
Archive of Applied Mechanics 66 (1996) 315-325 �9 Springer-Verlag 1996 

Dynamic stiffness matrix of a general cable element 
A. Sarkar, C. S. Manohar 

Summary A computational scheme for determining the dynamic stiffness coefficients of a linear, 
inclined, translating and viscously/hysteretically damped cable element is outlined. Also taken into 
account is the coupling between inplane transverse and longitudinal forms of cable vibration. 
The scheme is based on conversion of the governing set of quasistatic boundary value problems into 
a larger equivalent set of initial value problems, which are subsequently numerically integrated in 
a spatial domain using marching algorithms. Numerical results which bring out the nature of the 
dynamic stiffness coefficients are presented. A specific example of random vibration analysis of a long 
span cable subjected to earthquake support motions modeled as vector gaussian random processes 
is also discussed. The approach presented is versatile and capable of handling many complicating 
effects in cable dynamics in a unified manner. 

Key words dynamic stiffness, extensible cables, earthquake loads 

1 
Introduction 
The equations governing the motion of suspended cables and their solutions have been a subject of 
extensive study in vibration engineering literature [2, 6, 8,11, 13]. These studies assume their 
importance due to many applications of the suspended cable structures, e.g. suspension cable bridges, 
power transmission lines, guyed towers, conveyer systems and mooring cables, to name only a few. 
The study of cable dynamics becomes all the more challenging to an analyst when one 
considers the complicating effects of geometric nonlinearities [11], gyroscopic effects caused due to 
axial motion [14], coupling between different modes of vibrations [3], complexities in loading 
conditions such as multi-support seismic excitations [9], and material nonlinearities [13]. The present 
study considers the linear dynamics of a cable element including the effects of 

�9 cable extensibility, 
�9 coupling between longitudinal and in-plane transverse modes, 
�9 inhomogeneities in mass, stiffness and damping properties, 
�9 arbitrary random/deterministic loads, 
�9 multi-support and/or multi-component time-varying boundary excitations, 
�9 proportional/nonproportional, viscous/hysteretic damping models, 
�9 axial motion for homogeneous cable elements and 
�9 arbitrary chord inclinations. 

The objectives of the study are twofold: firstly, we derive the dynamic stiffness matrix for the 
cable element taking into account the effects listed above and using the space domain numerical 
integration technique. Secondly, tw~o specific examples, namely, the multi-support random seismic 
response of a 1000-m-long suspended cable, and the frequency response functions of an axially 
moving inclined cable are studied using the approach mentioned above. 
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The dynamic stiffness coefficient/3q(o~) [7] is defined as the amplitude of a harmonic force of 
frequency co applied at node i which is required to produce a unit harmonic displacement of frequency 
o9 at nodej. These complex in nature coefficients are functions of stiffness, mass and damping properties 
of the system and frequency of harmonic excitation. This is in contrast with the static stiffness 
coefficients which are functions of stiffness alone and independent of excitation characteristics. The 
formulation of dynamic stiffness coefficients enables the study of dynamics of built-up structures 
using matrix assembling techniques as used in the traditional finite element method. The determination 
of/~q (co) requires the solution of an associated quasi-static boundary value problem. For a homogeneous 
string, rod or beam element, exact solutions in closed form to this problem are readily available [7]. 
However, for a general cable element, as proposed to be studied in this paper, exact closed form 
solutions are not possible. In earlier studies [2], [12], and [10] approximate analytical solutions were 
obtained under a set of assumptions. In the present study, we convert the set of governing boundary 
value problems (BVPS) into a larger set of equivalent initial value problems (IVPS), and solve the 
resulting equations numerically using marching techniques. A distinguishing feature of this approach 
is that it avoids the need for carrying out a free vibration analysis, which is an inevitable first step 
for modal expansion methods. The solutions obtained here are exact in nature except for the 
round-off and truncation errors which inevitably occur in numerical solution of differential equations. 
It must be noted that the idea of deriving transfer functions of distributed systems by solving a set 
of initial value problems is not new. In a series of recent papers [4, 15,16], the usefulness of this 
method in the study of beam structure dynamics is discussed. In the context of cable dynamics, however, 
the approach outlined in this study accounts for several complicating features of cable vibration, 
and is believed to be new. The wide ranging validity of approach is essentially arising from the adoption 
of numerical integrations in space domain. 

2 
Equations of motion 
The first step in setting up equations of motion of a suspended cable is to determine the static deflection 
profile. By considering the equilibrium of an infinitesimal element of the cable shown in Fig. 1, and 
by assuming that the cable is inextensible, the equation governing the static profile can be 
shown to be given by 

d [T ~s]+ mgcosO=O, ( i) 

where m is mass per unit length, and g- acceleration due to gravity. Furthermore, under the assumption 
that the cable sag-to-span ratio is small, one can take dx ~- ds. Ignoring the effect of mgsinO on sag, 
the static profile can be shown as 

y ( x )  - m g L  2 cosO (2) 

The cable tension H(x) now varies along the cable, and is given by 

(3) 

Fig. 1. Cable element 



Notice that for 0 -- 0, one gets H(x) = H o. The applied horizontal tension for this case remains constant 
for all x. 

The equation governing the dynamic displacements v (x) and u(x) along the transverse and chordwise 
directions can be derived by applying Hamilton's principle 

t2 t2 

6~ (T -- U)dt + ~ 6W~ dt = O. 
t 1 t 1 

(4) 

For a damped cable one gets 

lS { I a v  Ov-]2 [-3u 3uq 2) +  dx, 
2 0  ~ 

L [~u dyOv 118u~ 2 l_(Ov~21 i~ [Su dySv 1[8u\ 2 1(8v\272 
+ vxj jag+ 

(6) 
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6w=c i f ~2 F ~ ~v] q~u 0u} 

+! ~ q~+co~ +~-~-c=~ ~vdx. (7) 

Substituting these equations into (4) and retaining only linear terms, the governing equations for 
cable motion are obtained as 

0~ ~x + EA (x) dx ~x + EA (x) \dx]  ~x + ~ k C~ (x) ~x + C2 (x) ~x ~ 

8v o F 8vq 8 [- 8vq 8v 
/2rnvox-[ + = /m~ ' l= /+  q(x)-- 

= ~ m (x) ~ + ~t L ox A ox k ~ St' 

8 8u G(x) 8u 
co 8t 

8[ 8u] 8F 8u7 ~F 8u7 8u 
+ ~ i2  mVo w - i  + w- [mV~o w- i  + =-~ m(x)-~ ~ oxJ ox L oxJ C8(x) &" 

C3(x) 8v 
co 8t 

(8) 

(9) 

The out-of-plane displacements of the cable are uncoupled from the u and v displacements unless 
the cable sags under its own weight or carries a spatially nonuniform out-of-plane load [3]. In the present 
study, it is assumed that the cable carries no out-of-plane load. Consequently, the out-of-plane 
displacements are excluded from consideration. Also notice that allowance has been made for both 
viscous and hysteretic damping terms which may be dependent on either velocity or strain rate. The 
meanings of the damping terms included in the above equations are as follows: C t (x), C z (x), C 5 (x) 
and C6(x ) are viscous damping coefficients which are dependent on strain rate components, 
C3(x ), C:(x) are hysteretic damping coefficients dependent on velocity components, and C4(x), Cs(x) 
are viscous damping coefficients dependent on velocity components. No restriction is placed on 
damping terms, as their proportion to mass and/or stiffness makes no difference to the ensuing analysis. 
It may also be noted that the equations allow for cable inhomogenities in mass, stiffness and damping 
terms. While the above equations remain valid whether or not the cable translates, the ensuing solution 
is valid for translating cables only if the cable is homogenous. For nontranslating cables, the 
solutions are more generally valid. The reason for this is that a nonhomogeneous translating cable 
is a time-varying system, and requires a special solution strategy. This aspect is not considered in this 
study. Finally, it may be emphasized that the generality with which the damping terms are modeled 
in this study does not imply that a consistent detailed knowledge of damping mechanisms in 
cable structures is currently available. Instead, the eventual aim has been applying the formulations 
developed in this paper to the problem of identification of damping in stranded cable structures. 
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3 
Dynamic stiffness coefficients 
When harmonic excitations Pk(t) = Pk exp (icot) act at the nodes k = 1, 2, 3 and 4, of the linear system, 
all points on the cable oscillate harmonically at the frequency co. Therefore, one can take 
u (x, t ) = u (x) exp (ico t) and v (x, t) = v (x) exp (icot) and the equations governing u (x) and v (x) can 
be shown by 

�9 du. dv d(IH-mv2o+EA(d-~Y~)2+iogczld~+[EAd-~Y~+zcoC1]-~}=2iogmvo ~ 

+ (-mcoE + koC4 + iC3)v, (10) 

1 E H -- mV2o + EA + icoC 5 + EA + I(DC6[ ~ = 2icomv 0 + ( - mco 2 + icoC s + iCT) u. 

(11) 

To derive the dynamic stiffness matrix, it is necessary to solve the above pair of equations for two 
sets of  boundary conditions: one on displacements and the other on forces shown, respectively, in Figs. 2 
and 3. The boundary conditions on displacements are given by 

V(0) = h m + iAn;  u(0) = AR2 + iA~2; v(L ) = AR3 + iA~3; u(L ) = AR4 + ihi4; (12) 

and those on forces are 

du 
k \dx  mvo + 2 /dy\2 icoc21dv , ~,.. ~ dY iogC11~ =pm -~ t L~r ~ + + at x = 0 ,  

[H- m~ + EA + icoC5] ~ + . dv . a t  x = O,  

2 dy 2 du 
at x=L,  

ldv 
[H - m~ + EA + koC 5] ~ + EA -~ + lo9C 6 -~ = PR4 + liO,4 at x=L.  (13) 

Notice that u (x) and v(x) become complex in nature due to the presence of damping and axial motion 
terms. Thus, the above pair of equations constitute a set of complex boundary value problems with 
nonhomogeneous boundary conditions. These equations can be recast into a set of eight first 
order equations by introducing the variables Yk (t), k -- 1, 2 ..... 8 through the relations 

V(x)=yl(x)+iy2(X), 

u(x)=r3(x)+ir , (x) ,  

/ 

Fig. 2. Displacement boundary conditions Fig. 3. Force boundary conditions 



IH-mv~+EA(~y+iooc2]d--~+[EAd-~+iooc~]d~=ys(x)+ iy6 (x), 

[H-- m~+EA+iooC5] d_d_~+ EA~- +iooC 6 ~ = y 7 ( x )  + iys(x ). (14) 

Substituting these equations into (13), and separating real and imaginary parts, one gets 

[dy~2q dy~ ~ dy 2 , ,~  dy dy 3 dy 4 
H--  mv~ AI- EA ~ )  J~-- 0)I~ 2-~ t/?,-/i ~dx- -  (A)C1 ~--Y5 ~-0, 

OOC2~+ H--mvI+EA + ooC2-~- +/~'A ~ y 6 = 0 ,  

dydy~~ dy3~ 
EA ~ ~ - ~C~ + [ n -  mv] + EA ] - ~  - ooC5 - y 7 = O ,  

c o C 6 ~  ' " "  dy dy2 -~ z_~ ~ + c o C 5 ~  + [H - mv I + E A ] ~ - - y s = O ,  

2mVooo--~-b + mooZyl + [ooC4--C3]y2=O, 

--2mVooo~ ~ = + + mv~y 3 + [ooC 4 - C3]y 4 O, 

dy, dy~ 
2mVooo ~ + - ~  + moo Y3 + [ooC8 -- C7]y4 = O, 

dy, dy 8 
- 2mvooo --d7 c + - ~  - [ ooC 8 - CT l y 3 + rnoo2 y4 = O. (15) 

These equations constitute a set of simultaneous equations in {y'}, and can be recast in the form 

y' = Ay. (16) 

The prime here denotes the derivative with respect to x. Furthermore, A is a 8 x 8 matrix whose 
elements are functions of x and, consequently, closed form solutions are not in general possible. 
Analytical techniques may be used to obtain approximate solutions, or, alternatively, resort to numerical 
methods. Noted again that the governing equations, being boundary value problems, marching 
techniques, such as the Runge-Kutta algorithms, cannot be directly applied to them. They need to 
be converted into a set of equivalent initial value problems first. 

4 
Equivalent set of initial value problems 
Consider the matrix of fundamental solutions denoted by W of Eq. (13) which are obtained by solving 
(13) under the initial conditions 

w,i(x = 0) = ~i~, (17) 

where 6~j is the Kronecker delta function. This would mean that thej th  column of the matrix W consists 
of solution vector y (x) of Eq. (16) with initial conditions yj (0) = 1 and Yi(0) = 0 for i # j. Any other 
solution of y(x) of Eq. (16) can be written as a linear combination of the elements of W as 

y(x) = W~t, (18) 

where the vector a needs to be selected to satisfy the prescribed conditions. Thus, for the displacement 
boundary conditions shown in Fig. 2 one gets 

3t9 
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AR1 

Azl 

Ag2 
An 

AR 3 ---~ 

AI3 
AR4 

A~4 

1 0 0 0 0 0 

0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 

W~(L ) W~2(L ) W~3(L ) W~4(L ) W,s(L ) W~6(L 
W2,(L ) W22(L ) W23(L ) W~4(L) W2s(L) W26(L 
W3,(L ) W32(L ) W33(L) W34(L) W35(L ) W36(L 
W4,(L) Wa(L) W43(L ) W44(L ) W45(L ) W46(L 

which can be written concisely as 

A = S~ot. 

Similarly, from the boundary forces shown in Fig. 3 one gets 

PR, I 
Pn 
PR2 

I pI2 I= 

P" 1 

P~4 

0 0 0 0 1 0 

0 0 0 0 0 1 
0 0 0 0 0 0 
0 0 0 0 0 0 

Ws,(L ) W52(L) W53(L ) W54(L) W55(L ) W56(L 
W6, (L) W62(L ) W63(L ) W64(L ) W65(L ) W66(L 
WT,(L ) W72(L ) W73(L ) W74(L ) W75(L ) W76(L 

Ws,(L ) Ws~(L ) W,3(L ) W~,(L ) Was(L ) Ws,(L 

which, again, can be written compactly as 

0 0 
0 0 
0 0 
0 0 

WI7(L ) WIs(L ) 
W27(L ) W28(L) 
W.(L ) W3~(L ) 
W4,(L ) W4~ (L ) 

0 0 
0 0 
1 0 
0 1 

W57(L ) Ws~(L 
W,7(L ) W68(L 
W.(L) WT~(L 
G7(L ) GAL 

~3 
0C4 

0( 6 

~7 
~a 

f i 

~3 

O~ 4 

O~ 5 

O~ 6 

~7 

i(X8t 

(19) 

(20) 

(21) 

P = S2ot. (22) 

It follows from Eqs. (20) and (22) that 

P = S2S~-IA = DA, (23) 

where D = $2S~ -1 can be interpreted as the modified dynamic stiffness matrix which takes into account 
the complex nature of stiffness coefficients arising from the presence of damping and Coriolis terms 
due to axial motion. 

5 
Particular integral 
In the dynamic stiffness formulations for built-up structures, the nodes can be taken to be located 
at support points and at intersections of different structural elementS. If excitation forces are applied at 
the nodes of cable element, as in the case of seismic excitations transmitted through the cable supports, 
the dynamic stiffness matrix can be used directly in formulating the equilibrium conditions, and, 
subsequently, in the determination of the response. On the other hand, if excitations are applied at 
points other than nodes, as in the case of wind loads, the dynamic stiffness matrix needs to be modified. 
This can be realized by considering an additional particular integral to the solution already obtained 
for time-varying support conditions. To illustrate this, consider a cable element carrying 
a concentrated harmonic load at a point x 0 as shown in Fig. 1. To write down the particular integral 
we first find the solution of Eq. (16) with initial conditions y(0)* = [0, 0, 0, 0, 1, 0, 0, 0], here * denotes 
matrix transposition. This defines the impulse response function with which we convolve the external 
forcing to obtain the desired solution. The function has already been determined Y5 (x), that is, 
the fifth column of the matrix W. Consequently, the total solution can be written as 

;(x) = w (x[c~ 

(x)~ + Q~ys(x . z ) 3 ( z  - x o ) d z  

f o r  x ~ X0, 

for x >= x o. 
(24) 



Following the arguments used in deriving Eq. (23), it is shown that the nodal forces and displacements 
are related through the relation 

P = D (A -- A,~) + Ab, (25) 

where 

A*={O,O,O,O, QWss(L-xo), QW65(L-xo), QW75(L--xo), QW85(L--xo) } 

A~={O,O,O,O, QWls(L-xo), QWzs(L-xo), QW3s(L-xo), QW45(L-xo) }. (26) 

This formulation can be easily generalized to include the effects of distributed loads and forces in 
the other directions. For the case of distributed loads, the convolution with system impulse response 
will have to be evaluated numerically. 

6 
Numerical results 
A computer program based on the formulation presented in the preceding sections has been developed. 
The matrix of fundamental solutions W has been generated by using a fourth-order Runge-Kutta 
method. Thus, to generate the dynamic stiffness coefficients for one value of frequency co, the set of 
equations given in (16) were integrated with eight independent sets of initial conditions. For the 
frequency range surveyed, an integration step size of L/1000 was found to give satisfactory results. By 
way of validating the program developed, the following qualitative and quantitative checks have been 
made: 

�9 Matching of natural frequencies obtained using this program with values reported in literature 
for cables of different spans. 

�9 Satisfaction of reciprocity requirements of the system's Green function and symmetry properties 
of dynamic stiffness coefficients. 

�9 Approach to the exactly known limits on dynamics stiffness coefficients and the Green functions 
as cable span goes to zero and the system behaves as a string. 

�9 Display of the well-known qualitative features of resonances, anti-resonances and minima of direct 
and cross receptance functions. 

Figure 4 shows the modulus of AR1 + iA n for a cable with L = 100 m, A = 5.79 x 10-4 m 2, 
E = 20.684 x 10 l~ N/m 2, H 0 = 29403 N, m = 2.2 kg/m and 0 = 30 ~ which is taken to translate at an 
uniform velocity of 30 m/s. The results are shown for two damping models: firstly, a velocity-dependent 
viscous damping model with C4 = Cs = 0.66 Ns/m 2 and with all other damping coefficients C~ being 
zero. Secondly, a strain-rate-dependent viscous damping model with C~ = C 6 = 20 Ns and other 
C k being zero. The choice of the damping coefficients is based on the criterion that the modal damping 
coefficients in the first mode in both cases is about 5%. In the first case, the modal band-width remains 
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Fig. 5, Direct and cross-receptance 
functions; L = 100 m, 
A = 9.734 • 10-4m ~, 
E = 20.684 x 10]~ 2, 
H 0 = 29403 N, v~ = 0 and 0 = 0 ~ 

constant for all modes, while for the second it increases with increases in frequency. Consequently, 
the two transfer functions show qualitatively different behavior in higher-frequency regions. This 
feature is of  significant interest in high-frequency vibration analysis using statistical models for the 
vibrating systems [5]. The Green function moduli  for the same cable with 0 -- 0 ~ and v 0 -- 0 under the 
action of a harmonic excitation at x0 = 25 m for response measured at x = 25 m and 75 m using the 
particular integral derived in Eqs. (24) and (25) are shown in Fig. 5. For the case of drive point 
and measurement  point  being identical, the resonant and the anti-resonant peaks are observed to 
alternate, which is consistent with well-known features of the direct receptance functions. Conversely, 
for the cross-receptance, that is, for x0 = 25 m and x = 75 m, between successive resonant peaks one 
gets either a min imum or an anti-resonant peak. This is consistent with the known properties 
of these functions. 

7 
Random vibration analysis of multi-support earthquake response 
The usefulness of  formulat ions developed in Sects. 3-5 is not  necessarily restricted to harmonic 
response analysis. In conjunction with the Laplace or Fourier transform techniques, they can be used 
for transient vibration analysis also. Similarly, the results can be used directly in stationary random 
vibration analysis in frequency domain,  in which case, the stiffness coefficients serve as the 
system transfer functions and enable the spectral analysis in an elegant fashion. To illustrate this, 
the response of  a 1000-m-long cable which is fixed at the two ends and supported at the same level is 
considered. The two supports  are taken to be acted upon by  stationary..vector r.arqdom excitations 
with power spectral density (PSD) functions of support  accelerations f~ (t) and f2(t) given by 

\cog/J ~ \~/I J 

(27) 

(28) 

The free vibration of this cable has been studied earlier in [9]. For nondimensional  cable parameters 
F =  EA/H = 256.75 and fl = m g L / H  = 0.72, the first few natural frequencies in the predominantly 
vertical modes have been reported to be 0.11, 0.16, 0.20, 0.23, 0.30 and 0.35 Hz. Those in the 
predominant ly  longitudinal modes are 0.99, 1.93, 2.88, 3.83, 4.79 and 5.74 Hz. In the present study, 
we take E = 8.75 x 10 ~~ N I m  z, A = 9.62 x 10 -4 m z, mg = 236.04 N/m, and H 0 = 327837.0 N which 
correspond to F =  256.75 and fl = 0.72. The damping is assumed to be viscous with C 4 = C 8 = 0.2 Ns/m 2 
with all other Ck being zero. The model  for the seismic excitation is taken from [17]. As seen in Eq. (27), 
the PSD function S71.? 1 (co) has two parts: first, the well-known Kanai-Tajimi spectrum which models 
the filtering action of the soil layer, and second, a singularity-suppressing filter which makes 



Sv(co ) = H, (co) Sf~,A (co) + H2(co)Sk, fi (co ) + 2Re{H3(co) SA,k (co) }, (29) 

where 

1011 

10 9 

10 z 

~ I 0  s 

10 3 

10 

i0-I 

H I (co) = [D n (co)= + Dx= (co)=], 

/-/2(0) ) - -  [D15(co) 2 --}- D,6(co)2],  (30) 

H 3 (co) = [D,, (co) - iDa2 (6o)] [DIs (co) -]- iD,6 (co)]. 

Similarly, the PSD of horizontal force transmitted to left support can be shown to be given by 

S h (CO) = H 4 ((1)) Sfl,f l ((o) d[- H 5 ((I)) Sf2,f 2 ((2)) -q- 2Re [H 6 (co) SA, fi (co)], 

where 

(31) 

H 4 (co) = [D3, (co)2 + D32 (o9)2], 

/-/5(6o ) = [D3s(co) 2 + D36(co)2], 

H6(CO ) = [D3~(co ) --iD32(co)] [D35(co) + iD36(co)]. 

(32) 

The variations of H 1 (co) and H 4 (co) are shown in Figs. 6 and 7 respectively. The response PSD functions 
&(co) and Sh(CO) are plotted in Figs. 8 and 9 respectively. The coupling between transverse and 
longitudinal modes of vibration is clearly evident in Figs. 6 and 7. The transverse response in Fig. 6 
displays packing of peaks due to predominantly longitudinal modes with more densely spaced 
transverse vibration resonances. Conversely, in Fig. 7, as might be reasonably expected, the response is 
dominated by longitudinal modes, the effect of transverse vibrations still being felt through 
perturbations in the vicinity of antiresonance points. These features are again to be seen in Figs, 8 
and 9, wherein the transverse reaction receives contributions from both transverse and longitudinal 
modes, while the horizontal reactions are dominated by longitudinal modes. It has been verified for 
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the ground displacements well behaved [1]. In the numerical work, it is assumed that the dominant 
ground frequency cog = 5.0 n rad/s, soil damping ~/g -- 0.6, intensity ~b 0 = 1.0 m2/s 3. 7 = 0.4, transmission 
time lag z = 1 s, wave velocity V = 1000.0 m/s, filter frequency wy = 5.5 rad/s and filter damping ~f = 0.53. 

In our study, we assume that the support accelerations f~(t) andf2(t) act along the directions 1 and 
3, see Fig. 1, and compute the PSD function of the horizontal and vertical forces transmitted to the 
left end support in terms of the dynamic stiffness coefficients determined using the procedure 
outlined in Sects. 3-5. Thus, it is possible to show that the PSD of the force transmitted vertically to 
the left support is given by 

0 10 20 30 40 50 60 70 80 90 Fig. 6. Transfer function H 1 for the 
radts 1000 m cable 
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the first few peaks in Figs. 6 and 7, that their location is in agreement with the natural frequencies 
as reported in [9] for the same cable. 

It may be pointed out in this context that earthquake inputs can be specified through PSD functions 
or through a set of response spectra as is more popularly done. Here, it must be noted that the dynamic 
stiffness matrix formulation, as developed in this paper, does not provide information on the cable 
free vibration characteristics, such as mode shapes and natural frequencies. It may be still 
possible to infer them easily, at least the natural frequencies, by studying the location of peaks in 
the undamped stiffness coefficient spectrum. This can make difficult the application of the technique to 
seismic response analysis problems when the earthquake inputs are specified through a set of response 
spectra. This is because the response spectra are primarily defined for single degree of freedom systems. 
When used for analyzing multi-degree freedom systems, the method involves summing modal 
maximum responses using empirical relations [1]. This difficulty can easily be circumvented if a PSD 
function compatible with the given response spectra is obtained, in which case, the dynamic stiffness 
coefficients enable the subsequent response analysis. Such an approach, in fact, is more appropriate 
when considering systems with densely packed modes such as the 1000-m cable studied in this 
paper, for which the results of empirical summation procedures can be unreliable. 
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8 
Conclusions 
A numerical scheme for the study of harmonic response analysis of a fairly general cable element is 
outlined. The effects of coupling between inplane and transverse motions, inclined cable supports, axial 
translation, proportional/nonproportional and viscous/hysteretic damping models, multi-support 
motions, arbitrary loads within the cable span, and inhomogenities in cable inertia and stiffness for 
non-translating cables are included in the analysis. The application of the proposed scheme to the 
seismic response analysis of a long span cable with multiple-support random excitations is 
demonstrated. The assumption of  small sag-to-span ratio and the consequent treatment ofds -~ dx is not 
crucial: the method can be generalized within the framework of linear dynamics to treat s as the 
independent variable, in which case, large sag cables can also be studied. Further extensions to the 
study of built-up structures, such as multi-span and multiple cable systems as used in power 
transmission lines, is also possible. A damping identification scheme for suspended cable structures is 
currently being developed by the present authors based on the procedure outlined in this paper. 
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