the coherence spectra are not known. In
this case the highest response was shown to be produced by excitations
with system dependent coherence functions which represented neither
fully coherent motions nor fully incoherent motions.

3. The variance and zero crossing rates of individual components of the
excitations are known and also the phase spectra associated with cross
psd-functions are known. The psd functions and the coherence func-
tions are not known. This case was analyzed using a sequential linear
programming approach.

In the present paper, we extend our earlier studies to determine the critical
support motion models for vibrating systems which are multiply supported
on nonlinear springs. We begin by considering the case of a sdof system
which is doubly supported on cubic nonlinear springs and which is acted
upon by a pair of jointly stationary Gaussian random support motions. An
approximate analysis based on method of equivalent linearization is devel-
oped. This study is further generalized to the analysis of a Euler-Bernoulli
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beam, which is again taken to be doubly supported on nonlinear springs and
which is subjected jointly stationary Gaussian random support motions. The
response analysis in frequency domain is carried out by employing method of
equivalent linearization in conjunction with response representation in terms
of dynamic stiffness coefficients of the beam. Subsequently, for these two
systems, a class of critical psd matrix models for the support motions are
derived. Also discussed are the issues related to the validation of equivalent
linearization using Monte Carlo simulations and questions on feasibility of
applying the equivalent linearization method to these problems.

2.0 SINGLE DEGREE OF FREEDOM SYSTEM

2.1 Equation of motion

Consider a doubly supported sdof system with hardening spring characteris-
tics and linear damping subjected to differential support motions as shown
in figure 1. The governing equation of motion for this system can be written
as

mÿ+
c

2
[(ẏ− u̇)+(ẏ− v̇)]+

k

2
[(y−u)+(y−v)]+

α

2
[(y−u)3+(y−v)3] = 0. (1)

Here, y is the absolute displacement response of the mass m, u(t) and v(t)
are the support motions, c is the damping coefficient, k is the linear spring
rate and α is the nonlinear spring rate. A dot here denotes derivative with
respect to time t. The support accelerations are taken to be a pair of jointly
stationary, Gaussian random processes with zero mean, auto-psd functions
Suu(ω) and Svv(ω) and cross psd function Suv(ω) = |Suv(ω)| exp[−iφuv(ω)].

2.2 Equivalent linearization

To construct an approximate solution to the above equation, we replace the
given system by an equivalent system

mÿ +
c

2
[(ẏ − u̇) + (ẏ − v̇)] +

β

2
[(y − u) + (y − v)] = 0. (2)

Here β is the equivalent parameter to be determined. There are several
criteria that one can adopt to determine β (Roberts and Spanos 1990, Socha
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and Soong 1991). An approach based on equivalence of average total steady
state potential energy in the spring is adopted here to find β. Accordingly,
we find β such that

< Ep >=< E∗
p > (3)

where < · > is the mathematical expectation operator, < Ep > is the mean
steady state potential energy for the nonlinear system and < E∗

p > is the
mean steady state potential energy for the equivalent linear system. These
quantities are given respectively by

< Ep >=
k

4
{< (y − u)2 + (y − v)2 >}+

α

8
{< (y − u)4 + (y − v)4 >} (4)

and

< E∗
p >=

β

4
{< (y − u)2 + (y − v)2 >}. (5)

Using these expressions in equation 3, the equivalent linear spring rate is
found to be

β =
k

2
+

α

2

< (y − u)4 > + < (y − v)4 >

< (y − u)2 > + < (y − v)2 >
. (6)

To determine < (y − u)4 > and < (y − v)4 > we follow the argument that
the response of the equivalent linear system is Gaussian and this leads to the
simplification

β =
k

2
+

3α

2

σ4
1 + σ4

2

σ2
1 + σ2

2

(7)

where σ2
1 =< (y− u)2 > and σ2

2 =< (y− v)2 >. Clearly σ1 and σ2 represent,
respectively, the standard deviation of relative displacements of the mass with
respect to the left and right supports and they form important descriptors
of the system response. Putting w1 = y − u and w2 = y − v in equation 2,
one gets

ẅ1 + 2ηωeqẇ1 + ω2
eqw1 = −ü− 2ηωeq

(u̇− v̇)

2
− ω2

eq

(u− v)

2
(8)

ẅ2 + 2ηωeqẇ1 + ω2
eqw2 = −v̈ − 2ηωeq

(v̇ − u̇)

2
− ω2

eq

(v − u)

2
(9)

where ωeq =
√

β/m is the natural frequency of the equivalent linear system

(equation 2) and η is the damping ratio. Based on the standard random
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vibration theory, the steady state variance of w1 can be written as

σ2
1 =< w2

1 >=
∫ ∞

0
|Hd(ω)|2S1(ω)dω (10)

where Hd(ω) = [(ω2 − ω2
eq) + i2ηωeqω]−1. Furthermore, S1(ω) is the psd

function of the process [−ü − ηωeq(u̇ − v̇) − 1
2
ω2

eq(u − v)]. This function, in
turn, can be shown to be given by

S1(ω) = Suu(ω){1+η2(
ωeq

ω
)2+

1

4
(
ωeq

ω
)4−1

2
(
ωeq

ω
)2}+Svv(ω){η2(

ωeq

ω
)2+

1

4
(
ωeq

ω
)4−1

2
(
ωeq

ω
)2}

+|Suv(ω)|{2 cos[φuv(ω)][−η2(
ωeq

ω
)2 − 1

4
(
ωeq

ω
)4 +

1

2
(
ωeq

ω
)2]2 sin[φuv(ω)]η

ωeq

ω
}.

(11)
A similar procedure can now be used to find σ2. This quantity can be shown
to be given by

σ2
2 =< w2

2 >=
∫ ∞

0
|Hd(ω)|2S2(ω)dω (12)

where S2(ω) is the psd function of the process [−v̈−ηωeq(v̇−u̇)− 1
2
ω2

eq(v−u)].
S2(ω) can be obtained by swapping u with v in the expression for S1(ω) given
in eq(11). It may be noted that equation 7, together with equations 10 and
12 for σ1 and σ2, result in a nonlinear transcendental equation for the equiv-
alent parameter β.

2.3 Numerical results and Validation

A sdof system with m=1000 Kg, k= 1.58E+05 N/m, α = 6.1E+08 N/m3

and η = 0.05 is considered. We take the support accelerations ü(t) and v̈(t)
to possess the psd functions of the form

Suu(ω) = Svv(ω) = {φ0

ω4
g + (2ηgωgω)2

(ω2
g − ω2)2 + (2ηgωgω)2

}{
[ ω
ωf

]4

{(1− ω2

ω2
f
)2 + 4η2

f
ω2

ω2
f
}}.

(13)
It may be observed that this psd function is written as a product of two
functions: the first part corresponds to the well known Kanai-Tajimi psd
model for earthquake ground motions and the second part represents a filter
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which serves to suppress the singularity at ω = 0 in the psd functions for dis-
placement which the Kanai-Tajimi spectrum possesses (Clough and Penzien
1993). The cross psd function Suv(ω) is taken to be of the form

Suv(ω) = |Suv(ω)| exp[−iωτ ] (14)

In the numerical work, it is assumed that ωg=8 π rad/s, φ0=1.0E-03 m2/s3,
ηg=0.6, ωf=2.5 rad/s and ηf=0.8. These parameters correspond to a sup-
port motion with root mean square acceleration of 0.028g with an average
peak ground acceleration of about 0.085g. Two sets of calculations were
done: one for the case of the support motions being stochastically indepen-
dent (|Suv(ω)| = 0) and the other for the case of the two motions being fully

coherent (|Suv(ω)| =
√
{Suu(ω)Svv(ω)}). An iterative procedure was used to

evaluate the equivalent parameter β. An accuracy of 10−4 was sought and
this was realized in about six iteration cycles. The possible of presence of
multi-valued solutions for β was examined but, however, for the parameter
ranges studied, it was found that the governing equation for β lead to sin-
gle valued solutions. Figures 2-4 show the results of a parametric study in
which the steady state standard deviation σ1 of the relative displacement
w1(t) = y(t)− u(t) is computed by varying the time lag τ (figure 2), nonlin-
earity parameter α (figure 3) and the ground frequency ωg (figure 4). These
figures also show results for the case of input critical excitation models and
these will be explained later in section 4.3. The simulation results shown
in these figures were obtained by simulating an ensemble of 250 samples of
the input processes ü(t) and v̈(t). The governing equation of motion (equa-
tion 1) was integrated numerically for about 50 cycles using a fourth order
Runge-Kutta algorithm with as step size of 1/160 s. The response data in the
last 30 cycles were temporally averaged for each time history. This tempo-
rally averaged result was again used to obtain the ensemble average over the
250 samples. An immediate observation that can be made from figures 2-4
is that the theoretical and simulation results show reasonably good mutual
agreement.

The results of equivalent linearization are valid only when the nonlinear
system response has broad features of a Gaussian random process. Thus,
for instance, the method is likely to succeed only if response amplitude has
unimodal probability density function. It has been established in the lit-
erature (see, for example, Iyengar 1988, Roberts 1991, Langley 1988), that
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for nonlinear systems which exhibit multiple modes in the probability den-
sity function of the response amplitude, the equivalent linearization does not
give valid estimates of nonlinear response. Figure 5 show plots of probability
distribution function (PDF) of the response amplitude defined as

A(t) =

√
(y − u)2 + [

ẏ − u̇

λ+
0

]2 (15)

where λ+
0 is the rate of zero crossing of y−u with positive slope. In these plots

the dominant frequency of input is varied and these frequencies are marked
on the plots. Two possible estimates of λ+

0 given by λ+
0 = ω0 and λ+

0 = ωg

were considered. The results on probability distribution of A(t) for these two
choices of λ+

0 were observed to be broadly similar. The lack of any abrupt
changes in slopes of PDF indicate that the response density functions are
essentially unimodal. This would indicate that the equivalent linearization
method can be expected to be applicable to analyze the problem on hand.

Digital simulation results provide a quantitative means to examine the ac-
curacy of the approximate solutions such as those predicted by equivalent
linearization. The acceptability of an approximate solution can also be ex-
amined in a qualitative manner by examining the stability of solutions, see for
example, the papers by Iyengar(1988), Manohar and Iyengar (1990), Roberts
(1991) and Koliopulos and Langley (1993). According to this criterion, an
approximate solution y0(t) is deemed acceptable if a small perturbation z(t)
imposed on y0(t) is stochastically stable. Thus, in the present study, if the
approximate solution given by the equivalent linearization, is perturbed, that
is, if we take y(t) = y0(t)+z(t), the equation governing the perturbation z(t)
can be deduced from equation 1 as

z̈+2ηω0ż+ω2
0z+

α

2m
{2z3+3z2[(y0−u)+(y0−v)]+3z[(y0−u)2+(y0−v)2]} = 0.

(16)
Here ω2

0 = k/m. For the equivalent linear system to be acceptable, it is
required that the solution of the above equation is stochastically stable. The
studies conducted, for instance, by Iyengar (1988), Manohar and Iyengar
(1990) and Koliopulos and Langley (1993) adopt approximate analytical ap-
proach to ascertain the stochastic stability. A detailed examination of this
issue, however, has not been attempted in this study. Instead, limited nu-
merical experimentation has been carried out to examine the time evolution
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of the perturbation z(t). This consists of obtaining samples of z(t) and ex-
amining their behavior. Thus, to implement this, we need to numerically
integrate equations 2 and 16 simultaneously, for different samples of u(t) and
v(t). Notice that equation 16 has a zero right hand side and, consequently,
to obtain non-trivial solutions, it is essential to employ non-zero initial con-
ditions on z(t) and ż(t). In our study we have taken z(0) and ż(0) to be a
pair of random variables with zero mean and a small standard deviation of
about 1 % of the theoretical standard deviation of the steady state y0(t) and
ẏ0(t) respectively. Figure 6 shows a few samples of amplitude of z(t) and
the ensemble mean and standard deviation of perturbation amplitude across
a sample of 250 members is shown in figure 7. For the parameter ranges
considered, the simulation results showed that the samples and the first two
moments of the amplitude of perturbation go to zero for large times. This,
again, lends credence to the use of equivalent linearization in analyzing the
problem on hand.

3.0 DOUBLY SUPPORTED EULER-BERNOULLI BEAM

3.1 Equation of motion

An Euler-Bernoulli beam supported on two discrete springs and which is
subjected to support motions u(t) and v(t) is shown in figure 8. The springs
are taken to be of the Duffing type, that is, they possess a cubic force-
deflection characteristics. The support motions u(t) and v(t) are taken to
constitute a vector of zero mean, stationary, Gaussian random processes with
psd matrix given by

S(ω) =

[
Suu(ω) Suv(ω)
Svu(ω) Svv(ω)

]
. (17)

The cross psd function can be represented as

Suv(ω) = |Suv(ω)| exp[−iφuv(ω)]. (18)

The governing equations of motion for this system is given by

EI Y
′′′′

(x, t) + mŸ (x, t) + cẎ (x, t) = 0 (19)
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with boundary conditions

EI Y
′′′
(0, t) = −k1[Y (0, t)− u]− α[Y (0, t)− u]3

EI Y
′′′
(L, t) = k2[Y (L, t)− v] + α[Y (L, t)− v]3

Y
′′
(0, t) = 0

Y
′′
(L, t) = 0 (20)

and initial conditions
Y (x, 0) = 0

Ẏ (x, 0) = 0. (21)

Here, EI= flexural rigidity, m=mass per unit length, c=viscous damping
coefficient, k1, k2= linear spring rates and α1, α2= nonlinear spring rates. A
prime in the above equations denotes differentiation with respect to the spa-
tial variable x and a dot, as before, represents derivative with respect to time
t. It may be noted that the above governing equation of motion constitute
a nonlinear partial differential equation with randomly time varying bound-
ary conditions. The field equation here is linear but the nonlinearity enters
through the boundary conditions. Exact solution to this type of problems is
currently not possible and one has to take recourse to approximate analysis
procedures or to digital simulation strategies. As in the previous section, we
apply the method of equivalent linearization to obtain approximate solutions
and validate them by using Monte Carlo simulations.

3.2 Equivalent linearization

For the problem on hand (figure 8), to apply the method of equivalent lin-
earization, we replace the nonlinear springs by a pair of equivalent linear
springs with spring rates β1 and β2. The field equation governing the behav-
ior of the equivalent linear system is identical to equation 19. However the
boundary conditions now get linearized and are modified to read

EI Y
′′′
(0, t) = −β1 [Y (0, t)− u]

EI Y
′′′
(L, t) = β2 [Y (L, t)− v]

Y
′′
(0, t) = 0

Y
′′
(L, t) = 0.

(22)
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To determine the equivalent linear spring rates β1 and β2 we demand that
the average steady state potential energy stored in the nonlinear system and
the linearized system are the same. That is

lim
t→∞ < El

NL(t) >= lim
t→∞ < El

L(t) >

lim
t→∞ < Er

NL(t) >= lim
t→∞ < Er

L(t) > (23)

where, ENL(t) and EL(t) are the potential energies stored in the nonlinear
and equivalent linear springs respectively. The superscripts l and r denote
respectively the left and right springs. These quantities are given by

< El
NL >= k1

2
< (Y (0, t)− u)2 > +α1

4
< (Y (0, t)− u)4 >

< Er
NL >= k2

2
< (Y (L, t)− v)2 > +α2

4
< (Y (0, t)− v)4 >

< El
L >= β1

2
< (Y (0, t)− u)2 >

< Er
L >= β2

2
< (Y (L, t)− v)2 > .

(24)

In these equations we have omitted to write limt→∞ with an understand-
ing that we are considering the expectations in the steady state. As may
be observed, the expression for the expected potential energy in nonlinear
springs contain fourth order moments < (Y (0, t) − u)4 > and < (Y (L, t) −
v)4 >. In implementing the equivalent linearization procedure it is assumed
< (Y (0, t) − u)4 >= 3 < (Y (0, t) − u)2 >2 and < (Y (L, t) − v)4 >= 3 <
(Y (L, t)− v)2 >2 the justification for this being that the response of the lin-
earized system is going to be Gaussian. Consequently, employing equation
23, the equivalent linear parameters β1 and β2 are obtained as

β1 = k1 + 3
2
ασ2

z1

β2 = k2 + 3
2
ασ2

z2
.

(25)

Here, σ2
z1

and σ2
z2

are variance of relative displacements z1(t) = [Y (0, t)−u(t)]
and z2(t) = [Y (L, t) − v(t)] in the left and right springs respectively; these
are given by

σ2
z1

=< z1(t)
2 >=< (Y (0, t)− u)2 >

σ2
z2

=< z2(t)
2 >=< (Y (L, t)− v)2 > .

(26)
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It must be noted that the equivalent spring rates β1 and β2 are functions of
σ2

z1
and σ2

z2
which in turn depend upon β1 and β2. In other words, equation

25 represents a pair of coupled nonlinear equations for β1 and β2.

To determine the equivalent parameters β1 and β2 we first obtain the psd
functions for the processes z1(t) and z2(t). This is done by carrying out a sta-
tionary response analysis of the equivalent linear system using the dynamic
stiffness matrix formulations (Paz 1984). This leads to expressions for the
psd functions Sz1z1(ω) and Sz2z2(ω) given by

Sz1z1(ω) = H1(ω)Suu(ω) + H2(ω)Svv(ω) + H5(ω)|Suv(ω)|

Sz2z2(ω) = H3(ω)Suu(ω) + H4(ω)Svv(ω) + H6(ω)|Suv(ω)|. (27)

Here Hi(ω) (i = 1, ..., 6) are generalized system frequency response functions
which are expressed in terms of the elements of the reduced dynamic stiffness
matrix D(ω) as follows (see Appendix A for details of D(ω)):

H1(ω) =
1

ω4
(1− 2Re[D(1, 1)] + |D(1, 1)|2)

H2(ω) =
1

ω4
|D(1, 2)|2

H3(ω) =
1

ω4
|D(3, 1)|2

H4(ω) =
1

ω4
(1− 2Re[D(3, 2)] + |D(3, 2)|2)

H5[ω, φuv(ω)] = g1(ω) cos[φuv(ω)] + g2(ω) sin[φuv(ω)]

H6[ω, φuv(ω)] = g3(ω) cos[φuv(ω)] + g4(ω) sin[φuv(ω)]

g1(ω) =
2

ω4

(
Re[D(1, 1)]Re[D(1, 2)] + Im[D(1, 1)]Im[D(1, 2)]

)

g2(ω) = − 2

ω4

(
Im[D(1, 1)]Re[D(1, 2)]− Re[D(1, 1)]Im[D(1, 2)]

)

g3(ω) =
2

ω4

(
Re[D(3, 1)]Re[D(3, 2)] + Im[D(3, 1)]Im[D(3, 2)]

)

g4(ω) = − 2

ω4

(
Im[D(3, 1)]Re[D(3, 2)]− Re[D(3, 1)]Im[D(3, 2)]

)
. (28)
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It is clear that the functions H2(ω) and H4(ω) are non-negative. It must also
be noted that the functions H1(ω) and H3(ω) are also non-negative. This
can be demonstrated by considering u(t) 6= 0 and v(t) = 0. In this case
we get Sz1z1(ω) = H1(ω)Suu(ω) and Sz2z2(ω) = H3(ω)Suu(ω). Let the
functions H1(ω) and H3(ω) be negative for ω = ω̄. If we take now Suu(ω)
to be a narrow banded with central frequency at ω = ω̄, it follows that the
response psd Sz1z1(ω) and Sz2z2(ω) are negative at ω = ω̄. This violates the
well known fact that psd function cannot be negative. Thus, the premise that
H1(ω) and H3(ω) can become negative is invalid. It is easy to deduce that the
functions H5 and H6 on the other hand can take either negative or positive
values for different values of ω. It is important to note that these properties
of the frequency response functions Hi(ω) (i = 1, 2, · · ·, 6) are central to the
results on response bounds to be discussed in section 4.0. In further work an
alternative representation of equation 27 as given below becomes useful:

Sz1z1(ω) = H1(ω)Suu(ω)+H2(ω)Svv(ω)+R1(ω)|Suv(ω)| cos[α1(ω)−φuv(ω)]

Sz2z2(ω) = H3(ω)Suu(ω)+H4(ω)Svv(ω)+R2(ω)|Suv(ω)| cos[α2(ω)−φuv(ω)]
(29)

where
R1(ω) =

√
g2
1(ω) + g2

2(ω)

R2(ω) =
√

g2
3(ω) + g2

4(ω)

α1(ω) = tan−1{g2(ω)

g1(ω)
}

α2(ω) = tan−1{g4(ω)

g3(ω)
}. (30)

Once Sz1z1(ω) and Sz2z2(ω) are determined, the steady state variance of the
relative displacements z1(t) and z2(t) can be found using the well known
relations

σ2
z1

=
∫ ∞

0
Sz1z1(ω)dω

σ2
z2

=
∫ ∞

0
Sz2z2(ω)dω. (31)

As has been already noted, equation 25 represents a pair of nonlinear equa-
tions for the equivalent linear parameters β1 and β2.
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3.3 Numerical Results

The formulations presented in the previous sections is illustrated by con-
sidering the response of system shown in figure 8 with the area of cross
section A0 = 3.71E − 03 m2, moment of inertia I=2.1E+04 m4, mass den-
sity ρ=2700 kg/m3, Young’s modulus E=2.1E+05 N/m2, damping constant
C=63.0 N-s/m2, linear spring stiffness k1=k2=1.767E+05 N/m and length
L= 8 m. The nonlinear spring rate α1 and α2 are taken to be in the range of
2.0E+06 to 4.0E+08. The first few natural frequencies of this system, with
α1 = α2 = 0, that, is with nonlinearity, are found to be 21.1, 57.8, 97.7, 173.7
and 310.0 rad/s. The auto-psd functions Suu(ω) and Svv(ω) for the ground
accelerations ü(t) and v̈(t) are again taken to be given by

Suu(ω) = So{
(1 + 4η2

g1(
ω

ωg1
)2)

(1− ( ω
ωg1

)2)2 + (4η2
g1(

ω
ωg1

)2)
}{

( ω
ωf

)4

(1− ( ω
ωf

)2)2 + (4η2
f (

ω
ωf

)2
} (32)

Svv(ω) = So{
(1 + 4η2

g2(
ω

ωg2
)2)

(1− ( ω
ωg2

)2)2) + (4η2
g2(

ω
ωg2

)2)
}{

( ω
ωf

)4

(1− ( ω
ωf

)2)2 + (4η2
f (

ω
ωf

)2
}.
(33)

In the numerical work the parameters So, ωg1, ωg2, ηg1 and ηg2 are taken to
be 0.01, 20 rad/s, 20 rad/s, 0.6 and 0.4 respectively. The above parame-
ters represent a root mean square acceleration level of input as 0.081g and
the corresponding zero period acceleration of 0.241g for a peak factor of 3.0
where g is acceleration due to gravity. The filter function parameters ωf and
ηf are taken to be 5 rad/s and 0.52 respectively. Detailed numerical studies
have been conducted to examine the nature and validity of the solution based
on equivalent linearization. An iterative procedure was employed to deter-
mine the equivalent parameters β1 and β2. The iterative cycles involved in
computing β1 and β2 were seen to converge to an accuracy of about 1.0E-06
within about 6 to 8 number of cycles. For the parameter ranges considered,
β1 and β2 were observed to be single valued. Figures 9-11 show the steady
state variance of the force in the left spring as a function of linear spring rate
k = k1 = k2 (figure 9), nonlinear spring rate α = α1 = α2 (figure 10) and ex-
citation frequency parameter ωg = ωg1 = ωg2 (figure 11). Results from both
the analytical and Monte Carlo simulations are shown in these figures. In
the simulation studies, the beam was discretized into 5 number of elements
using the traditional finite element method. The discretized equations were
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integrated using a step size of 1/2800 s. The integration was carried out for
a length of about 78 s using a fourth order Runge-Kutta algorithm. The first
4 s of this sample was discarded to allow for the dissipation of the transients.
Variance of the response was estimated by employing temporal averaging of
the shortened sample. Twenty estimates of sample variance were obtained
and these were subsequently averaged to arrive at the final estimate of the
response variance. Figure 12 shows the sample probability density functions
of the force in the left spring. These density functions are estimated using
10000 number of points. Results from 20 samples are superposed in this fig-
ure. In these plots the response mean has been removed and the response is
normalized to have unit standard deviation.

3.4 Discussion

The spring supported structure shown in figure 8 approaches a simply sup-
ported beam as the spring rates k1 → ∞ and k2 → ∞. Consequently for
large values of spring rates, the system behaves as a linear system no matter
what values the nonlinear spring rate α1 and α2 take. This feature can be
observed in figure 9, where it is observed that for large values of k1 = k2 = k,
the response variance reaches a constant value. It has been verified that
this constant value indeed corresponds to the response variance of a simply
supported beam suffering differential support motions u(t) and v(t). This
verification is based dynamic stiffness matrix analysis of a simply supported
beam and the calculations used are independent of the response analysis for
spring supported beam. The influence of increase in α for a fixed value of k is
to reduce the response variance; see figure 10. The simulation and analytical
results agree well for α less than about 2.0E+07 N/m3, beyond which, the
accuracy of the linearization solution is found to deteriorate. The probability
density functions shown in figure 12 (with mean removed and standard devia-
tion normalized to unity) indicate that the response has unimodal probability
density functions and it retains the broad features of Gaussian function. This
would mean that the method of equivalent linearization is, in principle, ap-
plicable to analyze the problem.
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4.0 PARTIALLY SPECIFIED INPUTS AND CRITICAL CROSS
psd MODELS

4.1 Background

The formulation developed in the previous section enables the response anal-
ysis to be made when information on the psd matrix of the input vector ran-
dom process is available. In this section we consider the situations in which
the input psd matrix is only partially specified. Specifically, we assume that
the diagonal terms in this matrix which represent the auto-psd functions are
known while the off-diagonal terms which represent the cross psd functions
are not known. It is aimed to find the cross psd functions which produce
the highest and the lowest response steady state variance. The motivation
for considering this type of problems has been outlined in our earlier works
(Sarkar and Manohar 1996,1998). Briefly stated, we are considering situa-
tions in which the earthquake loads on the structure are specified in terms
of design response spectra of the various excitation components. These re-
sponse spectra, by definition, do not encapsulate information on phase lag
and coherency loss among excitation components and hence the method of
specifying earthquake loads via a set of response spectra is at a disadvantage.
We overcome this difficulty by recasting the problem within the framework
of random vibration theory. This calls for establishing auto-psd functions
compatible with the given set of response spectra. This can be achieved by
using results from extreme value statistics that form the basis of standard
random vibration theory. We would not, however, be able to determine the
input cross psd functions by this means. Thus, we get the situation in which
we have input random processes whose psd matrix is only partially specified.
Consequently, the problem of finding the optimal cross psd functions that
bound the response variance becomes of considerable interest.

4.2 Critical cross psd models

The determination of the critical and most favorable cross psd functions
is based on the analysis using the equivalent linearization solution outlined
in the previous sections. We envisage the following alternative scenarios in
establishing the optimal cross psd functions:
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Model I To find optimal |Suv(ω)| given Suu(ω), Svv(ω) and φuv(ω)

Here we take φuv(ω) = ωτ0 with τ0 = L/V , L= distance between the supports
and V = apparent velocity of seismic wave propagation. With this assump-
tion, using equation 27, the steady state variance of force in the left spring
can be shown to be given by

σ2
l = β2

1

∫ ∞

0
{H1(ω)Suu(ω) + H2(ω)Svv(ω) + H5(ω, τ0)|Suv(ω)|}dω. (34)

Here the response functions H1(ω) and H2(ω) are as in equation 28. Using
equation 28, and noting that φuv(ω) = ωτ0, the function H5(ω, τ0) is given
by

H5(ω, τ0) = g1(ω) cos(ωτ0) + g2(ω) sin(ωτ0) (35)

Here the functions g1 and g2 are as in equation 28. We note that the functions
H1(ω) and H2(ω) are non-negative while H5(ω, τ0) can take either negative
or positive values depending on ω and τ0.

The critical cross psd function function which maximizes σ2
l under the con-

straint that 0 ≤ |Suv(ω)| ≤
√

Suu(ω)Svv(ω) is given by

|Suv(ω)| = 0 if H5(ω, τ0) < 0

|Suv(ω)| =
√

Suu(ω)Svv(ω) if H5(ω, τ0) > 0. (36)

Conversely, the most favorable cross psd function function which minimizes

σ2
l under the constraint that 0 ≤ |Suv(ω)| ≤

√
Suu(ω)Svv(ω) is given by

|Suv(ω)| = 0 if H5(ω, τ0) > 0

|Suv(ω)| =
√

Suu(ω)Svv(ω) if H5(ω, τ0) < 0. (37)

Model II To find optimal |Suv(ω)| and φuv(ω) given Suu(ω) and Svv(ω)

Here we adopt the alternative version of response representation given in
equation 29. Using this, the variance of the force in the left spring is given
by

σ2
l = β2

1

∫ ∞

0
{H1(ω)Suu(ω)+H2(ω)Svv(ω)+R1(ω)|Suv(ω)| cos[α1(ω)−φuv(ω)]}dω

(38)
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The functions H1, H2, α1(ω) and R1(ω) are as in equations 28 and 30.

Noting, as before, that H1 and H2 are non-negative, it can be deduced that

the highest σ2
l is produced when |Suv(ω)| =

√
Suu(ω)Svv(ω) and cos[α1(ω)−

φuv(ω)] = 1. Thus the critical |Suv(ω)| and φuv(ω) are given by

|Suv(ω)| =
√

Suu(ω)Svv(ω)

φuv(ω) = α1(ω) = tan−1{g2(ω)

g1(ω)
}. (39)

Conversely, the lowest σ2
l is produced when |Suv(ω)| =

√
Suu(ω)Svv(ω) and

cos[α1(ω)− φuv(ω)] = −1. Thus the most favorable |Suv(ω)| and φuv(ω) are
given by

|Suv(ω)| =
√

Suu(ω)Svv(ω)

φuv(ω) = π + α1(ω) = π + tan−1{g2(ω)

g1(ω)
}. (40)

In applying the formulations presented above, as has been already noted, the
equivalent linearization method outlined in the previous section is employed.
Here the iterative method of determining the equivalent linear constants need
to be modified to handle the additional complexity arising from the system
dependent optimal cross psd functions. Thus an additional iteration loop
need to be introduced to determine the unknown cross psd functions. The
following strategy was found to be satisfactory in the numerical work:

1. Assuming that the supports are acted upon by two independent exci-
tations, β1 = β1a and β2 = β2a are calculated.

2. Assuming the supports are acted upon by two fully coherent motions,
β1 = β1b and β2 = β2b are found.

3. Taking the mean values of β1 and β2 from the above steps as the ini-
tial estimates for β1 and β2, in the equivalent linear model, the first
approximation to the optimal cross psd function is found.

4. The β1 and β2 values are recalculated for the new estimate of optimal
cross psd function.
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5. The procedure is repeated until the parameters β1 and β2 and the op-
timal response converge.

4.3 Numerical Results and Discussion

Results on optimal input cross psd functions and the extreme responses
that these excitations produce have been obtained for both sdof and beam
examples considered in sections 2 and 3.

Figures 2-4 contain results on the highest response variance for sdof sys-
tems. The results correspond to the critical input model I. These figures
show results for the case when excitations are fully correlated (Case 1), ex-
citations are mutually independent (Case 2) and when the excitations are
deduced from the critical excitation models (Case 3). Results from both
theory and simulations are shown in these figures. In figure 2, it may be
noted that when the excitations are mutually independent (Case 2), the in-
puts are independent of time lag τ . Consequently, the simulation results for
this case is shown only for τ = 0. As may be expected, the critical responses
are invariably higher than those produced by fully correlated or independent
support motions. The ratio of critical response standard deviations to the
corresponding results produced by independent excitations ranges from 1.0-
1.06 for variation of τ , 1.05-1.07 for the variation of α and 1.03-1.05 for the
variation of ωg. Similarly, the ratio of critical response standard deviation
to that of fully correlated excitations ranges from 1.05-1.77 for the variation
of τ , 1.05-1.1 for the variation of α and 1.09-1.1 for the variation of ωg.This
range of variation indicates that for the sdof system under consideration, a
10 % higher design margins are needed, over and above that for the fully
correlated and independent support motion cases, if the critical excitations
are to be accommodated, except for the case of variation of τ , (for the case
of fully correlated case), where the margins go up to 77 %.

Results on optimal cross psd models and the associated responses for the
case of the beam example are shown in figures 13-16. Figure 13 shows the
optimal |Suv(ω)| (model I) for time lag of τ = 0.5s together with the asso-
ciated frequency response function H5(ω). The plots of the optimal φuv(ω)
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(model II) are shown in figure 14. The nature of critical and most favorable
phase models is studied in figure 15. This figure shows the psd of the force in
the left spring when input components u(t) and v(t) are fully coherent but
have four different phase characteristics. The four phase models considered
include the critical and most favorable phase spectra and also the cases of
φuv(ω) = 0 (in-phase motions) and φuv(ω) = π (out of phase motions). The
psd functions of the force in the left spring for different models for the input
cross psd functions are shown together in figure 16. Table 1 summarizes the
response variance for different models for input cross psd functions and for
different values of the nonlinearity parameter α. This table also provides the
details of results based on digital simulations. The following observations are
made based on results contained in figures 13-16 and table 1.

1. The critical and most favorable |Suv(ω)| functions, when it is assumed
that φuv(ω) = ωτ0 (model I), consist of alternating sequence of fre-
quency windows in which |Suv(ω)| assumes its admissible extreme val-

ues of 0 and
√

Suu(ω)Svv(ω). The locations of these windows in turn

is governed by zeros of the response function H3(ω, τ0). The highest
and lowest responses are not produced by either when u(t) and v(t) are
fully correlated nor when they are statistically independent.

2. When no assumption is made on the nature of φuv(ω), the optimal
responses are produced by fully coherent motions but with specific
system dependent phase spectra (figures 14 and 15). Again, the highest
and lowest responses are not produced either when u(t) and v(t) are
perfectly in phase or when they are perfectly out of phase (figure 15).

3. The highest response is produced by cross psd models corresponding
to model II. This feature is observed to be present over a wide range
of α (Table 1). The lowest response is produced by the most favorable
model II for small nonlinearities and, for larger values of nonlinearity,
the most favorable response is produced by model I; see figure 16 and
table 1. The highest response produced is substantially higher than the
most favorable response. This highlights the important influence that
the input cross correlation function has on structural response.

4. It is not obvious as to how the simulation strategy can be used to as-
certain if the optimal cross psd functions developed in section 4 indeed
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produce the extreme responses. Here one would need to prove that
there exists no other cross psd functions which can lead to responses
which are higher/lower than those produced by the optimal cross psd
functions. On the other hand, the simulation results, shown in Table
1, indeed corroborate that the responses produced by critical cross psd
models are optimal at least in relations to the responses produced by
independent and fully correlated support motions.

5.0 CONCLUDING REMARKS

The method of equivalent linearization has been employed to analyze the
response of nonlinearly supported sdof and single span beam structures sub-
jected to stationary random differential support motions. The response anal-
ysis is carried out in the frequency domain based on the use of dynamic
stiffness matrices. An iterative method to evaluate the equivalent linear pa-
rameters has been outlined. The performance of the approximations made
is assessed by conducting digital simulations studies based on finite element
method. Satisfactory agreement between theoretical and simulated results
has been demonstrated over a wide range of system parameters. Further-
more, the nature of cross psd functions which lead to the highest and lowest
response variance has been established. The extreme responses are produced
neither by fully correlated motions nor by independent motions. Instead
specific forms of cross psd functions are shown to exist which depend on sys-
tem parameters and response variables of interest. The response variance is
shown to be significantly influenced by the choice of input cross psd functions.
The upper bound on the response variance is substantially higher than the
lower bound. The question of stochastic stability of equivalent linearization
solution, as a means to ascertain the acceptability of the approximate solu-
tion, has been investigated in this study only to a limited extent using digital
simulation technique. Further work is needed to establish more easy-to-use
analytical stability criterion to judge the acceptability of the equivalent lin-
earization solution.
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APPENDIX A REDUCED DYNAMIC STIFFNESS MATRIX FOR
THE LINEARIZED STRUCTURE

Figure A.1 shows the beam resting on linear spring supports. We define
the dynamic stiffness coefficient Dij(ω) for a linear structural element as the
amplitude of harmonic displacement with frequency ω at node i due to an
unit harmonic force with frequency ω applied at node j with all other nodal
displacements held fixed to zero. The dynamic stiffness matrix for a Euler
Bernoulli beam element is exactly determinable (Paz 1984) and is given by

D = B




a2(cS + sC) asS −a2(s + S) a(C − c)
asS (sC − cS) a(c− C) (S − s)

−a2(s + S) a(c− C) a2(cS + sC) −asS
a(C − c) (S − s) −asS (sC − cS)


 A.1

where, s = sin(aL), S = sinh(aL), c = cos(aL), C = cosh(aL), B = aEI
(1−cC)

and a4 = mω2−iωc
EI

The dynamic stiffness matrix of a spring element with an
axial stiffness k is identical to its static stiffness matrix and is given by

[
K

]
=

[
k −k
−k k

]
A.2

The rules for analyzing built-up structures using dynamic stiffness matri-
ces are identical to those followed in analyzing these structures under static
loads. This calls for the determination of the global dynamic stiffness ma-
trix and reduced dynamic stiffness matrix for the structure. The equilibrium
equation for the structure under consideration in frequency domain can be

{ P } =
[

D1

]
{∆} A.3

Here, P =vector of nodal forces, ∆=vector of nodal displacements and
D1=global dynamic stiffness matrix. These quantities are given by,

{∆}T = [u v y3 y4 y5 y6]

[P ]T = [p1 p2 0 0 0 0]
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[
D1

]
= B




k1

B
0 −k1

B
0 0 0

0 k2

B
0 0 −k2

B
0

−k1

B
0 k1

B
+ a2(cS + sC) asS −a2(s + S) a(C − c)

0 0 asS (sC − cS) a(c− C) (S − s)
0 −k2

B
−a2(s + S) a(c− C) k2

B
+ a2(cS + sC) −asS

0 0 a(C − c) (S − s) −asS (sC − cS)




A.4
The next step in the analysis is to derive reduced equations for the unknown
displacement and forces. To do this, we partition the global stiffness matrix,
displacement and force vector as follows:

[
D1

]
=

[
D1a D1b

D1c D1d

]

[∆]T = [∆1 ∆2] ; ∆T
1 = [u v] ; ∆T

2 = [y3 y4 y5 y6]
[

P
]T

= [P1 P2] ; [P1]
T = [p1 p2]; [P2]

T = [0 0 0 0 ]

D1a =

[
k1 0
0 k2

]

D1b =

[
−k1 0 0 0
0 0 −k2 0

]

D1c = DT
1b

D1d = B




k1

B
+ a2(cS + sC) asS −a2(s + S) a(C − c)

asS (sC − cS) a(c− C) (S − s)
−a2(s + S) a(c− C) k2

B
+ a2(cS + sC) −asS

a(C − c) (S − s) −asS (sC − cS)




A.5
This leads to the equations,

D1a∆1 + D1b∆2 = P1

D1c∆1 + D1d∆2 = P2 A.6

From this, one gets,
[

∆2

]
=

[
D1d

]−1 [
D1c

] [
∆1

]
A.7

Thus, the quantity D= [D1d]
−1[D1c] can be interpreted as the reduced dy-

namic stiffness matrix for the structure.
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Table 1 Steady state variance of the force in the left spring (N2)

α=0 N/m3 α=2e6 N/m3 α=4e6 N/m3

Theory Theory Simulation Theory Simulation
Independent 4.2546e4 4.1348e4 4.1532e4 4.1337e4 4.1162e4

Fully correlated 7.8203e4 7.6031e4 7.801e4 7.6007e4 7.7321e4
Critical
Model I 8.0915e4 8.0013e4 8.019e4 7.9177e4 7.9720e4
Model II 8.3770e4 8.1474e4 8.2341e4 7.9667e4 8.0121e4

Most favorable
Model I 3.9834e4 3.9222e4 4.0122e4 3.8668e4 3.9424e4
Model II 4.5347e3 4.5141e3 5.0231e3 4.4942e4 4.6101e4

28



FIGURE CAPTIONS

Figure 1 A doubly supported nonlinear sdof system under differential
support motions.

Figure 2 Steady state standard deviation of the force in the left spring;
α =6.1E+08 N/m3, ωg = 8π rad/s; Case 1 : u(t) and v(t) are fully
correlated; Case 2: u(t) and v(t) are independent; Case 3: u(t) and
v(t) are critically correlated.

Figure 3 Steady state standard deviation of the force in the left spring;
τ =1 s, ωg = 8π rad/s; α on x-axis has been normalized with respect
to a reference value of 6.1E+08 N/m3; Case 1 : u(t) and v(t) are fully
correlated; Case 2: u(t) and v(t) are independent; Case 3: u(t) and
v(t) are critically correlated.

Figure 4 Steady state standard deviation of the force in the left spring;
τ = 1 s, α =6.1E+08 N/m3; Case 1 : u(t) and v(t) are fully corre-
lated; Case 2: u(t) and v(t) are independent; Case 3: u(t) and v(t) are
critically correlated.

Figure 5 Simulated PDF of the amplitude of response; u(t) and v(t)
are independent; λ+

0 = ωg; the values of ωg are marked on the figures;
ω0= 4 π rad/s.

Figure 6 Time history of perturbation amplitude for different initial
conditions; ωg= 4 π rad/s; α =6.1E+08 N/m3; u(t) and v(t) are inde-
pendent.

Figure 7 Moments of perturbation amplitude using 250 samples simu-
lations.

Figure 8 A nonlinearly supported Euler Bernoulli beam subjected to
differential support motions.

Figure 9 Steady state standard deviation of the force in the left spring;
α = 2.0E+06 N/m3.
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Figure 10 Steady state standard deviation of the force in the left spring;
u(t) and v(t) are independent.

Figure 11 Steady state standard deviation of the force in the left spring;
u(t) and v(t) are independent.

Figure 12 Simulated probability density functions of force in the left
spring; u(t) and v(t) are independent; α =2.0+E06 N/m3; note that the
mean has been removed and standard deviation has been normalized
to unity.

Figure 13(a) Frequency response function for the force in the left spring
(b) critical cross psd model I τ0=0.5 s.

Figure 14 Optimal phase spectra models for u(t) and v(t).

Figure 15 Response psd function of force in the left spring for different
cases of fully coherent ground motions.

Figure 16 psd of force in the left spring for different cases of cross-
correlations between u(t) and v(t).

Figure A.1 A linear Euler-Bernoulli beam subjected to differential sup-
port motions u(t) = U exp[iωt] and v(t) = V exp[iωt].
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