
Dynamic stiffness matrix for axially vibrating stochastic rods
using Stratonovich’s averaging principle

C. S. Manohar

Summary The problem of determining the dynamic stiffness matrix of a rod with broad band
randomly varying mass and stiffness properties is considered. The governing stochastic
boundary value problem is solved. First, a general solution to the field equation is obtained by
using Stratonovich’s stochastic averaging theorem. Subsequently, the elements of dynamic
stiffness coefficients are evaluated by choosing appropriately the arbitrary constants of the
general solution. The analytically determined statistics of the amplitude and phase of the
stiffness coefficients are shown to compare favorably with digital simulation solutions.
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1
Introduction
The analysis of structural systems with stochastic stiffness, mass and damping properties is
currently receiving notable attention in stochastic mechanics research. Developments in this
area of research have been reviewed in [3], [7], [2], [1], [9]. A few research monographs on this
topic addressing both static and dynamic problems have also appeared [6,8,16]. These studies
find applications in the safety assessment of important structures [17] and also in the design of
structures subjected to high frequency excitations using statistical energy analysis formalisms.
The latter class of problems has been discussed in [10] and, more recently, in [5]. In an
ongoing program of research, aimed at understanding the dynamical behavior of stochastic
continuous systems, we have studied the free and forced vibration characteristics of random
rod and beam elements [11–13]. Some of the major conclusions emerging from these studies
are:

– Approaches based on Markov process theory are useful in characterizing eigensolutions of
axially vibrating stochastic rods. In particular, the stochastic averaging theorem of Stra-
tonovich provides a powerful means for generating acceptable free vibration solutions for a
class of problems [12].

– The complex frequency response curves for stochastic rods and beams tend to become
statistically stationary for large values of driving frequencies. A statistical overlap factor
can be formed. Given the statistical properties of the system physical properties, it allows
the response statistics to be characterized. A similar behavior at high frequencies in the
spatial domain is also observed in regions away from boundaries [11,13].

– The frequency response functions of stochastic systems is pronouncedly non-Gaussian. In
some cases, the probability density function of the frequency response functions has a very
long upper tail. This limits the usefulness of the response mean and standard deviation as
descriptors of the system behavior. Lognormal and gamma distributions fit digitally sim-
ulated data on frequency functions well [11].
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The aim of this paper is to develop an analytical method for evaluating the harmonic re-
sponse of an axially vibrating rod with randomly varying mass and stiffness properties. The
standard way of performing this analysis would be to do the free vibration analysis first. It is
then followed by eigenfunction expansion procedure, leading to the evaluation of dynamic
response. In the context of stochastically defined systems, however, this approach has two
drawbacks. Firstly, it requires the determination of the joint statistics of natural frequencies and
mode shapes, which is by no means an easy task. Secondly, the series expansion introduces a
large number of random variables, which is, at least, twice as many as the number of modes
retained in the modal expansion. This expansion, in turn, increases the size of integration on
joint probability distributions while evaluating the response statistics. Besides, when the sto-
chastic mode shapes are not determined exactly, which, most often, will be the case, the question
of orthogonality of mode shapes requires careful interpretation. An alternative approach, which
proves to be advantageous, would be to evaluate the dynamic stiffness matrix directly by solving
the governing field equations [14]. This, as will be shown in this paper, not only eliminates the
necessity of determining the random eigensolutions, also, restricts the number of random
variables entering the formulations. An important step in this analysis consists of solving the
governing field equation which, for axially vibrating stochastic rods, is a second-order ordinary
differential equation with stochastic coefficients. Exact solutions to this problem are not pos-
sible except under highly specialized circumstances. Consequently, approximations become
necessary. In the present study, it is proposed to employ the stochastic averaging principle to
approximately analyze the field equation. The application of this principle requires that there be
a clear-cut separation between the characteristic length of the stochastic variations and that of
the system. It may be noted in this context that stochastic averaging principles are widely used
in the time-domain random vibration problems [15] while, in problems of system stochasticity,
their applications, to the best of the author’s knowledge, have been studied only to a limited
extent[12]. Numerical results on the response statistics of a harmonically driven, discretely
damped stochastic rod as a function of driving frequency are presented. Satisfactory compar-
ison with a limited amount of digital simulation results is also demonstrated.

2
Stochastic rods
The field equation for the axial vibration of an inhomogeneous, viscously damped rod element
can be written as

o
ox

AE�x�
oY
ox

� C1�x�
o2Y
oxot

� �

� q�x�
o2Y
ot2

� C2�x�
oY
ot

ÿ F�x; t� : �1�

This equation arises not only in the study of axially vibrating rods, but also is relevant to the
vibration analysis of inhomogeneous shafts, strings and soil layers modeled as shear beams.
The stiffness AE�x�, mass per unit length q�x�, viscous damping coefficients C1�x� and C2�x�
are obtained by randomly perturbing the respective constant mean values as follows:

AE�x� � AE0�1 � dg�x�� ; �2�

q�x� � q0�1 � �f �x�� ; �3�

C1�x� � C10�1 � m1q1�x�� ; �4�

C2�x� � C20�1 � m2q2�x�� : �5�

Here, AE0 – denotes the mean axial stiffness, q0 – mean mass per unit length, C10;C20 – mean
damping coefficients. Furthermore, g�x�; f �x�; q1�x� and q2�x� are modeled as jointly station-
ary, meansquare bounded, zero-mean random processes with unit standard deviations. An
alternative way of modelling AE�x�, which proves to be useful in this study, would be to take

1
AE�x�

�

1
AE0

�1 � ch�x�� ; �6�

where h�x� is again taken to have zero mean and to be meansquare bounded and jointly
stationary with f �x�; q1�x� and q2�x�. The parameters �; d; c; m1 and m2 are deterministic
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quantities indicating the strengths of stochastic variations, and can generally be taken to be
small compared to unity. The external excitation F�x; t� can, in general, be a random field.

3
Dynamic stiffness matrix
The dynamic stiffness coefficient Dij�x� is defined as the relation of the harmonic force of
frequency x at nodal coordinate i to the harmonic displacement of unit amplitude and of the
same frequency at nodal coordinate j, all other coordinates being fixed [14]. For the case of the
rod element shown in Fig. 1, in which the nodal harmonic forces Pi exp�ixt� and nodal har-
monic displacements di exp�ixt� coexist, the matrix of dynamic stiffness coefficients Dij�x�
relates the nodal displacement and force amplitudes through the relation P � D�x�d. The
formulation of dynamic stiffness matrix enables the determination of forced response char-
acteristics of the system. To develop the dynamic stiffness matrix for the stochastic rods
described by Eq. (1), we begin by noting that, for harmonic nodal excitations, the solution of
Eq. (1) can be sought in the form

Y�x; t� � y�x� exp�ixt�; i �
�������

ÿ1
p

: �7�

This separates the time and space variables, and leads to the ordinary differential equation

d
dx

�

1 � dg�x�
� dy

dx
� ib1

�

1 � m1q1�x�
� dy

dx

� �

� k2
�1 � �f �x��y ÿ ib2

�

1 � m2q2�x�
�

y � 0 ;

�8�

where

k2
�

q0x
2

AE0
;b1 �

C10x
AE0

;b2 �
C20x
AE0

: �9�

In order to derive the elements of the dynamic stiffness matrix, the above equation needs to be
solved for the following two sets of boundary conditions:

y�0� � di; y�L� � d2 ; �10�

and

dy
dx

�0� �
ÿP1

AE�0�
;

dy
dx

�L� �
P2

AE�L�
: �11�

Equation (8) together with the above boundary conditions constitute a pair of complex sto-
chastic boundary value problems. An important property of solution to these boundary-value
problems is that, even when the random variations f �x�; g�x�; q1�x� and q2�x� arise as filtered
white noise processes, the extended solution vector would not have the Markovian character.
This is due to restrictions placed on the solution vector through the imposition of boundary
conditions. It is of interest, at this stage, to consider three special cases.

[i] Deterministic case: Here, the parameters �; d; m1 and m2 are identically equal to zero, and
one can show that the elements of dynamic stiffness matrix are given by

D11�x� � D22�x� � AE0
~k cot ~kL ; �12�

Fig. 1. Axillay vibrating rod element
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D12�x� � D21�x� � ÿAE0
~kcosec~kL ; �13�

where

~k2
�

q0x
2
�1 ÿ ib2�

AE0�1 � ib1�
: �14�

Furthermore, as b1 ! 0 and b2 ! 0, the above results approach the known exact results for
undamped systems [14].

[ii] Static case: For the case of x � 0, the elements of the dynamic stiffness matrix become
equal to the respective static stiffness coefficients which, for the present case, are given by

D11 � D22 �
AE0

R L
0

1
1�dg�s� ds

�15�

D12 � D21 �
ÿAE0

R L
0

1
1�dg�s� ds

�16�

It may be noted that these quantities are random variables, the randomness being due to the
stiffness uncertainties. If d ! 0, the stiffness coefficients approach the well-known static
stiffness values of deterministic systems.

[iii] Exactly solvable case: Here, the stochastic variations in mass, stiffness and damping are
taken to be such that

�1 � dg�x�� � �1 � m1q1�x�� ;

�1 � �f �x�� � �1 � m2q2�x�� ;

�1 � dg�x�� �
1

�1 � �f �x��
: �17�

The expressions for the system transfer functions for this system in terms of eigensolutions
have been developed by [13]. Similar results without using modal expansions can be shown to
be given by

D11�x� � D22�x� � AE0
~k cot ~kL � �

~k
Z L

0
f �s�ds

� �

; �18�

D12�x� � D21�x� � ÿAE0
~kcosec ~kL � �

~k
Z L

0
f �s�ds

� �

: �19�

Obviously, systems of this type have little significance from a physical view point; these results,
however, are clearly valuable as benchmarks to validate alternative analytical or numerical
solutions.

For the more general class of problems given by Eqs. (8–11), no exact solutions are currently
available. Consequently, to proceed further, one has to take recourse to either approximate
analytical methods or to adopt Monte Carlo simulation procedures.

4
General case: solution by stochastic averaging
When the coefficient processes f �x�; g�x�; q1�x� and q2�x� are modeled as broad-band random
processes, an approximate solution to Eq. (8) can be obtained by using the Stratonovich-
Khasminskii averaging theorem [15]. This method consists of eliminating minor rapid varia-
tions in the response, and derives simplified equations for dominant slowly varying compo-
nents. Furthermore, the broad-band stochastic variations are replaced by equivalent delta-
correlated random processes which, consequently, enables the application of methods of the
Markov process theory to obtain the solutions. This method is extensively used in random
vibration studies, and its application to problems of system stochasticity has been attempted, to
the best of the author’s knowledge, only recently [12]. This type of problems, as has already
been noted, are not amenable for treatment by the methods of the Markov process theory.
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However, given the powerful nature of these methods, it is clearly desirable to overcome this
difficulty. This is achieved in this study essentially by treating the solution of the stochastic
boundary-value problem as a superposition of two solutions of the governing field equation
under two independent sets of initial conditions. It is important to note that, in obtaining
solutions to the associated pair of initial value problems, one can utilize the Markovian
methods of solution.

The investigation in the present study is limited to undamped field equation. Therefore, the
equation for further study reduces to

d
dx

�

1 � dg�x�
� dy

dx

� �

� k2
�1 � �f �x�� y � 0 : �20�

To proceed further, it is found advantageous to adopt the alternative representation of stiffness
process as given by Eq. (6), and seek the solution of the above equation in the form

y�x� � exp�a�x�� sin�kx � h�x�� ; �21�

1
�1 � ch�x��

dy
dx

� exp�a�x��k cos�kx � h�x�� : �22�

Here, exp�a�x�� and h�x� are, respectively, the amplitude and phase functions which are gov-
erned by

da
dx

� 0:5k sin 2�h � kx��ch�x� ÿ �f �x�� ; �23�

dh
dx

� kch�x� cos2
�h� kx� � �kf �x� sin2

�h � kx� : �24�

These equations are exactly equivalent to Eq. (20) and are in a form suitable for applying the
averaging theorem. This consists of a combination of a spatial averaging and ensemble aver-
aging. The details of the formulation are well-known and, hence, will not be repeated here, see,
for example, [15]. The application of the averaging theorem leads to a two-dimensional Mar-
kovian approximation to the solution vector fa�x�; h�x�g which can be shown to be governed
by

da
dx

� m1 � r1W1�x� ; �25�

dh
dx

� m2 � r2W2�x� ; �26�

Here, W1�x� and W2�x� are independent Gaussian white noise processes with unit strength. The
drift and diffusion coefficients appearing in the above equations can be shown to be given by

m1 �
1
4
k2
Z 0

ÿ1

�c2
< h�x�h�x � s� > � �

2
< f �x�f �x � s� >

ÿ �c < h�x�f �x � s� > ÿ �c < f �x�h�x � s� >� cos 2ks ds ;

�27�

m2 �
1
4
k2
Z 0

ÿ1

< �ch�x� ÿ �f �x���ch�x � s� ÿ �f �x � s�� > sin 2ks ds ; �28�

r2
1 �

1
8
k2
Z

1

ÿ1

< �ch�x� ÿ �f �x���ch�x � s� ÿ �f �x � s�� > cos 2ks ds ; �29�
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r2
2 �

1
4
k2
Z

1

ÿ1

< �ch�x� ÿ �f �x���ch�x � s� ÿ �f �x � s�� > ds

�

1
8
k2
Z

1

ÿ1

< �ch�x� ÿ �f �x���ch�x � s� ÿ �f �x � s�� > cos 2ks ds : �30�

Here < � > denotes the mathematical expectation operator. Furthermore, it may be deduced
that a�x� and h�x�, in this approximation, are stochastically independent and Gaussian dis-
tributed. Substitution of solution of Eqs. (25) and (26) into Eqs. (21) and (22) leads to y�x� as a
linear superposition of two independent solutions given by

y�x� � Q1F1�x� sin F2�x� � Q2F1�x� cos F2�x� ; �31�

1
�1 � ch�x��

dy
dx

� Q1kF1�x� cos F2�x� ÿ kQ2F1�x� sin F2�x� ; �32�

Q1 � exp�a0� cos h0 ; �33�

Q2 � exp�a0� sin h0 ; �34�

F1�x� � exp�m1x � r1G1�x�� ; �35�

F2�x� � kx � m2x � r2G2�x� ; �36�

G1�x� �
Z x

0
W1�s� ds; G2�x� �

Z x

0
W2�s� ds ; �37�

a0 � a�0�; h0 � h�0� : �38�

Here, Q1 and Q2 or, equivalently, a0 and h0; are the constants of integration which are to be
found to satisfy the specified boundary conditions. It may be emphasized that the two functions
F1�x� sin F2�x� and F1�x� cos F2�x� are independent not in a statistical sense but in the sense
that they satisfy two independent initial conditions, namely,

�

y�0�; dy
dx �0�

�

� �0; 1� and �1; 0�;
respectively. It may further be noted that the field solution given above is non-Gaussian in
nature.

To find the dynamic stiffness coefficients, we select the arbitrary constants such that the
displacement boundary conditions consistent with the definition of a given stiffness coefficient
is satisfied. Thus, to find D11�x� and D12�x�; we use y�0� � 1 and y�L� � 0; and accordingly get
Q1 � ÿ cot F2�L� and Q2 � 1: From Eqs. (32) and (11), it follows that D11�x� � AE0k cot F2�L�
and D12�x� � ÿAE0kF1�L�cosecF2�L�: Thus, when the nodal harmonic forces P exp�ixt� and
nodal harmonic displacements d exp�ixt� coexist, the force and displacement amplitudes are
related through the relation

P1 � AE0k d1 cot F2�L� ÿ d2F1�L�cosecF2�L�� � ; �39�

P2 � AE0k ÿd1F1�L�cosecF2�L� � d2 cot F2�L�� � : �40�

Notice that, as � and d tend to zero, the above result reduces to the exact expressions valid for
uniform rods [14].

5
Digital simulations
The accuracy of the above results can be assessed by comparing the analytical results with
digital simulations. For this purpose, Eq. (20) needs to be solved numerically for a large
number of realizations of the processes g�x� and f �x� and for the boundary conditions stated in
Eqs. (10) and (11). This problem can be solved within the frameworks of either finite element or
transfer matrix methods. Alternatively, the problem can be first converted into a pair of
equivalent initial-value problems and these, in turn, can be solved using the Runge-Kutta
method. For this purpose, two independent solutions, denoted by y1�x� and y2�x�; are obtained
by solving Eq. (20) under two different initial conditions, namely,

�

y�0�; dy
dx �0�

�

� �1; 0� and
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�0; 1�; respectively. The expressions for the dynamics stiffness coefficients can be derived by
taking the general solution in the form

y�x� � a1y1�x� � a2y2�x�; �41�

and are shown to be given by

D11�x� �
AE�0�y1�L�

y2�L�
; �42�

D12�x� �
ÿAE�0�

y2�L�
; �43�

D21�x� � AE�L� y 0

1�L� ÿ
y 0

2�L�y1�L�
y2�L�

� �

; �44�

D22�x� �
AE�L�y 0

2�L�
y2�L�

: �45�

From the above equations apparently it is not evident that D12�x� � D21�x�: However, it can be
shown, through specific examples, for instance, the exactly solvable case considered in Eq. (17),
or by numerical simulations, that the condition D12�x� � D21�x� is indeed satisfied.

6
Numerical example and discussions
For the purpose of illustration, the system shown in Fig. 2 is analyzed using the above results.
The stiffness and mass along the rod length are modeled as independent, stationary random
Gaussian processes; three alternative shapes for the autocovariance functions are considered,
namely
Model I

R�s� � exp ÿa1jsj� � ÿ1 < s < 1; �46�

Model II

R�s� � exp ÿa2s
2

� �

ÿ1 < s < 1; �47�

and
Model III

R�s� �
1:0 ÿ a3jsj at ÿ

1
a3
< s < 1

a3

0 at jsj > 1
a3
:

(

�48�

In this context it must be noted that the shapes of the autocovariance functions of the processes
f �x� and g�x� enter the theoretical solution through the sine and cosine integrals appearing in
Eqs. (27–30) for the drift and diffusion coefficients. These integrals, corresponding to the
autocovariance functions listed above, are given in Table 1. It may be noted that the term
�2k ÿ 1�!! appearing in this Table stands for �2k ÿ 1�!! � 1:3:5: . . . �2k ÿ 1�: The expressions in
the last row in this Table stand for the correlation length of the random process [18].

Fig. 2. Discretely damped axially vibrating
rod
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We begin by considering the use of Model I for the mass and stiffness processes and examine
the nature of response statistics variations with respect to the driving frequency x: Thus, we
take the autocovariance of the processes f �x� and g�x� to be of the form

Rff �s� � exp�ÿajsj� and Rgg�s� � exp�ÿnjsj� : �49�

It must be noted in this context that the assumption of Gaussian distributions for strictly
positive quantities such as mass and stiffness is, strictly speaking, inadmissible. However, for
small � and d; the resulting errors can be expected to be negligible. It may also be noted that
although the application of averaging principle requires that � and d be small compared to
unity, it does not, however, require that the stochastic functions to be Gaussian-distributed. On
the other hand, this assumption, in the present study, simplifies the generation of digital
simulation results for comparison purposes. Combining Eqs. (39) and (40) with the dynamic
stiffness matrix of a viscous damper element given by D11�x� � D22�x� � Cxi; D21�x� �
D12�x� � ÿCxi and using the usual procedure for assembling stiffness matrices, it can be
shown that

d2�x� �
F

Cix� AE0k cot F2�L�
; �50�

P3�x� �
ÿFAE0kF1�L�

Cix sin F2�L� � AE0k cos F2�L�
: �51�

It follows that d2�x� and P3�x� are complex random processes evolving in x: It must be noted
that the above frequency functions are functions of only two random variables, namely, F1�L�
and F2�L�: This implies that for calculating statistics of these functions, not necessarily the first
order statistics, one has to perform, at the most, a two-dimensional integration on the prob-
ability distributions. This, in the opinion of the author, is a major simplification of the problem.
Figures 3–8 show a comparison of statistics of amplitude and phase of d2�x� and P3�x�

Table 1. Autocovariance models for random fields

Model I II III

Autocovariance function exp�ÿa1jsj� exp�ÿa2s2
� 1 ÿ a3jsj

R�s� ÿ1 < s < 1 ÿ1 < s < 1 ÿ
1
a3
< s < 1

a3
R

1

ÿ1
R�s�ds 2

a1

����

p
a2

q

1
a3

R

1

ÿ1
R�s� cos 2ksds 2a1

a2
1�4k2

�����

p
4a2

q

exp ÿk2

a2

h i

a3

2k2 1 ÿ cos 2k
a2

h i

R

1

0 R�s� sin 2ksds 2k
a2

1�4k2
k
a2

P

1

k�1
1

�2kÿ1�!!
ÿ2k2

a2

h i

�kÿ1�
1

2k ÿ
a3

4k2 sin 2k
a3

1
R�0�

R

1

0 jR�s�jds 1
a1

1
2

����

p
a2

q

1
2a3

Fig. 3. Amplitude of displacement at node 2; � � 0:03; c � 0:0
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obtained using stochastic averaging method with those of a 500 samples digital simulations
results. The system parameters chosen in this study are L � 5:0 m;AE0 � 18:00 MN;
q0 � 4:0 kg/m, C � 1000 Nm/s, � � 0:03; c � 0:0; a � 20:0 mÿ1 and F � 1 N: Notice that in
these results the only source of randomness is in specifying mass process. In the simulations,
samples of f �x� are generated as steady-state solutions of the first-order linear filter excited by
samples of Gaussian white-noise process, that is

df
dx

� af � w�x� : �52�

Fig. 4. Mean of the phase of displacement at node 2; � � 0:03; c � 0:0

Fig. 5. Standard deviation of phase of displacement at node 2; � � 0:03; c � 0:0

Fig. 6. Amplitude of force at node 3; � � 0:03; c � 0:0
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Samples of white-noise process were simulated using the procedure described in [4]. A
fourth-order Runge Kutta algorithm was employed to integrate Eq. (20) using a step size of 0.01
m. Figures 9–11 show the analytical results on amplitude and phase of d2�x� for the same
system with additional randomness also, in specifying stiffness with c � 0:05 and
n � 20:0 mÿ1

:

From Figs. 3–11 it can be observed that the passage of driving frequency through the
system’s resonant frequencies induces nonstationarity into the random processes d2�x�; and
P3�x�: The analytical results capture this feature fairly accurately as evidenced by the satis-

Fig. 7. Mean of the phase of the force at node 3; � � 0:03; c � 0:0

Fig. 8. Standard deviation of phase of force at node 3; � � 0:03; c � 0:0

Fig. 9. Amplitude of displacement at node 2; � � 0:03; c � 0:05
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factory comparisons which are observed to exist between simulation and analytical solutions
(Figs. 3–8). The response features when randomness is present in the mass process alone (Figs.
3–8) and when both mass and stiffness are random (Figs. 9–11) are observed to remain broadly
similar. The standard deviations of the frequency response functions are greater near resonance
and at the resonant frequency, the standard deviation of amplitude drops sharply (Figs. 3, 6 and
9), which the simulation results also corroborate, see also Figs. 12 and 14. This behavior is
curious and remains unexplained in this study. For higher values of driving frequency, the
characteristic length of the system becomes smaller as compared with correlation lengths of the
mass and stiffness variations. Consequently, the accuracy of the averaging approximation
deteriorates with increases in value of the driving frequency (Figs. 3–8). Conversely, at very low
frequencies, that is, as x ! 0; in which case the wave length over which the averaging is done
can exceed the length of the rod, the averaging results on standard deviations do not approach
the respective static displacement/force limits satisfactorily. This can be seen by considering
the behaviour of d2�x� given by Eq. (47) as x ! 0; that is

lim
x!0

d2�x� � lim
x!0

F
AE0

sin F2�L�
F2�L�

: �53�

Thus, if one considers a system with randomness in the mass process alone, as x ! 0; the
standard deviation of the response amplitudes must go to zero. This, however, does not
happen, as can be easily verified by calculating the above limit. The answers on the mean,
however, remain acceptable.

To illustrate the influence of the variation of the correlation length on the theoretical esti-
mates of response statistics, we consider the case of c � 0; that is, randomness in mass process
alone, and � � 0:03: Figure 12 shows the influence of varying a on the standard deviation of

Fig. 10. Mean of the phase of displacement at node 2; � � 0:03; c � 0:05

Fig. 11. Standard deviation of phase of displacement at node 2; � � 0:03; c � 0:05
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jd2�x�j: It must be noted that the variance of the process f �x�; for all values of a; is given by
Rff �0� � 1:0: As may be observed, the theory predicts that, for the same level of randomness in
f �x�; as a becomes smaller, the response variability becomes higher. Finally, we consider the
influence of change in the shape of the autocovariance function of system property random
processes on the response statistics. For the purpose of illustration, plots of the three auto-
covariance functions listed in Table 1, are shown in Fig. 13. In these plots, the parameters a1; a2
and a3 appearing in the three models are selected to be, respectively, 20.0, 100.0 p and 10.0; this
ensures that the autocovariance functions would lead to identical correlation lengths in all the
three cases. Figure 14 shows the standard deviation of jd2�x�j for the case of c � 0:0; � � 0 and
the process f �x� assuming these three autocovariance functions. It follows from this plot that,
for a given variance and correlation length of f �x�; the shape of the autocovariance function has
little influence on the response standard deviations.

7
Conclusions
The paper outlines the development of a new methodology for deriving statistical properties of
dynamic stiffness coefficients of an axially vibrating rod with randomly varying elastic and
mass properties. Some notable features of the approach presented are as follows:

Fig. 12. Standard deviation of amplitude of displacement at node 2; � � 0:03; c � 0:0

Fig. 13. Autocovariance functions with identical correlation lengths
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– The method enables determination of forced vibration characteristics without having to
first find the probability distribution of random eigensolutions.

– Solution of the associated stochastic boundary value problem is obtained using techniques
of Markov process theory, although the solution itself does not possess Markovian prop-
erties. This is made possible because the solution of the stochastic boundary value problem
is obtained by superposing solutions of a pair of equivalent random initial-value problems.

– The method of stochastic averaging proves to be useful in the approximate analysis of the
above mentioned initial-value problems. The solution obtained takes into account the
mean, power-spectral density and cross-spectral density functions of the mass and stiffness
processes. Satisfactory agreement is found to exist between the analytical results and a
limited amount of digital simulations.

The paper also discusses an exactly solvable case which can serve as a benchmark for
validating approximate procedures. Further studies on axially vibrating rods with distributed
damping properties are currently being undertaken by the author. The field equation in this
case becomes complex in nature and offers interesting challenges in analysis by stochastic
averaging. Another question which requires further study is the relationship between stochastic
dynamic stiffness matrix and the more commonly used modal analysis procedures. Application
of the results reported in this study to the problem of seismic wave amplification through
stochastic soil medium is also being currently investigated.
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