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51arrowband random excitation of a limit cycle system 

(~. S. ) Ianohar  and It. N. Iyengar Bangalore 

Summary: The response of the Van der Pol oscillator to stationary narrowband Gaussian excitation is 
considered. The central frequency of excitation is taken to be in the neighborhood of the system limit cycle 
frequency. The solution is obtained using a non-Gaussian closure approximation on the probability density 
function of the response. The validity of the solution is examined with the help of a stochastic stability 
analysis. Solution based on Stratonovieh's quasistatic averaging technique is also obtained. The comparison 
of the theoretical solutions with the digital simulations shows that the theoretical estimates are reasonably 
good. 

Zufallserregung eines Systems mit Grenzzyklus in einem sehmalen Frequenzband 

t~bersicht: Gegenstand der Untersuehung ist die Antwort des Van der Pol-Schwingers ~uf eine stationgre 
G,~ugsehe Erregung in einem schmalen Frequenzband. Die zentrMe Frequenz der Erregung wird in der 
Naehbarsehaft zur Frequenz des Grenzzyklus gewghlt. Die LSsung wird dureh eine nicht-GauBsche approxi- 
mierende EinsehlieBung fiir die Wahrscheinlichkeitsdichte der Antwort gewonnen. Die Giiltigkeit dieser 
LSsung wird mit Hilfe einer stochastisehen Stabilit~itsanalyse iiberprfift. Darfiber wird eine LSsung nach 
Stratonoviehs quasistatischer Mittelungsmethode bestimmt. Der Vergleieh der theoretischen L6sungen 
mit zahlenmi~Bigen Simulationen ergibt eine befriedigende Giite der theoretischen Absch~tzungen. 

1 Introduction 

Limit  cycle systems form an important  class of nonlinear dynamical systems. The s tudy of 
behaviour of these systems under different types of excitations is of considerable importance in 
nonlinear vibrations. Under a strict harmonic excitation these systems exhibit a wide variety of 
nonlinear behaviour, notably, the phenomenon of frequency entrainment.  Simulation and 
analytical studies on the response of a typical limit cycle system, namely, the Van der Pol (VDP) 
oscillator to broad band random excitation has revealed tha t  the response in this ease is distinctly 
non-Gaussian with the displacement and velocity processes having bimodal probabili ty distri- 
butions [12, 4], The present authors have recently studied the effect of addition of a Gaussian 
white noise on the response of a periodically excited Van der Pol 's oscillator [3, 7]. The methods of 
equivalent linearization, stochastic averaging and equivalent nonlinearization have been employed 
to study the response in the pr imary  harmonic entrainment region. In the present paper  at tention 
is focused on the response of the oscillator to a narrowband excitation. The response of nonlinear 
systems to this type  of excitations has many  interesting features. The effect of narrowband noise 
on Duffing's oscillator has been studied by  several authors, notable among them being Lennox 
and Kuak  [5], I~ichard and Anand [9] and Iyengar  [1]. However, the literature on n~rrowband 
excitation of limit cycle systems is very limited. Stratonovieh [10] has studied the response of 
P~ayleigh's oscillator to narrowband noise and obtained the stat ionary amplitude distribution 
valid in a limited region of parameter  space using the quasistatie averaging technique. Windrieh, 
Miiller and Popp [11] have examined the scope of equivalent linearization methods in analysing 
stochastically disturbed limit cycle systems. 
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In  the s tudy on response of the VDP oscillator to white noise excitation the present authors 
have developed a non-Gaussian closure approximation [4]. In  the present study this method is 
extended to investigate the response under narrowband random excitation. The acceptability 
of the approximate  solution is further examined with the help of a stochastic stability analysis. 
The theoretical solutions are also compared with digital simulations. 

2 Closure Approximation 

The equation of motion of the forced VDP oscillator is given by 

- ~ ( 1  - 4x~) + x = / ( t ) .  (1) 

I t  is assumed that  0 < s ~ 1. The excitation/(t)  is taken to be a zero mean narrowband process 
obtained as the stat ionary output  of a lightly damped linear single degree system excited by  a 
Gaussian white noise process, i.e. 

]" + 2~AI + AV = w(t), (2) 

(W(tl) w(t~)> = 2/)~(tl - t2). 

Here (.} denotes the expectation operator and 6(.) is the Dirac delta function. The damping 
coefficient ~ in the above equation is assumed to be small compared to unity. This would ensure 
t ha t / ( t )  is a narrow band process with central frequency L For the case of/(t) = O, (1) possesses 
a stable periodic equilibrium solution given by  [8] 

x(t) = sin (t + 6) + O(e). (3) 

Here r is a constant depending on the initial conditions x(0) and 2(0) [4]. When/ ( t )  =4= O, the 
response would be a mixture of the system limit cycle and the response to the external excitation. 
Before constructing an approximate solution for this case it is useful to recall the qualitative 
features of response of the system to broad band excitation [4]. 

Firstly, it is noted that  the stable limit cycle of the unforced system has a strong influence on 
the stochastic response. The limit cycle can be expected to be the most probable state in the pre- 
sence of weak noise. Secondly, in the steady state the mean response would be zero. For this 
result to be consistent in the limit of the noise level going to zero, the basic limit cycle given by  (3) 
must also be a stat ionary random process with zero mean. This would impose additional con- 
straints on the nature of r in (3) which in turn constrains the initial conditions x(0) and 2(0). 
A sufficient condition for the limit cycle oscillation to be a stat ionary stochastic process is tha t  
the parameter  q~ be a random variable distributed uniformly in ( - -z ,  z). Based on these considera- 
tions the response to broadband noise was taken to be of the form 

x(t) = F Sin (ogt + 6) + z(t) .  (4) 

Here F and co are inknown deterministic constants, r is a random variable distributed uniformly 
in (--~,  ~r) and z(t) is a Gaussian stat ionary random process which is statistically independent 
of 6. The qualitative features of the response mentioned above are valid even when the band 
width of the excitation is reduced. Thus (4) can be taken as the form of the solubion for (1) when 
/(t) is given by  (2). The first term in this solution represents the response component due to limit 
cycle effects and z(t) is the effect due to external force. In  the pr imary harmonic region, i.e. 
when A is close to the basic limit cycle frequency, the frequency of oscillation will be close to 4. 
Further,  in the limit of D -> 0, it is required that  the response asymptotically approaches the basic 
limit cycle oscillation in which case F -- 1. Thus for the narrow band excitation it is expedient 
to take F = 1 and ~o = 4. The assumed solution of (1) is thus given by  

x(t) = sin (At -~- r + z(t) .  (5) 

To determine the properties of z(t), (5) is substituted into (1) to get 

-- e[A cos (At + ~b) + 2] [1 -- 4z * -- 4s in  ~ (At + r -- 8zsin (At + q~)] 

+ z + ( 1 - - A  S) s i n ( A t + r  = / ( t ) .  (6) 
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This equat ion is multiplied by  Zl -- z(tl) and averaged under  the  closure assumption tha t  z, ~ and / 
are jointly Gaussian [2]. Further ,  noting tha t  z(t) and r are independent,  one gets 

(s e(~z,) (1 + 4(z2)) + (zz~) (1 + 8e(zs = (/zl}. (7) 

This momen t  equat ion is derivable f rom the linear system 

+ ~(1 + 4(z~)) + z(1 + 8e(~)) = / .  (8) 

Thus,  the above equat ion can be regarded as the equivalent linear system associated with (1). 
I t  m a y  be noted tha t  (6) can also be handled using the classical statistical linearization technique. 
Here an equivalent  linear system is obtained which will be different f rom tha t  one in (8). However,  
it is easy to show tha t  the difference in the corresponding solutions would be only in the t ransient  
regime and both  the solutions would lead to the same s teady state solutions. Equa t ion  (8) together  
with (2) can now be solved using the Fokker-Planck-Kolmogorov  (FPK) equat ion approach.  
Wi th  the  notat ions 

,~ = ( /~) ,  ~o = ( t l ) ,  
(9) 

where 

v ---- e(1 + 4s~). (22) 

Fur ther ,  it follows from (5) tha t  

p ( x ,  2) = 1/(4~2r f exp [--0.5(x -- sin u)~/s~ - -  0.5(2 -- 2 cos u)2/ss] d u ,  (23) 

p(X) = 1/(23Z ]/~---~1) f e x p  [ - - 0 . 5 ( X  --  s in  ~t/~)2/811 dg./~, (24) 

the following momen t  equations can easily be derived from the governing F P K  equat ion:  

81 = 282, (10) 

s2 = s5 --  s2e(1 + 481) -- s1(1 + 8es2) + s3, (11) 

s3 = s6 + s4, (12) 

84 ---- sl -- 2~72s~ -- 2~s3, (13) 

s5 : --285e(1 -+- 4:81) -- 282(1 + 8es2) + 286, (14) 

s6 : s6e(1 + 4~i) -- s3(1 + 8es2) + s8 + sT, (15) 

s7 : --sTe(1 + 4sl) -- s4(1 + 8es~) + s9 -- 2~]2s7 -- 22s6, (16) 

s8 = 289, (17) 

89 = 810 - -  2~]289 --  2~288, (18) 

sx0 : --4~2s10 -- 222s9 + 2D. (19) 

I n  the stochastic s teady state, the t ime derivatives of the moments  vanish leading to the following 
equations for the response var iance:  

D[22(v + 2~2) - v(2 ~ - 1) + 2~2v(v + 2~2)] 
sl = (20) 

(2V23) [22(v + 2~72) ~ + (22 -- 1) 2 -- 2~2(22 -- 1) (v + 2~2)]' 

D(, + 2v~) 
s5 = (2V2a)[22( v + 2V2) ~ + (22 _ 1) 2 _ 2V2( 22 _ 1)(2 + 2V2)]' (21) 
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p(2) = 1/(2~ ]/2-~s~) f exp [--[0.5(2 -- 2 cos u)21s~] du. (25) 
--Tg 

I t  is to be noted that  the above probability density functions are non-Gaussian. The probability 
density function of displacement and velocity are, infact, bimodal in nature. 

3 S t o c h a s t i c  s tab i l i t y  

The solution in (23) has been obtained under a set of assumptions and hence is expected to be valid 
only in specific regions of the parameter space. A necessary condition for any solution to be 
acceptable as an approximation is that  the assumed solution should be stochastically stable. That  
is, any perturbation to the structure of the assumed solution must asymptotically die away. This 
condition of stochastic stability of a proposed solution as a criterion for its acceptability has 
earlier been employed by Iyengar [1]. This criterion is also used in the present study. In this 
connection it is also important to note that  the frequency response curves given by (20)--(22) are 
nonlinear in nature and can result in multivalued response variance. The question now arises as 
to which of the solutions are to be accepted. The stability analysis provides an answer to this 
question also. 

For carrying out the stochastic stability analysis a small perturbation v(t) is imposed on x(t) 
given by (5). The variational equation for v(t) is derived from (1) as 

ij - er -- 4x 2) + v(1 + SexY) = 0. (26) 

Here, x(t) is a narrowband process which admits an envelope representation as 

x(t) = a(t) cos 0(t), ~(t) = --ao~e sin O(t), O(t) = eoJ + r (27) 

where a(t) and r are slowly varying random processes and o9 e is the central frequency, which, to 
a first approximation, is taken to be the average rate of upward zero crossing of the process 
x(t), [6], i.e. 

= 2= f  p(0, d,~. (28)  
0 

Further,  it follows from (23) and (27) that  

o) = f exp cos 0 - sin 

-- 0.5(--a~% sin 0 -- 2 cos u) 2] du. (29) 

To analyse (26) further, the following transformations are introduced: 

T ~ 0 9 e t  , 

Now combining (26), (27) and (30) and retaining terms up to O(e), (26) can be rewritten as 

u"  + {1/o)~ - 2a2/~% sin [2(3 + 4)]} u = 0. (31) 

The primes here denote derivatives with respect to z. Since the parametric excitation in this 
equation is sin [2(3 + r the solution in the primary resonance region can be taken as 

u(~) = AI(~) cos ~ + A2(z) sin T. (32) 

Further,  since x(T) is a narrowband process, following the quasistatic averaging outlined by 
Stratonovich [10], it can be shown that  

A'~ = --CnA~ -- C~2A2, A~ = C2~A~ + C2~A~, (33), (34) 
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c l l  = -0 .5~ ,2 /o9~  cos  (2r  c1~ = 0.5 - 0 . 5 / ~  - 0.5~a2/~ s in (2r  (35), (36) 

C2~ = 0.5 -- 0.5/~0~ + 0.5sas/ws sin (2r C22 = Cm. (37), (38) 

Since a and r are slowly varying functions, the above coefficients are also slowly varying functions 
of time. Hence the solution for A1 and A~ can be taken as 

This leads to the condition 

~2 = C21 _ C12C21" (40) 

Now, from (30) and (39) the condition for the almost sure asymptotic stability of v(T) is 

If as a further approximation x(v) and hence ~(~) is taken to be ergodic, the time averages can be 
replaced by ensemble averages to get 

Re ((~} + 0.5s/toe(1 - 4x2}) < 0. (42) 

From (40) and (35)-(38) it can be shown that  

(~) ~- 0 . 5 / o g e ( [ e 2 a  4 - (092 - 1)2112}- (43) 

The stability criterion of (42) now reads 

f [e~a~ -- ( ~  - 1)~]~/~p(a) da + s(1 -- 4(x~)) < 0. (44) 
R 

The integration in the above has to be carried out over only the real values of the integrand. 

4 Stratonovich's solution 

In many nonlinear random vibration problems the method of stochastic averaging has been 
observed to be a useful technique for analysing the response under broadband inputs. A prere- 
quisite for applying this method has been the condition that  the relaxation time of the system be 
much greater than the correlation time of the excitation. In the present problem, however,/(t) is 
a narrowband process and hence this technique is clearly not applicable. On the other hand, if 
the parameters e and ~7 of (1) and (2) are assumed to satisfy the condition e ~ % then a clear cut 
separation between the time constants of system and excitation will again exist, but the condition 
would be the exact opposite of the requirement stipulated for applying the stochastic averaging 
method. Stratonovich [10] has proposed a variation of the standard stochastic averaging which is 
applicable to this case. This method is called the quasistatic averaging method. Stratonovich has 
applied this technique to a system which is similar to the one considered in (1). His results are 
reproduced here to facilitate a comparison with the solution developed in the earlier section. The 
method consists of only temporal averaging. The ensemble averaging with its at tendant Markov 
approximation is dispensed with. In applying this method both the input and the response are 
expressed as 

/(t) = p( t )  cos [;,t + ~(t)], 

x(t) = A(t)  cos [~t + v~(t)] 
(45) 

where P, A, y and W are slowly varying random processes. During temporal averaging these 
quantities are treated as random variables and hence remain constants. This leads to a memoryless 
transformation relating the input and the output amp]itudes and phase angles. The solution of 
this transformation is further required to be stable. This requirement imposes additional con- 
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straints on the range of input and output  variables. In  cases where no stable amplitude and phase 
are possible, Stratonovich has proposed a second level of t ime averaging of the equations which 
have already been averaged once. Together with this additional averaging, the method leads to 
the probabil i ty density function of the response amplitude given by  

0 for 0 < A < ] / Z  

p(A) = (1 - P1) #(A - 1) + (e2/a/) ~ ]A[(1 - A~) ~ +/1~] -- 2A3(1 -- A~)I 

x exp {--(Ae2/af) 2 [(1 -- A2) 2 + AS]} for ]/Z < A < oo, 
(46) 

P, = exp { - Z e Z / @ ~  [(1 - z) 2 + A2]}, Z = (2 + ] /1--~-3~)/3 

o~ = ( p } ,  ~ = (~ - ~)/(~). 
The solution has been obtained under the assumption that  IAI < 0.5. This assumption is reasona- 
ble, since, in the present approximation,  interest is focused on the system behaviour near 
resonance. Although the case of [A] > 0.5 has not been dealt by  Stratonovich, it is possible to 
apply  the method in this case also. 

5 Numerical results 

The theoretical solutions based on the closure approximation and the quasistatic averaging 
method are shown in Figs. ( 1 ) -  (4). The quasistatic averaging solution yields information on the 
moments  and the probabil i ty density function of the response amplitude, while the closure 
solution characterizes the displacement, velocity and the amplitude processes. I t  should be noted 
here that  the response amplitude process a(t) of closure approximation (27) and A(t) of quasi- 
static averaging (45) are not strictly identical. Nevertheless for ease in comparison the moments 
and the probabil i ty density functions of these two quantities are shown on the same Figs. (1), (2) 
and (4). In  the numerical work the parameters  s and ~ are taken to be 0.05 and 0.0I, respectively. 
The response moments  as function of the detuning parameter  A = (1 -- 2~)/(s,~) and noise level D 
are shown in Figs. (1) and (2), respectively. The closure solution is obtained by  solving (20) - (22). 
Although these equations are nonlinear, in the parameter  range considered, the solutions are, 
however, found to be single valued. Further  the stability criterion of (44) shows that  these solutions 
are stable and hence acceptable over the entire range of the parameters  considered. The theoretical 
probabil i ty density functions of displacement and amplitude processes for the ease of D = 2 
X 10 -5, and several values of A are shown in Figs. (3) and (4). The probabili ty density of the 
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Fig. 1. a Steady state variance ( ~  closure, X X simulation), b Steady state mean amplitude 
( - -  {a) closure, - . . . .  <A> quasistatie averaging, X X (A> simulation), e Steady state mean 
square amplitude ( - - ( a  2) closure, - . . . .  <A2> quasistatie averaging, X X {A z> simulation); 
D = 2 x 1 0  - ~ , ~ = 0 . 0 5 , ~ = 0 . 0 1  
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response ampli tude obtained using the quasistatie averaging technique has both discrete and 
continuous parts.  For  A 4= 0, the discrete component assumes a non-zero value. Thus in Fig. 4b, 
for A = 0.3 the theoretical probabili ty density function has a discrete component of P(A = 1) 
= 0.1. 
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6 Digital simulations 

The validity of the theoretical solutions can be checked with the help of numerical simulations. 
These studies are carried out on (1) and (2) after transforming the time variable t to T = 2t/(2~). 
This leads to 

x" -- 2z(e/) 0 x'(1 -- 4x ~) + (2Jr/2): x = (2~/~) ~ ], (47) 

1" + 4~=I' + 4=V = (2=/~)~ w .  (48) 

The stationary solution of (48) is fed as the input to (47). The integration is carried out using a 
fourth order gunge-Kut ta  algorithm with a step size of Av = 0.025 and for a length of 50 cycles. 
To study the properties of response envelope process , the following quantities are simulated: 

a(~) = {x~(~) + ( ; /~)~ [x'(~)]~/(4~)}11L 

A(T) = {x2(T) q- [x'('c)]2/(4~e)} 11~, 

al(T ) = {x2(T) -~- .~2[x'('r)]2/(4~2)} 1/~, (49) 

a2 = local extreme values of x('r 

a3 = positive local maxima of x(r). 

The quantities a(T), A(v) and al(~) are smooth functions of time 7, while a2 and a3 represent sets of 
discrete points. I t  can be observed that  the points belonging to the sets a2 and a3 are contained 
in a(~), A(~) and a1(~). The definitions of a(~) and A(~) correspond to the envelope representation 
used in the closure solution (27) and the quasistatic averaging approximation (45), respectively. 
To estimate the desired statistics, the response quantities from ~ = 49 cycle to v -~ 50 cycle are 
picked up from each sample. This procedure is repeated for the entire ensemble of 100 samples. 
The numbers thus obtained from each sample are assembled together and processed to obtain the 
estimates for the moments and the probability density functions. The corresponding quantities 
for displacement process are shown in Figs. 1 a, 2 a and 3. The estimate of mean and mean square 
values of the response envelope obtained using different definitions of (49) are observed to be 
very close to each other. Thus, e.g. for A = 0.5 and D = 2 X 10 5 the mean values using the five 
definitions of (49) are 1.17, 1.15, 1.15, 1.13 and 1.12, resp., and the corresponding mean square 
values read 1.41, .1.37, 1,35, 1.32 and 1.30. For sake of clarity only one set of these results, 
namely the at one corresponding to A(v) is shown in Figs. 1 b, 1 c and 2 c. Similarly the simulated 
histograms using different definitions were observed to be nearly identical. Again, only one of 
these results is plotted in :Fig. 4. 

7 Discussion and Conclusion 

In this paper the response of Van der Pol's oscillator to quasiharmonic stochastic excitations is 
examined in the primary harmonic region using both the closure approximation and the quasi- 
static averaging technique. Under a strict harmonic excitation the system is known to exhibit the 
entrainment behaviour. When the amplitude and the frequency of the harmonic excitation are 
randomly perturbed, the response amplitude and phase, in turn, become slowly varying random 
processes. Thus, in any individual sample of the response, one can expect that  the forming and 
breaking of entrained oscillations take place indefinitely. This interaction between the limit cycle 
oscillation and the  dominant;ly periodic forcing can further be expected to produce multimodal 
response probability distributions. The closure approximation presented in this paper is based on 
a bimodal probability density function. The method leads to the moments and the probability 
distributions of displaeemei~t, velocity and am)littfde processes. Further,  the acceptability of this 
approximate solution is examined with the help of a stochastic stability analysis. In the parameter 
ranges considered, this analysis shows that  the assumed solution is stochastically stable and 
hence acceptable. In the method of quasistatic averaging the solution is expressed as a memoryless 
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nonl inear  t r ans fo rma t ion  of r andom var iables .  This m e t h o d  leads to  the  p r o b a b i l i t y  dens i ty  of 
the  response a m p l i t u d e  process.  The  numer ica l  resul ts  p re sen ted  in Figs.  1 and  2 show t h a t  the  
response momen t s  ob ta ined  using the  closure t echn ique  and  the  quas is ta t ic  averag ing  show 
qua l i t a t i ve ly  ident ica l  behaviour .  The  compar i son  wi th  d ig i ta l  s imula t ion  resul ts  show t h a t  while 
the  quas is ta t ic  averaging  overes t imates  the  response moments ,  the  closure solut ion,  on the  o ther  
hand,  unde res t ima tes  the  same. The  b imoda l  na tu re  of d i sp lacement  d i s t r ibu t ion  ob ta ined  using 
the  closure t echn ique  qua l i t a t i ve ly  agrees well wi th  the  s imula t ion  resul ts  (Fig. 3). On the  o ther  
hand,  the  compar i son  of a m p l i t u d e  d i s t r ibu t ion  is poor  (Fig. 4). I n  th is  case, the  quas is ta t ic  
averag ing  is found  to give b e t t e r  results .  W h e n  the  de tun ing  p a r a m e t e r  A is not  zero the  quasi-  
s ta t ic  averaging  solut ion predic ts  a discrete  componen t  in the  p r o b a b i l i t y  dens i ty  funct ion  of 
the  a m p l i t u d e  loca ted  at  the  l imi t  cycle a m p l i t u d e  of the  sys tem.  Thus in Fig.  4b ,  for A = 0.3, 
a componen t  of P(A = 1) = 0.1 is present .  A s lmilar  t e n d e n c y  appears  to  be presen t  in the  simu- 
la t ion  resul ts  shown in th is  figure. 

I n  conclusion, i t  can be said t h a t  the  closure solut ion p resen ted  in th is  p a p e r  yields  r easonab ly  
good a p p r o x i m a t i o n  to  the  response momen t s  b u t  the  pred ic t ions  on the  p r o b a b i l i t y  dens i ty  
funct ions  are ra the r  poor.  The resul ts  based  on quas is ta t ic  averaging  techniciue , on the  o ther  hand,  
give fa i r ly  good es t imates  for bo th  the  response a m p l i t u d e  momen t s  and  the  p r o b a b i l i t y  dens i ty  
funct ion.  
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