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Abstract

This paper is an update of an earlier paper by Ibrahim (1987) and
is aimed at reviewing the papers published during the last decade in the
area of vibration of structures with parameter uncertainties. Analyti-
cal, computational, and experimental studies conducted on probabilis-
tic modeling of structural uncertainties and free and forced vibration
of stochastically defined systems are discussed. The review also cov-
ers developments in the areas of statistical modeling of high frequency
vibrations and behavior of statistically disordered periodic systems.

1. INTRODUCTION

The dynamic response characterization of structural systems with param-

eter uncertainties has been the subject of intensive studies in the recent

past. This problem is of importance in the assessment of the safety of en-

gineering structures. From a phenomenological point of view, the problem

plays a fundamental role in understanding the phenomenon of modal local-

ization in nearly periodic structures. It is also important in the design of

large-scale structures subject to broad-band high-frequency excitations. Pa-

rameter uncertainties play a significant role in laminated composites. The

mathematical modeling of these structures requires a strong background in

the theory of random fields, structural mechanics, and finite element and

boundary element methods. The analysis and solution of such problems in-

volve discretization of random fields, solutions of algebraic and differential
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random eigenvalue problems, and inversion of random matrices and differ-

ential operators. Difficulties are encountered when one includes interaction

between nonlinear and stochastic system characteristics or if one is interested

in controlling structural response. The subject is dominated by analytical

and numerical investigations, and very few experimental investigations have

been conducted for identifying inhomogenieties in elastic, mass, and damping

properties of simple structural elements.

The present article is a sequel to an earlier review article (Ibrahim, 1987)

on the dynamics of structures with parameter uncertainties. It focuses on

reviewing developments in this area over the last decade. Particular attention

will be given to the following topics:

• models for structural uncertainties and discretization of random fields

• random eigenvalue problems

• transient and steady state vibrations

• structural nonlinearity and reliability aspects

• stochastic analysis of dynamics of disordered periodic systems

• stochastic aspects of statistical energy analysis of high frequency vibra-

tions

• experimental studies.

In addition to the above topics, the paper discusses different frameworks for

structural modeling, namely, finite element method (FEM), transfer matri-

ces, statistical energy analysis (SEA) and boundary element method (BEM).

It must be noted that in the recent past several review papers and research

monographs have appeared addressing different aspects of this problem. For

example, Nakagiri (1987) and Brenner (1991) provided an account of uncer-

tainties of the structural response. Benaroya and Rehak (1988), Shinozuka
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and Yamazaki (1988), Ghanem and Spanos (1991a), Der Kiureghian et al.

(1991), Kleiber and Hien (1992), and Liu et al. (1992) focused on the role of

finite element methods and computational techniques in structural dynam-

ics. Shinozuka (1991) and Shah et al. (1992) reported critical assessments of

developments pertaining to reliability problems, Benaroya (1992) addressed

mathematical aspects of the random eigenvalue problem. Li and Benaroya

(1992) Lin and Cai (1995, the last Chapter) reviewed some problems related

to modal localization in nearly periodic structures.

Before we proceed further, it is important to clarify that no formal distinc-

tion between the terms “random fields” and “random processes” will be made

in this review. In some literature the term random processes is reserved to

time evolution of random variables and random field for random variables

evolving in space. This distinction is perhaps useful if one wishes to differen-

tiate between traditional random vibration problems involving uncertainties

only in the time varying loads and more recent studies on the statistics of

structures with random spatial variations in stiffness properties. However,

when discussing the dynamics of randomly parametered structures under

the action of deterministic and/or random dynamic excitations, it becomes

difficult to maintain a strict distinction between the two terms. Here the in-

dependent parameter in which a response random variable may evolve need

not always be space or time: thus, the transfer functions of systems with

spatial random inhomogenieties may vary randomly in frequency and space.

Similarly, the random variations in response need not be in space or time

alone as, for example, in the case of impulse response of continuous random

systems which evolves randomly in time and space. Further, the classical

mathematical literature on probability and random processes does not make

formal distinctions between random fields and random processes. It is also

to be noted that we are not considering studies on time dependent material

property variation, as might arise in the study of visco-elastic materials or

parametrically excited systems (Ibrahim, 1985).
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2. UNCERTAINTY MODELS

Parameter uncertainties in structural dynamics can arise due to several sources.

These include variations due to intrinsic material property variability, mea-

surement errors, manufacturing and assembly errors, differences in modeling

and solution procedures. From the structural analysis point view, these un-

certainties can be classified into two classes. The first is inherent to such

system parameter variations such as mass, stiffness and damping properties,

while the second belongs to the eigensolutions of constituent subsystems.

The first class is more commonly used in structural dynamics analyses, while

the latter finds applications in high frequency vibration modeling using SEA

formalisms.

The recent study by Brown and Ferri (1996) on combining the component

mode synthesis with probabilistic methods revealed some difficulties in cor-

rectly identifying the statistical properties of primitive variables such as ge-

ometry, stiffness, and mass. Brown and Ferri proposed an alternative method

where the measured dynamic properties of substructures were considered

as random variables. Other types of uncertainty modeling such as convex

modeling and fuzzy set-based approaches are well documented by Elishakoff

(1995).
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2.1 Models for Material and Geometric Properties

This class of modeling consists of stochastic representation of elastic con-

stants, mass density, and material damping of the structural material. This,

in conjunction with possible uncertainties in specifying the geometry and

boundary conditions of the structure, defines the structural mass, stiffness,

damping matrices, and force vectors. When choosing an appropriate stochas-

tic model for the material properties several questions arise:

1. Can the system uncertainties be adequately described by random vari-

ables or is it necessary to use random field models which take into

account spatial inhomogenieties?

2. What are the statistical parameters which can adequately describe the

model?

3. Are Gaussian models acceptable for strictly positive quantities such as

mass and elastic constants? What are the feasible non-Gaussian models

and how to describe and simulate them?

Next, one should consider the method for developing the stochastic model

of the associated structural matrices. This issue is related to the methods

of discretizing a random field and selection of mesh sizes in a finite ele-

ment/boundary element study. The next section will address this issue.

2.1.1 Gaussian Models

Gaussian random field models with bounded mean squares for elastic con-

stants and mass density have been considered by several authors, see, for

example, Bucher and Shinozuka (1988), Karada et al. (1989), Spanos and

Ghanem (1989), Chang and Yang (1991) and Manohar and Iyengar (1994).

In these models, stochastic perturbations are imposed on the corresponding

nominal values. The isotropy of the field was assumed for two- or three-

dimensional fields. Several models for autocovariance/power spectral density
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functions of the stochastic perturbation have been used. Thus, for example,

Shinozuka (1987) and Shinozuka and Deodatis (1988), in their studies on

statistical response variability of randomly parametered skeletal structures,

have adopted the following types of models for the power spectral density

functions for the deviations of Young’s modulus from the mean value:

S(κ) = αnκ
2n exp[−b|κ|] n = 0, 1, ..., 5 (1)

S(κ) = βnκ
2n exp[−(

b|κ|
2

)2] n = 0, 1, ..., 5 (2)

S(κ) = γn
b

(1 + b2κ2)2n
n = 1, 2 (3)

where S(κ) is the power spectral density function, κ is the wave number,

the parameters αn, βn and γn control the variance of the process and the

parameter b controls the shape of the power spectral density function. In

a similar study, Spanos and Ghanem (1989) have utilized exponential and

triangular autocovariance functions of the form

R(ξ) = σ2
s exp [−c|ξ|] and

R(ξ) = σ2
s(1 − c|ξ|) (4)

where R(ξ) is the autocovariance function, ξ is the spatial lag, σ2
s is the vari-

ance and the parameter c controls the correlation length. In their studies

on flexural vibrations of random plates, Bucher and Brenner (1992) modeled

Young’s modulus and mass density of the plate as independent two dimen-

sional homogeneous isotropic random fields each having covariance functions

of the form

R(ξ, ζ) = σ2
ff exp(

−√
ξ2 + ζ2

lf
) (5)

where ξ and ζ are space lags, R(ξ, ζ) the autocovariance function of the ran-

dom field, lf controls the correlation length and σ2
ff is the variance. These
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models have been largely selected with the purpose of illustrating some ana-

lytical results. However, no experimental or field data is available to ascertain

the relative merits of alternative models in a given context.

2.1.2 Non-Gaussian Models

Gaussian models are not suitable for cases where the parameter experiences

large variations or when reliability issues are being examined. Furthermore,

Gaussian distributions do not allow information on moments higher than

two to enter the model. In view of the first difficulty, Yamazaki et al. (1988)

and Wall and Deodatis (1994) have imposed a restriction on the variation of

samples of Gaussian fields f(x), as follows:

−1 + δ ≤ f(x) ≤ 1 − δ; 0 < δ < 1 (6)

The limitation on the upper value establishes symmetry of the stochastic

variations about the deterministic values. A similar modification of approx-

imating a Gaussian distribution by a distribution with bounded range has

also been made by Iwan and Jensen (1993). A more systematic way of

constructing non-Gaussian field models is by making nonlinear memoryless

transformations of a specified Gaussian field ν(x), that is, by considering

f(x) = g[ν(x)], where, g is a ‘memoryless’ nonlinear function (Grigoriu 1984,

Yamazaki and Shinozuka 1988, Der Kiureghian and Liu 1986). This type

of transformations enable characterization of f(x) in terms of mean and co-

variance of ν(x). Prominent among this type of models is the Nataf model,

which can produce any desired marginal distribution for f(x). Let f(x) be

a non-Gaussian field with a specified mean µf (x), covariance ρff (x, x̃), and

first order probability distribution function Ff (f ;x). According to Nataf’s

model the transformed process

ν(x) = Φ−1 [Ff (f ;x)] (7)

is taken to be Gaussian, in which Φ = standard Gaussian probability distri-

bution. It can be shown that ν(x) has zero mean, unit standard deviation
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and autocovariance ρ(x, x̃) satisfying the integral equation

ρff (x, x̃) =
∫ ∞

−∞

∫ ∞

−∞
{f(x) − µf (x)

σf (x)
}{f(x̃) − µf (x̃)

σf (x̃)
}φ2{u, v, ρ(x, x̃)}dudv

(8)

where φ2 denotes the bivariate standard normal density. The non-Gaussian

random field f(x) can be expressed in terms of the Gaussian field ν(x)

through the relation f(x) = F−1
f [Φ{ν(x)}]. In general |ρff (x, x̃)| ≤ |ρ(x, x̃)|

and for most processes ρ(x, x̃) � ρff (x, x̃). A set of empirical formulae relat-

ing ρ(x, x̃) to ρff (x, x̃) for common distributions are given by Der Kiureghian

et al., (1991). Discussion on the use of this model in structural reliability

analysis when random quantities involved are partially specified has been

presented by Der Kiureghian and Liu (1986). This model has also been em-

ployed by Liu and Der Kiureghian (1991) and Li and Der Kiureghian(1993)

in their studies on reliability of stochastic structures. Another example of

non-Gaussian field models for material properties can be found in Elishakoff

and Shinozuka (1995) and Sobczyk et al. (1996). Non-Gaussian random vari-

able models for system parameters in the context of single degree-of-freedom

(sdof) systems or individual structural elements of built-up structure have

been considered by several authors. Udwadia (1987a,b) considered maximum

entropy probability distributions for incompletely specified system parame-

ters of a sdof system. Other examples include lognormal models (Shinozuka

and Yamazaki 1988, Cruse et al. 1988), beta distributions (Shinozuka and

Yamazaki 1988) and ultraspherical random variables (Jensen and Iwan 1991).

2.2 Models for Eigensolutions

The second class of statistical modeling is based on the statistical energy

analysis formalisms (Lyon 1975, Lyon and DeJong, 1995, Hodges and Wood-

house 1986, Fahy 1994) developed as tools for response prediction in high

frequency regimes. The details of the probabilistic aspects underlying the

development of SEA will be discussed in section 5.0. The SEA procedure

divides built-up structures into a number of interacting subsystems. The
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behavior of individual subsystems, when they are uncoupled from the rest

of subsystems, is studied first and then they are allowed to interact which

results in exchange of vibration energies between the subsystems.

The basic objective of SEA is to characterize the system response by cal-

culating these energy exchanges. These procedures are based on a set of

assumptions only valid for system response at high frequencies where a large

number of modes participate in vibration. The method avoids dealing with

a large amount of information on individual modal contributions from the

participating modes. Instead it seeks to average out these contributions in

some sense.

A fundamental aspect of this analysis is that the vibrating structure is con-

sidered to be drawn from an ensemble of nominally identical systems. This

allows for the fact that high frequency vibrations are very sensitive to minor

changes in details of system modeling and parameter values. In the tradi-

tional SEA procedures this is accomplished by dividing the built-up structure

into a collection of energy carrying elements called subsystems and treating

the subsystem eigensolutions as having prescribed probability distributions.

Specifically, it is assumed that the subsystem natural frequencies consti-

tute a set of Poisson points on the frequency axis which would mean that

the natural frequencies are mutually independent and identically distributed

uniformly in a given frequency bandwidth. The subsystem mode shapes are

approximated to be deterministic. Such a model clearly implies random field

models for the variation of mass and stiffness properties within a subsystem.

The questions on relations which would exist between the eigensolutions and

these system properties are, however, not addressed.

3. RANDOM FIELD DISCRETIZATION

The stochastic finite element method is convenient for built-up structures

consisting of spatially random structural elements. An important step of

the method requires the replacement of the element property random fields

9



by an equivalent set of a finite number of random variables. This process

constitutes the discretization of the random field, and the accuracy of the

field representation depends primarily on the size of the element used. The

selection of mesh size depends on stress and strain gradients, frequency range

of interest, characteristics of the random field, and correlation length of the

random fields. Other factors include the tails of the probability density func-

tion (pdf), nonhomogeneous random fields, stability of numerical inversion

of the probability transformations, and gradient of limit state function.

Other alternative schemes for discretization of random fields have been pro-

posed in the literature. Vanmarcke and Grigoriu (1983) replaced the random

field within a finite element by its spatial average. This method of discretiza-

tion has been used by several authors including Shinozuka and Deodatis

(1988), Chang and Yang (1991), Zhu et al. (1992) and Anantha Ramu and

Ganesan (1992a,b, 1993a,b). Alternatively, one can discretize the random

field by assigning its value at the centroid of the finite element (Hisada and

Nakagiri 1985, Der Kiureghian and Ke 1988, Yamazaki et al. 1988). This

method is particularly suitable for discretizing non-Gaussian fields. It has

been used for studying the reliability of nonlinear systems with non-Gaussian

uncertainties by Liu and Der Kiureghian (1991). When the Nataf model is

discretized according to this scheme, the discretized random variables are

completely described by the marginal probability density functions and the

covariance matrix. In terms of shape functions φi(x), Liu et al. (1986) ap-

proximated the random field f(x) by the summation

f(x) =
n∑

i=1

φi(x)fi (9)

where fi are the nodal values of f(x). This representation is equivalent

to interpolating f(x) within an element using φi(x) and the nodal values

of f(x). Furthermore, the error of discretization is characterized in terms

of total mean square difference between the covariance function of the dis-

cretized field and the exact covariance function. To achieve computational
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efficiency, the discretized random variables are transformed into a set of un-

correlated random variables. Accordingly, it is expected that the number

of random variables which needs to be retained in subsequent analysis will

be significantly less than n. It was also noted that n need not be equal to

the degrees of freedom of the finite elements used to discretize the displace-

ment field and Ni(x) need not coincide with the shape functions used for

finite element discretization. Lawrence (1987), Spanos and Ghanem (1989),

Iwan and Jensen (1993) and Zhang and Ellingwood (1994) constructed series

expansions for random fields in terms of a set of deterministic orthogonal

functions multiplied by random variables and incorporated them into finite

element formulations. The expansion used by Lawrence for the random field

f(x) has the form

f(x) =
∑
j

C0jψj(x) +
∑
j

∑
i

Cijeiψj(x) (10)

where ei is an orthogonal set of random variables with zero mean and unit

variance, ψj(x) is a set of known orthogonal deterministic functions, such

as, for example, Legendre polynomials over a line segment, Cij are unknown

deterministic constants to be found by a least square fit to the first and

the second moments of f(x). In the study by Spanos and Ghanem (1989),

the expansion is based on the Karhunen-Loeve expansion in which ψj(x) are

obtained as the solutions of the eigenvalue problem∫
L
R(x, ξ)ψj(ξ)dξ = λjψj(x). (11)

where λj is the jth eigenvalue. This expansion is mathematically well founded

with the expansion guaranteed to converge. In addition, the expansion is op-

timum in the sense that it minimizes the mean square error resulting from

truncating the series at a finite number of terms. For correlated random vari-

ables, Zhang and Ellingwood (1994) developed series expansions in terms of

arbitrary set of orthogonal functions. Zhang and Ellingwood reported that

their method is equivalent to solving equation (11) by a Galerkin approxi-

mation in terms of the arbitrarily chosen orthogonal functions. Li and Der
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Kiureghian (1993) used optimal linear estimation procedures in represent-

ing the random field as linear combination of nodal random variables and a

set of unknown shape functions. This means that the random field f(x) is

estimated by

f̄(x) = a(x) +
n∑

i=1

bi(x)f(xi) (12)

where n is the number of nodal points, a(x) is a scalar function of x, b(x) =

[bi(x)] is a vector function of x with element bi(x). The unknown functions

a(x) and b(x) are found by minimizing the variance [f(x) − f̄(x)] under the

constraint E[f(x) − f̄(x)]=0. The efficiency of the method is further shown

to be improved by employing spectral decomposition of the nodal covariance

matrix, which effectively reduces the number of random variables. The shape

functions in finite element discretization are usually taken as polynomials in

spatial coordinates, and if these functions are used to discretize the random

fields then integrals of the form

Wn =
∫ L

0
xnf(x)dx; n = 0, 1, 2, ... (13)

appear in the expressions for the stiffness coefficients. Clearly Wn are ran-

dom variables are are referred to as weighted integrals associated with the

element. These integrals offer an alternative way of discretizing the random

fields. Related studies on static stiffness of one dimensional structural ele-

ments were considered by Shinozuka (1987), Bucher and Shinozuka (1988),

Karada et al. (1989), Takada (1990a), Deodatis (1991), and Deodatis and

Shinozuka (1989,1991). Takada (1990b) and Wall and Deodatis (1994) con-

sidered the case of two-dimensional elements. Bucher and Brenner (1992)

extended the weighted integral approach to dynamic systems. The number

of weighted integrals resulting from discretizing a random field for an element

depends upon the type of shape function used. If complete polynomials with

maximum order n are used, then the number of weighted integrals for one,

two and three dimensional elements are given by (2n + 1), (2n + 1)(n + 1)

and (2n+ 1)(n+ 1)(2n+ 3)/3, respectively.
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Deodatis (1991) noted that the displacement field of a stochastic beam el-

ement subject to boundary displacements can be derived exactly in terms

of the system Green function. This, consequently, leads to the definition

of exact stochastic shape functions and the exact stochastic static stiffness

matrix of the beam element. Note that this result is valid whether or not the

random field is Gaussian. Except for this exact solution, all other discretiza-

tion procedures discussed above lead to discretization errors. Consequently,

such error will restrict the size of the element to a fraction of the correlation

length of the random field. Zhu et al. (1992) observed that the stochastic

FEM based on local average discretization with a fewer elements can yield

the same accurate results as those provided by the stochastic FEM based

on mid-point discretization with more elements. The issue of selection and

adaptive refinement of mesh size for random field discretization for reliabil-

ity studies was examined by Liu and Liu (1993). They recommended that a

coarse mesh must be used in the areas where the gradient of the limit state

function with respect to the discretized random variables is small, and a fine

mesh where the gradients are large.

4. RANDOM EIGENVALUES

Eigensolutions constitute an important descriptor of the dynamics and sta-

bility of structural systems. Consequently, the study of probabilistic charac-

terization of the eigensolutions of random matrix and differential operators

has emerged as an important research topic in the field of stochastic struc-

tural mechanics. In particular, several studies have been conducted on both

self adjoint and non-self adjoint (usually encountered with systems involving

follower forces, aerodynamic damping, and gyroscopic couples) eigenvalue

problems. Other issues include multiplicity of eigenvalues and related prob-

lems. A systematic account of perturbational approaches to random eigen-

value problems is well documented in a research monograph by Scheidt and

Purkert (1983). The random differential equations of linear discrete systems
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with proportional damping are usually written in the matrix form

MẌ(t) + CẊ(t) + KX(t) = 0 (14)

where X(t) is the vector of generalized coordinates of the system response,

M,C and K are the system mass, damping, and stiffness matrices, respec-

tively. Lee and Singh (1994a) developed a procedure based on a direct prod-

uct technique based on splitting the random matrices of the system into two

components. The first component represents mean values while the second

stands for random components with zero mean. The probability distribu-

tions of the random components are also assumed to be of the same type

and known in advance. Furthermore, the covariances of the random fluctu-

ations are known in the form of cross-correlation matrices. A proportional

Rayleigh damping model

C = α1M + α2K

was proposed, where α1 and α2 are constant coefficients. Depending on the

values of α1 and α2 different cases such as uncorrelated, partially correlated

and fully correlated with M and/or K can be obtained. The results of Lee

and Singh were found to be less accurate as the random fluctuations of the

system parameters become very high.

4.1 Applications

The majority of recent studies employed the mean centered first/second order

perturbation approach to estimate the first and the second order statistics of

eigenvalues and mode shapes. For example, Nakagiri et al. (1987) studied the

statistics of natural frequencies of simply supported fiber reinforced plastic

plates whose stacking sequence is subjected to random fluctuations. They

presented case studies on the statistics of first natural frequency of square and

rectangular plates using triangular finite elements to discretize the domain

into 60-70 elements.

The statistics of the natural frequencies of a three dimensional piping system,
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shown in Figure1, with uncertain restraint locations were studied by Nak-

agiri (1987). The lengths of the pipe elements were taken to be uniformly

distributed random variables. The mean values of the first four natural fre-

quencies were found to be 44.9, 88.06, 104.59 and 107.88 rad/s, with coeffi-

cient of variation up to about 7 percent. It was concluded that the variability

in natural frequencies increased with decreasing correlation among member

lengths. Mironowicz and Sniady (1987) used a first order perturbational ap-

proach to study the vibration of a machine foundation block with random

geometry and mass density. They used a resonance index given by

β =
(ω̄ − ωe)√
(σ2

ω + σ2
e)

(15)

to characterize the resonance characteristics, where ω̄ and σω are the mean

and standard deviation of the natural frequency, respectively, and ωe and

σe are the mean and standard deviation of harmonic driving frequency, re-

spectively. This index is akin to the reliability index in structural reliability

problems. Nordmann et al. (1989) investigated the eigensolution variability

of vessel and piping systems in the context of seismic response analysis using

response spectrum-based approaches. Zhu et al. (1992) used the method of

local averages to discretize random fields, in conjunction with a perturba-

tional approach, to study the statistics of the fundamental natural frequency

of isotropic rectangular plates. Their formulation also allows for multiplicity

of deterministic eigenvalues. The latter issue was also addressed by Zhang

and Chen (1991). Song et al. (1995) outlined a first order perturbational

approach to find the moments of the sensitivity of random eigenvalues with

respect to the expected value of specified design variables.

Bucher and Brenner (1992) employed a first order perturbation and, starting

from the definition of Rayleigh’s quotient for discrete systems

E[λi] =
xT

i0K0xi0

xT
i0M0xi0

(16)
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they showed that

σ2
λi

= ε2λ2
i0E{(xT

i0Krxi0)
2 + 2(xT

i0Krxi0)(x
T
i0Mrxi0) + (xT

i0Mrxi0)
2} (17)

where ε << 1, the random eigenvalue λi = λi0 + λr, xi = xi0 + εxir, K =

K0 + εKr and M = M0 + εMr. Subscripts containing 0 denote deterministic

quantities and subscripts with r denote random quantities.

Fang (1995) combined transfer matrix methods with first order second mo-

ment approach to analyze the natural frequencies and mode shapes of uncer-

tain beam structures. A computational algorithm based on transfer matrices

to compute natural frequencies of a fixed-fixed string with a set of interme-

diate random spring supports was given by Mitchell and Moini (1992). The

spring constants in this study were modeled as a set of independent two-state

random variables.

Random eigenvalue problems arising in structural stability were studied by

Anantha Ramu and Ganesan (1992a,b, 93a,b), Sankar et al. (1993), Zhang

and Ellingwood (1995) and Ganesan (1996) using perturbational approaches.

Koyluoglu et al.(1995b) used Monte Carlo simulation technique in conjunc-

tion with weighted integral method of random field discretization. Anantha

Ramu and Ganesan and Sankar et al. considered several problems associ-

ated with stability of beams/rotors with randomly varying Young’s modulus

and mass density. These include systems with non-self adjoint eigenvalue

problems. For example, the determination of whirling speeds of a stochastic

spinning shaft is associated with the eigenvalue problem

[K̄ +Kr]{x0} = ω2{M̄ +Mr + (Ω/ω)[Ḡ+Gr]}{x0} (18)

where x0 is the eigenvector, K is the stiffness matrix, M is the mass ma-

trix, G is the gyroscopic matrix, Ω is the shaft rotational speed, ω is the

whirling speed and a bar denotes the expected value. The perturbation of

the eigenvalue ω2 is shown to be given by

dω2
i =

n∑
j=1

n∑
s=1

∂ω2
i

∂kjs

dkjs +
n∑

j=1

n∑
s=1

∂ω2
i

∂m∗
js

dm∗
js (19)
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where the symbol of matrix [M∗] (whose elements are m∗
js) is used in place

of the term M̄ +Mr + Ω
ω
(Ḡ+Gr). The expressions for gradients of ω2 with

respect to mass and stiffness terms were obtained using the expressions given

by Plaut and Huseyin (1973)

∂ω2
i

∂kjs

= {yi}T [
∂(K̄ +Kr)

∂kjs

]{xi} (20)

∂ω2
i

∂mjs

= −ω2
i {yi}T [

∂(M̄ +Mr)

∂kjs

]{xi} (21)

Here xi and yi are, respectively, the right and left eigenvectors defined through

the conditions:

[K̄+Kr−ω2
i (M̄+Mr+(Ω/ω){Ḡ+Gr}]xi = 0; yT

i [K̄+Kr−ω2
i (M̄+Mr+(Ω/ω){Ḡ+Gr}] = 0

(22)

Similarly, the perturbations of elements of xi and yi take the form

dxki =
n∑

j=1

n∑
s=1

∂xki

∂kjs

dkjs +
n∑

r=1

n∑
s=1

∂xik

∂m∗
js

dm∗
js (23)

where the gradients with respect to stiffness and mass coefficients are avail-

able in terms of whirl speeds, xi and yi. The covariance structure of the

eigensolutions has been obtained using the expressions of dω2 and dxi.

The flutter of uncertain laminated plates using a perturbation stochastic

finite element formulation was studied by Liaw and Yang (1993). They used

a 48 dof rectangular plate element. The modulus of elasticity, mass density,

thickness, fiber orientation of individual lamina, geometric imperfection of

the entire plate and in-plane loads were treated as random variables. The

aerodynamic pressure due to supersonic potential flow was modeled using

quasi-steady first order piston theory. The governing equation in this case

was of the form

MẌ + [KT + qD]X = 0, (24)
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where q is the aerodynamic pressure parameter, D is the associated matrix

to aerodynamic pressure, M is the mass matrix, and KT is the tangential

stiffness matrix which introduces nonlinearity into the problem. This leads

to the eigenvalue problem

[
α2M +KT + qD

]
∆X = 0 (25)

An iterative solution scheme was used to determine the critical aerodynamic

pressure which subsequently led to the determination of flutter boundaries.

Figure 2 shows the combined effects of parameter uncertainties in the mod-

ulus of elasticity E, mass density ρ, thickness h, fiber orientation θ, geo-

metric imperfection of the plate δ and in-plane load ratio PN/Pcr on the

structural reliability boundaries. Here reliability is defined as the probability

of the critical aerodynamic pressure being greater than a specified aerody-

namic pressure. Each uncertainty parameter was assumed to be zero or fully

correlated among all the constituent layers. It was found that the random

compensation effects among the six parameters with zero correlation tended

to increase the reliability.

Iyengar and Manohar (1989) and Manohar and Iyengar (1993, 94) extended

the work of Iyengar and Athreya (1975) and studied the free vibration char-

acteristics of systems governed by a second order stochastic wave equation.

They considered eigenvalue problem

d

dx
[{1 + δg(x)}dy

dx
] + λ2[1 + εf(x)]y = 0 (26)

y(0) = 0; y(1) = 0 (27)

The solution of this stochastic boundary value problem is sought in terms of

solutions of an associated inhomogeneous initial value problem which consists

of finding the solution of equation (26) under the initial conditions at x = 0

given by y∗ = 0 and dy∗
dx

= 1. Denoting by Zn(λ), the nth zero of y∗(x, λ),

the eigenvalues of equation (26) can be defined as being the roots of the
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equation Zn(λ) = 1. The study of Zn(λ) is facilitated by the coordinate

transformation

y(x) = r(x)sin[λx+ φ(x)] (28)

[1 + δg(x)]
dy

dx
= r(x)λcos[λx+ φ(x)]. (29)

This leads to a pair of nonlinear coupled differential equations in r(x) and

φ(x). The probability distribution of the eigenvalues λn is shown to be related

to φ(x) through the identity (Iyengar and Athreya 1975)

P[λn ≤ λ] = P[Zn(λ) ≤ 1] = P[nπ ≤ φ(1, λ)] (30)

and, similarly, the joint probability density function of the nth eigenvalue

yn(x) and nth eigenfunction was expressed in the form (Manohar and Iyengar

1994)

pyn,λn(y, x, λ) =
py∗,φ|λn [y, x;nπ, 1|λn = λ]pλn(λ)

pφ(n, π, 1, λ)
(31)

This would mean that probabilistic characterization of eigensolutions requires

the solution of a pair of nonlinear stochastic equations in r(x) and φ(x). Ex-

tension of this formulation to consider other types of boundary conditions,

including random boundary conditions, was presented by Manohar and Iyen-

gar (1993). Exact solutions were shown to be possible only under special

circumstances (Iyengar and Manohar, 1989, Manohar and Keane, 1993) and,

consequently, approximations become necessary. For specific types of mass

and stiffness variations, Iyengar and Manohar (1989) and Manohar and Iyen-

gar (1993, 94) have developed solution strategies based on closure, discrete

Markov chain approximation, stochastic averaging methods and Monte Carlo

simulations. These combined schemes have been employed to estimate prob-

ability density functions of the eigensolutions. Figure 3 shows the contours

of probability density function of the second eigenfunction as a function of

the nondimensional parameter x/L. At x = 0 and x = L, the rod was held

fixed and, consequently, the probability density functions of the eigenfunction

at these points degenerated into Dirac’s delta functions. The eigenfunction
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variability was found to be higher at the nodal points than at the antinodal

points.

Based on the study of the distribution of zeros of random polynomials, Grigo-

riu (1992) examined the roots of characteristic polynomials of real symmetric

random matrices. These roots identify the most likely values of eigenval-

ues and the average number of eigenvalues within a specified range. Brown

and Ferri (1996) noted the cost effectiveness of component mode synthe-

sis for Monte Carlo simulation of the dynamics of large scale structures.

They treated the substructure dynamical properties as the primary random

variables and combined the residual flexibility method of component mode

synthesis with probabilistic methods.

5. FORCED VIBRATION

5.1 Single-Degree-of-Freedom Systems (SDoF)

The behavior of simple uncertain systems can be studied in terms of damped

single-degree-of-freedom systems subjected to stationary white noise excita-

tion. Udwadia (1987a,b) studied the dynamical characteristics of linear sdof

systems with random mass, stiffness and damping properties under free and

forced vibration states. It was assumed that the probabilistic description

of the system parameters is only partially available. Some results on re-

sponse characteristics were obtained in closed forms. Wall (1987) evaluated

the mean and variance of exceedance rate response of random SDoF oscil-

lators subjected to earthquake excitations with Kanai-Tajimi power spectra

whose parameters were also assumed to be random. The statistics of the

average number of level crossings, average number of maxima and departure

from normality were computed by Kotulski and Sobczyk (1987) for the case

of random oscillator under white and randomly filtered white noise inputs.

Spencer and Elishakoff (1988) investigated the effect of system randomness

on first passage failure of linear and nonlinear oscillators. They utilized a
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discretization of state space of the system random variables and subsequently

solved the associated backward Kolmogorov equation using a finite element

method to evaluate the first passage statistics.

Branstetter (1988) and Jeong and Branstetter (1991) developed discretized

expressions which were numerically evaluated to obtain certain statistical

moments of linear oscillators. The stiffness of these oscillators was repre-

sented by a random variable. For time integration steps beyond the first, the

initial conditions become correlated random variables. Contrary to deter-

ministic linear systems, it was shown that the finite-time response variance,

velocity variance, and response covariance are initial condition dependent

when the oscillator is uncertain. For zero initial conditions, the finite-time

displacement variance, velocity variance, and response covariance followed

smoother histories with increasing uncertainity. It was also found that these

statistics are even functions of a single non-zero initial condition. For either

a determinitic or an uncertain oscillator, the non-zero limiting displacement

variance and velocity variance are independent of initial conditions. The lim-

iting dispacement variance was found to increas as the level of uncertainty

increases.

Jensen and Iwan (1991) proposed an expansion technique to analyze random

oscillators with random natural frequencies described by the equation

ẍ+ 2η(ω̄ + µωr)ẋ+ (ω̄ + µωr)
2x = f(t) x(0) = 0; ẋ(0) = 0 (32)

where η is the damping ratio, µ is a deterministic coefficient, ωr is a random

variable, and f(t) is a random process in time t. The response x(t) was

expressed in a series form

x(t, ωr) =
n∑

j=0

xj(t)Hj(ωr) (33)

where n is the order of approximation, xj(t) is an unknown deterministic

function of time and Hj(ωr) is a set of orthogonal polynomials. Substi-

tuting (33) into (32) then multiplying equation (32) by Hj(ωr) and using
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orthogonality and recursion relations satisfied by the polynomials yields an

equivalent set of deterministic equations with external random excitations.

Koyluoglu et al. (1995a) developed similar approach based on transforming

the equation with random coefficients to one with deterministic coefficients

and random initial conditions. Subsequently, the evolution of the probabil-

ity density function of the extended response vector can be described by the

well-known Liouville equation or by the Fokker-Planck equation. Thus when

f(t) is modeled as a white noise process, the transitional pdf of the extended

response vector would satisfy the Fokker Planck equation which, in turn,

would enable the formulation of equations governing the response moments.

However, the equation for mth moment gets coupled to the (m + 1)th mo-

ment which rules out exact solutions. Koyluoglu et al., employed cumulant

neglect closure scheme (Ibrahim, 1985) and solved for the first four moments.

They obtained an approximate transient solution for a sdof system with ran-

dom spring and damping coefficients subjected to a nonstationary modulated

white noise process. The results were in a good agreement with the exact

solution.

5.2 Multi-Degree-of-Freedom Systems (MDoF)

The treatment of MDoF systems is more involved than SDoF systems. The

starting point of this discussion is the matrix differential equation

MẌ + CẊ +KX = F (t); X(0) = X0; Ẋ(0) = Ẋ0 (34)

where, at least, one of the matrices, M , C or K, is a function of a set of ran-

dom variables. This equation results from the finite element and random field

discretizations of continuous structural models. The set of random variables

entering the matrices M , C and K can be taken to be uncorrelated with zero

means. The frequency domain representation of the above equation, when

admissible, is given by

[−ω2M + iωC +K]U(ω) = P (ω) (35)
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Singh and Lee (1993) used a direct product technique to estimate the statisti-

cal frequency response of a damped vibratory system. The solution procedure

in the time domain consists of analyzing equation (34) using either modal ex-

pansion technique or direct numerical integration. In the frequency domain,

it involves the inversion of the stochastic matrix H(ω) = [−ω2M +iωC+K].

Both approaches were studied in conjunction with with other techniques such

as perturbation, Neuman expansion, optimal series expansions, optimal lin-

earization, and digital simulation methods. Lee and Singh (1994b) assumed

the amplitude of the excitation F (t) to be randomly distributed which is mul-

tiplied by a time history process. This process can be taken as a deterministic

function such as impulse or sinusoidal.

Different versions of perturbation formulations, including those based on the

Taylor series expansion and sensitivity vector method have been used in

the literature. These methods convert the given equation with stochastic

coefficients into a sequence of deterministic equations. Other methods based

on perturbations associated with a small parameter ε << 1 lead to a sequence

of deterministic equations with deterministic operators and random right-

hand sides.

Kleiber and Hien (1992) presented a systematic discussion of generalization

of the principle of minimum potential energy and the Hamilton principle by

including the effect of system stochasticity within the framework of mean-

based, second moment, second-order perturbation techniques. The pertur-

bation methods are applicable to a wide range of problems; however, they

may be less accurate and suffer computational efficiency and convergence.

This is true especially when the system is highly nonlinear, and when the

parameters have skewed distributions with high levels of uncertainty. In ad-

dition, these methods lack invariance with respect to the formulation of the

problem (Igusa and Der Kiureghian 1988, Madsen et al., 1986). Difficulties

associated with these methods and their application, especially for transient

dynamic problems are discussed in the literature; see, for example, Liu et al.
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(1992), Kleiber and Hien (1992) and Katafygiotis and Beck (1995). Remedial

measures to overcome this limitation have also been suggested (Kleiber and

Hien 1992).

Chen et al. (1992) used a perturbation approach to assess the relative impor-

tance of uncertainty in excitations, geometrical, and material properties by

considering examples of randomly driven truss and beam structures. Chang

(1993) and Chang and Chang (1994) studied the transient response statis-

tics and reliability of beams with stochastically varying elastic foundation

modulus and Young’s modulus. The dynamic response of an infinitely long,

randomly damped beam resting on a random Winkler’s foundation and ex-

cited by a moving force was examined by Fryba et al. (1993). They utilized

a perturbational approach by introducing a new independent variable whose

origin moves with the force.

Branstetter and Paez (1986) used a step-by-step expansion to recursively pre-

dict the first- and second-order response moments of linear MDOF systems

having uncertain stiffness. Their work was based on the assumption that

all random variables are Gaussian. This assumption is usually commmon in

stochastic finite element methods..

Methods based on orthogonal series expansions for both the system property

random fields and response fields were used by Ghanem and Spanos (1990,

91a,b), Jensen and Iwan (1992) and Iwan and Jensen (1993). These methods

usually lead to a set of algebraic equations. The size of these equations de-

pends on the finite element discretization of the displace field, the number of

random variables entering the formulation, and the order of expansion used

in representing the response field. The response power spectra of a beam

mounted on a stochastic Winkler’s foundation and subjected to a stationary

Gaussian random excitation are shown in figures 4. These figures show also

the response spectra as estimated using Monte Carlo simulation. The ana-

lytical results based on Karhunen-Loeve expansions (shown in figure 4b) are

observed to compare well with simulations. On the other hand, Neumann ex-
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pansion based methods (figure 4c) compared poorly with simulation results,

especially, at frequencies near the system natural frequencies.

Jensen and Iwan (1992) considered the case when C and K are functions

of a set of zero mean uncorrelated random variables {ωri}n
i=1 and F (t) to

be a vector of nonstationary excitations. They studied the evolution of

the nonstationary covariance matrix in time domain. This was achieved

by expanding the response covariance matrix in terms of a set of known

orthogonal multidimensional polynomials in ωri. The resulting determinis-

tic differential equations were integrated numerically. The procedure was

illustrated by considering a five-degree-of-freedom system with uncertainty

in stiffness/damping parameters and subjected to seismic base excitations.

The influence of system uncertainty was shown to be significant in the anal-

ysis of tuning and interaction between primary-secondary modes and also in

the reliability of secondary modes. Iwan and Jensen (1993) generalized the

analysis to continuous stochastic systems. They obtained a set of determin-

istic ordinary differential equations in time which are integrated numerically.

The method was illustrated by considering the response of a stochastic shear

beam to seismic base excitation. Figure 5 shows the time history records

of the base excitation and response mean and standard deviation. It was

observed that the variability in response was about half of the maximum

mean, thereby indicating the importance of accounting for the system un-

certainties in response calculations. Mahadevan and Mehta (1993) discussed

matrix condensation techniques for stochastic finite element methods for reli-

ability analysis of frames. They also computed the sensitivity of the response

to the basic random variables by analytical differentiation as applied to the

deterministic analysis.

Grigoriu (1991) developed an equivalent linearization approach to study the

static equilibrium equation

K(ωr)U = S(ωr) (36)

where ωr is a vector of random variables. The displacement vector was de-
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scribed by the approximate expression Û = αωr +β, where α is a matrix and

β is a vector with unknown deterministic elements which are determined by

minimizing the error e = E||S−KÛ ||2. The process yielded a set of determin-

istic linear algebraic equations in the unknowns α and β. The determination

of these unknowns requires the knowledge of probabilistic description of ωr

beyond the second moment. Thus, when K and S are linear functions of

ωr, the determination of α and β requires description of ωr up to the fourth

order moments.

The application of Markov theory-based techniques to problems involving

the determination of dynamic stiffness coefficients of structural elements

was studied by Manohar (1995). These systems are usually described by

a stochastic wave equation. For example the field equation for the axial vi-

bration of a non-homogeneous viscously damped rod element can be written

as

d

dx
[{1+δ1f1(x)}dy

dx
+iβ1{1+δ2f2(x)}dy

dx
]+λ2[1+δ3f3(x)]y−iβ2[1+δ4f4(x)]y = 0

(37)

for two sets of inhomogeneous boundary conditions

y(0) = y0; y(L) = yL (38)

and
dy

dx
|x=0 = − P1

AE(0)
;

dy

dx
|x=L = − P2

AE(L)
(39)

where i2 = −1 which appears as a result of using complex algebra in solv-

ing the original partial differential equation of the rod. P1 and P2 are the

end loads at x = 0 and x = L, respectively. The functions f1(x) and f3(x)

represent random components of the stiffness and mass, respectively, f2(x)

is the random component of the strain rate dependent viscous damping, and

f4(x) is the random component of the velocity dependent viscous damping.

The parameters βi and λ2 are functions of the system parameters and driv-

ing frequency. It must be noted that the solutions of the above equations
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do not have Markovian properties even when the stochastic fields fi(x) arise

as filtered white noise processes. This is due to the fact that the solution

trajectories have to satisfy boundary conditions at x = 0 and x = L. The

approach consists of expressing the solution of the above stochastic boundary

value problem as a superposition of two basis solutions which are obtained by

solving the field equation (37) under a pair of independent initial conditions.

This subsequently enables the application of the Markov process-based ap-

proaches to construct the basis solutions. The solutions take into account

the mean and power spectral density matrix of the system property random

fields.

The problem of seismic wave amplification through stochastic soil layers was

studied by Manohar and Shashirekha (1995). Numerical results on the spec-

tra of mean and standard deviation of the amplification factor were found

to compare well with corresponding digital simulation results. Sobczyk et

al. (1996) studied the harmonic response of undamped beams with stochas-

tically varying inertial/elastic foundation moduli. They expressed the gov-

erning differential equation of motion by a random integral equation. The

integral equation, in turn, was solved using the method of successive ap-

proximation. This method avoids the need to compute the stochastic free

vibration analysis, and also permits estimation of the error of approximation.

5.3 Nonlinear Systems

The study of structural systems including the effects of system nonlinearity

in the presence of parameter uncertainties presents serious challenges and

difficulties to designers and reliability engineers. Recent developments in the

mathematical theory of random processes and stochastic differential equa-

tions have promoted the study of response and stability in structural systems

driven by random excitations. However, there is no unique theory that can

be generalized to analyze any nonlinear system. Each method has its own

limitation with respect to the nature of the excitation, the type of nonlin-

earity, and the number of degrees of freedom. Moreover, nonlinear modeling
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allows the designer to predict a wide range of complex response characteris-

tics, such as multiple solutions, jump phenomena, internal resonance, on-off

intermittency, and chaotic motion. These phenomena have direct effects on

the reliability and safe operation of structural components. Accordingly,

the designer must estimate the reliability of nonlinear systems subjected to

Gaussian/non-Gaussian random excitations. In this case the engineer has to

deal with both the catastrophic type and fatigue type failures. The former

is related to the distribution of extreme values of the system response, and

the latter is related to the crossing rates at different levels of the system

response.

Socha and Soong (1991) and Ibrahim (1991, 95) presented overviews of meth-

ods, limitations, and experimental results of treating nonlinear systems under

random excitations. Socha and Soong highlighted on the method of statis-

tical and equivalent linearization and its applications to nonlinear systems

subjected to stationary and nonstationary random excitations. Some contro-

versies were reported regarding different results obtained by different meth-

ods for the same system. In such cases experimental tests are valuable in

providing complex phenomena not predicted by the available methods, and

can provide guidelines to refine theory. Ibrahim (1995) reported a number

of difficult issues and controversies encountered in the development of the

nonlinear theory of random vibration. The analysis of nonlinear structural

systems with parameter uncertainties is very limited to special cases such as

static problems and numerical simulations.

Static problems involving system nonlinearities and stochasticity were stud-

ied by Liu et al (1986, 88). Liu et al. (1987) considered the dynamic response

to a step input of an elasto-plastic beam with isotropic hardening whose plas-

tic modulus was modeled as a Gaussian random field. Both displacement and

random fields were discretized using 32 elements and, for this purpose, the

same finite element shape functions were used. Furthermore, using orthogo-

nalization of random variables, the 32 random variables were replaced by nine
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transformed random variables. A mean-centered second-order perturbation

method in conjunction with direct numerical integration in time was used to

study the time evolution of response moments. The transient response of a

transversely loaded stochastically inhomogeneous plate on a random nonlin-

ear elastic foundation was studied by Deodatis and Shinozuka (1988). They

used Monte Carlo simulation in conjunction with finite element discretiza-

tion and time integration techniques. They examined the influence of the

stochasticity of the elastic modulus and/or stochasticity of a nonlinear foun-

dation, the support conditions and degree of nonlinearity of the foundation

(α0) on the coefficient of variation of the maximum deflection (Vd). Figure 6

shows this coefficient of variation as a function of α0 for the case of a simply

supported rectangular plate. Furthermore, Gaussian and lognormal distri-

butions were shown to provide good fits to the maximum plate deflection. A

similar approach was considered by Brenner (1994) to study harmonic forced

excitation of a three-dimensional skeletal model of a transmission line tower.

Chang and Yang (1991) considered large amplitude vibration of a beam with

randomly varying material and geometric properties. They analyzed the free

and forced response to harmonic and random excitations. Their analysis in-

volved discretization of the random field using the method of local averages

and a second order perturbation scheme. The forced nonlinear random vi-

bration response was obtained using the equivalent linearization technique.

Satisfactory comparisons of analytical results with Monte Carlo simulations

were demonstrated. Koyluoglu et al., (1995c) employed weighted integral

method of random field discretization in the development of a nonlinear

stochastic finite element formulation for stochastic plane frame analysis. The

stiffness and damping properties were taken to be random in nature, and the

excitations were modeled as stationary random processes. They employed

mean centered second order perturbation method to treat system uncertain-

ties and the Gaussian closure method to handle the nonlinearities. Klosneret

al. (1992) considered the response of nonlinear SDoF and two-dof systems

with stochastic parameters under white noise excitation. For more general
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classes of problems possessing no exact solutions, Klosneret al. employed

a statistical linearization technique to determine the conditioned response

statistics. It should be noted that statistical linearization gives satisfactory

results only if the system does not involve secular terms which give rise to

internal resonance conditions.

6.0 METHODS OF ANALYSIS

6.1 Statistical Energy Analysis (SEA) and Applications

The framework of SEA is documented in the well known research monograph

by Lyon (1975) and recently by Lyon and DeJong (1995). SEA can be viewed

as a branch of linear random vibration theory which is applicable to situations

in which the response at any frequency consists of small contributions from

a large number of modes. The method aims to avoid the detailed calculation

of contributions from individual modes and instead to predict response levels

which are averaged over these modes in some sense. Participation of a large

number of modes in the vibration is thus an essential requirement for the

successful application of the method. The method has been used to predict

the vibration response of aerospace structures, land based vehicle design, ship

dynamics, building acoustics, machinery vibration and, more, recently, in

seismic analysis of secondary systems (see, for example, Lai and Soong, 1990

and Hynna et al., 1995). Hodges and Woodhouse (1986), Langley (1989),

Keane (1992), Fahy (1994), and Price and Keane (1994) treated different

theoretical aspects of the method. As mentioned in Section 2, an important

aspect of SEA is the modeling of vibrating systems as being drawn from a

statistical ensemble of nominally identical systems. This is done to allow

for the high sensitivity of higher eigensolutions to minor changes in system

modeling and values of model parameters. Here we focus our attention on

issues relevant to stochastic modeling and response statistics prediction in

SEA applications. For more details, see the overview by Fahy (1994).

The process of averaging in SEA is carried out for two main reasons. The
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first is that it accounts for the random nature of the forces acting on most

structures. The second is that it accounts for the statistical modeling of the

system. Two different forms of averaging are employed in SEA to achieve

these goals:

1. Ensemble averaging across realizations of time histories of response.

2. Averaging across a stochastic ensemble of vibrating systems. This in-

volves an integration over the probability distribution of either the

random physical parameters of the system or the natural frequencies

and mode shapes.

The primary response statistical parameters of interest in SEA are the spec-

tra of steady state average energies stored in the subsystems. These spectra

are obtained as integrals over the extent of the subsystems and also over the

driving frequency range. The results obtained are clearly dependent on the

details of the averaging process, such as the frequency bandwidth and the

probability distribution functions assumed for the random quantities. Each

form of averaging is accompanied by a reduction in resolution of the response

with respect to amplitude, time, space or frequency parameters. In order for

the average results to be interpreted properly, it is essential that each aver-

aging process be accompanied by the associated estimates of the measures

of dispersion. While it is straightforward to analyze the dispersion associ-

ated with averaging across the ensemble of time histories, the study of other

forms of averaging is more complicated. This difficulty constitutes a major

shortcoming in the application of SEA procedures to practical problems.

According to Lyon (1975), the statistics of temporal mean square velocity

at any specified point in the structure are estimated in terms of statistics of

coupling loss factors and total steady state energies in the subsystems. Some

of the salient features of the analysis are:

1. The natural frequencies of the subsystems are primary stochastic vari-
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ables which are distributed as Poisson points on the frequency axis.

2. The mean energy levels are evaluated based on the assumption that

the power input and loss factors are uncorrelated. The consideration of

higher order statistics require other assumptions yielding to a statistical

closure scheme.

3. All modes are equally damped and the contributions to the mean square

value from different modes are independent.

4. The temporal mean square velocities are random variables with gamma

probability distribution.

It must be noted that these assumptions are ad hoc in nature and are made

essentially to simplify the calculation pertaining to the statistical aspects of

the response. In any given situation, however, it is not possible to distinguish

between the fluctuations which arise naturally from statistical variations in

system parameters and systematic errors resulting from the assumption made

in the dynamical and statistical analyses. This presents considerable difficul-

ties in assessing the assumptions made.

The studies conducted by Davies and Wahab (1981), Davies and Khandoker

(1982), Fahy and Mohammed (1992), Manohar and Keane (1993,94), Keane

and Manohar (1993), Rebillard and Guyader (1995), and Keane (1996) over-

come this difficulty by employing modal expansion-based exact analytical

procedures for the dynamic analysis of the system, and Monte Carlo simula-

tion methods for statistical analysis. Approaches based on wave propagation

analysis were used in similar contexts by Mace (1992) and by Wester and

Mace (1996). The procedures used in these studies are rigorously tractable

from the point of view of both dynamics and statistics. However, they lack

the simplicity of Lyon’s analysis. In these studies the stochastic characteriza-

tion of the system properties was introduced at the level of mass and stiffness

properties rather than at the eigensolution level as was done by Lyon.
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Davies and Wahab (1981) considered the statistics of coupling loss factors

across the intermediate support of a two-span continuous beam with one

of the spans subjected to “rain on the roof” type excitations. The ratio

of the two spans was modeled as a random variable with a uniform prob-

ability distribution function. The same system under the action of point

harmonic forcing was considered by Davies and Khandoker (1982) and the

statistics of cross power receptance function were estimated. These studies

illustrated the importance of the modal overlap factor, defined as the ratio

of average modal bandwidth to the average spacing of natural frequencies,

as a parameter influencing the response variability. As may be expected, the

variability was found to be higher for lower modal overlap factors. Fahy and

Mohammed (1992) considered systems of spring coupled beams, plates and

rods. They noted the non-Gaussian nature of the energy flow characteristics

at low modal overlap factors. It was concluded that the confidence limits

cannot be estimated using the mean and standard deviation alone.

Keane and Manohar (1993) and Manohar and Keane (1993, 94) considered

the energy flows in spring coupled beam and rod systems. They examined

the effects of the choice of subsystems, damping models, strength of system

randomness, type of excitation and types of system randomness on the prob-

abilistic characteristics of power receptance functions. Both Gaussian and

non-Gaussian models for the mass, stiffness, and geometrical properties were

considered. It was reported that receptance functions are nonstationary ran-

dom processes due to the occurrence of resonances and variations in mode

shapes. However, it was noted in most, but not all cases, that with increases

in driving frequency, the receptance functions tended to be stochastically sta-

tionary. This indicated that a frequency exists beyond which the receptance

can be expected to reach a stochastic ‘steady’ state. Beyond this frequency,

a simplified description of system behavior is possible using such methods as

SEA.

Analogous to the definition of the modal overlap factor, a modal statistical
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overlap factor was defined as the ratio of standard deviation of the natu-

ral frequency to the average spacing of the natural frequencies. These two

factors were shown to have a significant role in defining the stationarity of

mean square responses and other related issues. It was concluded that since

both these overlap factors could vary with frequency, precise knowledge of

their behavior was a precursor to the successful application of SEA methods.

These considerations were further examined by Keane (1996) in the context

of vibration energy flow in a pair of line coupled random membranes. Rebil-

lard and Guyader (1995) considered a system of a pair of rectangular plates

coupled along edges and executing harmonic flexural and in-plane vibrations.

The in-plane and flexural motions are uncoupled only if the connection angle

is zero. It was shown that the uncertainty in system response is higher when

the nominal angle of connection is small than when the angle is large.

6.2 Stochastic boundary element methods

There are some advantages of BEM over FEM. These include reduction in

dimensionality and the ability to handle efficiently problems involving infi-

nite domain and singularities. Few attempts were reported in the literature

to formulate random vibration and system stochasticity problems within the

framework of boundary element methods. For example, Spanos and Ghanem

(1991) proposed a BEM-based method to study vibration of systems with de-

terministic parameters under surface tractions which are random in space and

time. The application of the method needs the discretization of the spatially

random surface tractions and other issues similar to those discussed in Section

3.0. Burczynski (1993), Ettouney et al. (1993) and Lafe and Cheng (1993)

extended the BEM to problems involving randomness in material properties,

surface tractions and/or boundary shape. Burczynski (1993) examined the

effect of stochastic shape of the boundary on stresses, strains, displacements

and natural frequencies using a stochastic sensitivity analysis. A pertur-

bational approach based on small random fluctuations was considered by

Ettouney et al. (1993) for soil dynamics problems involving random vari-
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able models for elastic constants and mass density. Lafe and Cheng (1993)

examined the influence of random material inhomogenieties encountered in

problems of ground water flow.

6.3 Methods based on interval algebra

When only scant data is available to construct probabilistic models for system

uncertainties, probabilistic models become questionable. In such situations

one may attempt to estimate bounds on the response variance consistent with

the data available (Shinozuka, 1987, and Deodatis and Shinozuka, 1989). The

bounds developed do not depend upon the functional form of the autocovari-

ance/psd function of the random fields describing the parameter variations.

Other alternative is based on results from interval algebra, proposed by Chen

et al. (1994), Dimarogonas (1995), Qiu et al. (1996a,b) and Koyluoglu et

al., (1995d). Here, the uncertain system parameters are modeled through the

specification of the lower and upper bounds on their values. The subsequent

problems of response analysis consisting of eigenvalue problems, matrix in-

versions, etc. need to be handled within the framework of interval algebra.

It may be noted that the rules of interval arithmetic are distinct from those

applicable to numbers (Alefeld and Herzberger 1983). A brief introduction

to these rules is available as an appendix to the paper by Koyluoglu et al.

(1995d). The relevant terminology has also been introduced by Dimarogonas

(1995).

Elishakoff (1995) discussed non-probabilistic modeling of uncertainties. Thus,

in the case of an algebraic eigenvalue problem Kx = λMx, where the ele-

ments of the n×n matrices K and M are uncertain and are partially specified

through the constraints K l
ij ≤ Kij ≤ Ku

ij and M l
ij ≤ Mij ≤ Mu

ij, where the

superscripts l and u represent, respectively, the lower and upper bounds, one

has to determine λl
i and λu

i such that λl
i ≤ λi ≤ λu

i ; i = 1, 2, · · ·n. Chen

et al. (1994) used the properties of Rayleigh’s quotient and showed that

the bounds on the eigenvalues of real symmetric matrix can be obtained by

solving a set of three eigenvalue problems. A perturbational approach to
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estimate the bounds on the eigenvalues was also suggested and it reduces the

number of eigenvalues problems to be solved to one.

Dimarogonas (1995) noted the difficulties associated with the interval eval-

uation of eigenvalues using the interval calculus version of commonly used

numerical techniques. He also developed an optimization technique to obtain

the minimum-radius intervals of the solution for the eigenvalue sensitivity

problem. The problem of linear rotor dynamics with interval bearing prop-

erties was studied and the results showed satisfactory agreement between re-

sults of interval analysis and Monte Carlo simulation. Qiu, et al. (1996a,b)

reviewed the results available on interval eigenvalue problems. They also

showed that if KI = [K l, Ku] = [Kc−∆K,Kc +∆K] is a semi-definite inter-

val matrix, and M I = [M l,Mu] = [M c−∆M,M c+∆M ] is a positive definite

interval matrix, ∆KI
+ = [0,∆K] and ∆M I

+ = [0,∆M ] are semi-definite in-

terval matrices, then the eigenvalues of the problem Kx = λMx where K

belongs to KI and M belongs to M I , ranges over the interval

λI
i = [λl

i, λ
u
i ] i = 1, 2, · · ·n

where the lower bound λl
i satisfies

K lul
i = λl

iM
uul

i i = 1, 2, · · ·n

and the upper bound λu
i satisfies

Kuuu
i = λu

iM
luu

i i = 1, 2, · · ·n.

A numerical example on the natural frequency interval of a 15 member truss

which shows that the intervals for higher mode natural frequencies are wider;

a measure of relative uncertainty defined as the ratio of interval width to the

median value, however is higher for lower natural frequencies and Qiu, et al.

extended the interval algebra to the matrix perturbation theory to approx-

imately evaluate the interval eigenvalues. Application of interval algebra to

the static finite element analysis of skeleton structures with interval param-

eters has been developed by Koyluoglu et al. (1995d).
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7.0 LOCALIZATION IN DISORDERED PERIODIC STRUCTURES

Weak structural irregularities may result in the occurrence of the well known

phenomenon of modal localization. Dynamics of spatially periodic struc-

tures, such as, turbomachinery blade assemblies, multi-span structures and

aircraft fuselages, is characterized by alternating sequence of frequency bands

which pass and stop traveling waves with the system natural frequencies oc-

curring in clumps within the pass bands. The presence of irregularities in

these structures, which destroys system periodicity, can confine vibration to

specific parts of the structure. Due to wave reflections at the interfaces of non-

identical elements, wave propagation in a disordered structure is attenuated

even if the damping is absent. This effect is solely due to system disorder, not

to energy dissipation, and is more pronounced in higher frequency regions.

This phenomenon was originally observed by Anderson (1958, 78, 86) in solid

state physics. Weaver (1993) and Weaver and Burkhardt (1994) studied An-

derson localization phenomenon in acoustic wave propagation. In a special

issue of AMR, a series of review articles by Lin (1996), Pierre, et al. (1996),

Vakakis (1996), Photiadis (1996), and Weaver (1996) provided a wide spec-

trum of overviews of modal localization problems in periodic structures, truss

beams, localization of nonlinear continuous systems, fluid-loaded structures,

and other related problems. In a recent research monograph, Vakakis,et al.

(1996) documented the problem of localization in discrete systems, coupled

beams and other continuous systems.

These studies provided a basic understanding of factors influencing local-

ization such as degree of disorder, strength of coupling, number of coupling

paths, and variation of localization effects with respect to frequency. In this

section we focus on developments and results which only deal with proba-

bilistic descriptions of mode localization and consequent response analyses.

More realistic modeling of structural disordered can be described as a ran-

dom field. The studies by Kissel (1988, 91), Cai and Lin (1991), Lin and Cai

(1995), Xie and Ariaratnam (1994, 96a,b) and Ariaratnam and Xie (1995)
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treated the problem within the framework of wave propagation analysis us-

ing transfer matrices under the assumption that spatial disorder is modeled

as an ergodic random process. Attention was focused on determining the

localization factor which is defined as the average rate of exponential decay

of the wave per periodic unit with respect to the propagation distance at-

tributable to the disorder. The reciprocal of this quantity gives a measure of

length over which the propagating waves extend in the structure. In a multi-

coupled system, corresponding to each of the coupling wave types, one can

define an associated localization factor. The reciprocal of the smallest value

of these factors defines the largest distance over which localization occurs.

Kissel (1988, 91) discussed the relevance of some theorems dealing with prop-

erties of products of random matrices. These theorems, originally developed

by Furstenberg (1963) and Oseledec (1968), can be used in modeling dis-

ordered of single- and multi-wave one-dimensional periodic structures using

random matrix products. Kissel considered three systems: i) a chain of spring

coupled masses, ii) a rod in axial compression with attached resonators, and

iii) multispan Euler-Bernoulli beams. Disorder is characterized in terms of

a set of independent uniformly distributed random variables. In the study

of mono-coupled disordered systems, the system behavior is characterized in

terms of products of random transfer matrices. After some transformation of

the transfer matrices, the random matrix product, in terms of the 2×2 wave

transfer matrices W̄j, takes the form

Πn
j=1W̄j =

[ 1
τn

−ρn

τn−ρ∗n
τ∗
n

1
τ∗
n

]
(40)

where n is the number of repetitive units, τn is the transmission coefficient,

ρn is the reflection coefficient, a star * denotes complex conjugate and

|τn|2 + |ρn|2 = 1. (41)

Furthermore, with the assumption that W̄1, W̄2, · · ·, W̄n, form a sequence

of independent, identically distributed random matrices and applying the
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Furstenberg theorem, it was shown that, with probability 1,

γ = − lim
n→∞

1

n
ln|τn|, γ > 0 (42)

where γ is the localization factor which is dependent on frequency and prop-

erties of the structure. Alternatively, relation (42) can be written in the

form

lim
n→∞ |τn|2 → exp[−2γn] (43)

Relation (43) implies that the transmitted energy decays exponentially as

number of repetitive units become large. It is apparent that the localization

factor is related to the largest Lyapunov exponent which characterizes the

average rate of exponential growth per bay of the structure. Lyapunov expo-

nents provide useful information on localization phenomena in multi-coupled

periodic structures.

Several analytical and computational procedures for approximate compu-

tation of the localization factors have been developed. These include the

method of multiple reflections, the method of invariant distribution, and the

method of Lyapunov exponents. Lin and Cai (1995) provided a systematic

account of these techniques. Localization in multi-wave periodic structures

was studied by Kissel (1988,1991) and Xie and Ariaratnam (1994). In order

to find the largest length over which localization occurs, the smallest Lya-

punov exponent needs to be determined. Furstenberg theorem does not help

in this case since it leads to only the highest Lyapunov exponent. Kissel

discussed the application of the theorem due to Oseledec (1968) and derived

the multiwave localization factor. Xie and Ariaratnam (1994) modified the

algorithm of Wolf et al. (1985) to determine all the Lyapunov exponents and

studied the localization in beam-like lattice trusses shown in Figure 7. The

lengths of the members of the lattice truss were modeled as mutually inde-

pendent uniformly distributed random variables. Figure 8 shows a plot of

the Lyapunov exponents λ1 and λ2 as a function of driving frequency. Note

that λ2 is the lowest exponent and λ3 = −λ2 and λ4 = −λ1.
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Calculation of localization factors for disordered cyclic periodic structures

using transfer matrices and Green’s function formulation was presented by

Xie and Ariaratnam (1996a,1996b). Pierre (1990) considered an assembly

of coupled random oscillators in which the strength of coupling could be

varied. He studied the mode localization using a perturbational approach

in which the coupling parameter is also treated as a small parameter. Both

wave and modal approaches were used. The results on localization factor,

obtained analytically, was compared with Monte Carlo simulation results.

The localization factor was shown to depend upon the disorder to coupling

strength ratio and the excitation frequency. Cha and Pierre (1991) and Pierre

et al. (1994) extended this study to the case of mono-coupled multimodal

systems. These studies have demonstrated that severe vibration confinement

is unavoidable at high frequencies.

Finite element method was used to study modal localization in cyclic and

multi-span disordered structures by Cornwell and Bendiksen (1992) and Lust

et al., (1995). These studies proposed a length scale in terms of system

modeshapes as an indicator of degree of localization of a given mode. It

was shown that modes within the same mode group can have significantly

different degrees of localization.

Hodges and Woodhouse (1989a,b) investigated localization of propagating

disturbances in disordered coupled oscillators and in beams. They used dif-

ferent forms of ensemble averaging by considering the spatial response vari-

ability in a set of coupled random oscillators. They showed dramatic different

results between linear and geometric averages of the response. It was also

shown that the commonly used linear averaging is significantly affected by

those realizations which are far removed from the average. Consequently,

the linear average was concluded to be a poor guide for understanding the

typical system behavior. On the other hand, the geometric mean, which is

not very sensitive to very high or very low valued realizations, was shown to

be a better measure of a typical system behavior.
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The application of SEA procedures to periodic and near-periodic systems

were considered by Hodges and Woodhouse (1986) and Keane and Price

(1989). The clumping of system natural frequencies in such systems, and the

possibility of localization of mode shapes, cast serious doubts on the appli-

cability of SEA procedures to these systems. This is because the SEA as-

sumes that the subsystem’s natural frequencies are Poisson points on the fre-

quency axis and also it altogether ignores the mode shape variability. Keane

and Price (1989) considered a system of two periodic/near periodic subsys-

tems which are coupled by a discrete spring. Within a frequency band, the

subsystem natural frequencies were taken to be independent and identically

distributed. The probability distribution of the individual natural frequen-

cies was taken to have a piecewise uniform variation. It was assumed that

the probability of finding a natural frequency in the pass bands of the basic

repetitive unit was higher than the probability of finding it in the stop bands.

This modification was shown to yield significantly better results than those

predicted by traditional SEA procedures.

8.0 EXPERIMENTAL RESULTS

The study of structural dynamics with parameter uncertainties has been

dominated by analytical and computational techniques. Nevertheless, the

data needed for validation of models and specification of model parameters

must originate from experimental measurements. Furthermore, analytical

and numerical results of system response, dependence on initial conditions,

and mode localization need experimental verification. Ibrahim (1991, 95)

presented comprehensive overviews of random experimental tests, observed

complex phenomena, difficulties encountered in generating random excita-

tions, system modeling and data acquisition. A few studies were reported

in the literature with varying degrees of success. The works of Hodges and

Woodhouse on disordered strings and that of Pierre, Tang, and Dowell on a

two-span disordered beam were already discussed in the previous review by

Ibrahim (1987). Recently, few experimental studies were conducted by King,
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et al. (1995) and Aubrecht, et al. (1996) to verify the existence of localized

nonlinear normal modes in fixtures of coupled cantilever beams.

Recently, Fahy (1993) has demonstrated the variability in high frequency

response which one might expect in an ensemble of engineered structures by

studying the dynamic response of an ensemble of empty beer cans. Figure 9

shows a set of measurements made as a part of this experiment and one can

judge from this figure the difficulty which might arise in analyzing this type of

structures by using finite element type of approaches. An ingenious attempt

to produce a large ensemble of vibrating systems within a laboratory setup

has been reported by Lenaghan and Fahy (1992,1993). This study consisted

of producing acoustical analogues for a stochastic ensemble of a pair of axially

vibrating rods which were coupled through a linear spring. The experimental

setup consisted of two, end coupled acoustic pipes with the first of these pipes

being driven acoustically by a loud speaker at one end and the second pipe

terminating in a water tank whose depth was under computer control. By

suitable adjustment of water level in the tank, ensembles of data for similar,

but not identical, subsystems were generated and tested without manual

intervention. Correlation of these experimental results with computational

models for axially vibrating rods was discussed by Keane et al. (1994).

Keane and Bright (1996) conducted experimental tests on disorder as a

means of passive vibration control in lattice structures. They constructed

two trusses each consisting of forty members. One truss had a regular geom-

etry. Disordered geometry was deliberately introduced into the other. The

configuration for the disordered truss was predetermined analytically and

was optimized to display certain isolation characteristics. The experimental

study demonstrated that it is possible to build lightweight, lightly damped

aluminum truss structures that have up to 50 dB of energy transmission

isolation between their ends, without using additional damping materials or

active control.

9. CONCLUSIONS
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A broad based review of advances made over the last decade in the field of

structural dynamics with parameter uncertainties has been presented. These

advances have been dominated by new developments of analytical and com-

putational tools for random eigenvalue analysis, response prediction of linear

and nonlinear systems and reliability analysis. Phenomenological features

associated with dynamic stability, mode localization and high frequency re-

sponse have also received notable attention. The following are some of the

needs for future research:

1. Influence of parameter uncertainties on the nonlinear modal interaction

of dynamic systems in the neighborhood of internal resonance condi-

tions.

2. Probabilistic foundations of SEA formalisms, with many of the assump-

tions made, lack rigorous justification. Thus, for example, for most

types of subsystems, the basic assumption of natural frequencies being

Poisson points on frequency axis is questionable. Development of meth-

ods based on stochastic finite element (SFEM) techniques to estimate

confidence in SEA is needed.

3. Methods for experimental measurement of disorder parameters and de-

velopment of stochastic models for system disorders.

4. More research is needed in the area of optimum design sensitivity in

reliability-based design under multilevel reliability constraints to eval-

uate the significance of various uncertainties on the optimum solutions.

5. The problem of identification of spatial inhomogenieties should be ex-

tended based on experimental measurements.

6. Study of interaction between disorder and nonlinearity in nearly pe-

riodic systems. Studies by Vakakis and others have established the

influence of system nonlinearity as a source of periodicity breaking dis-

order and the consequent occurrence of localization.
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Figure Captions

Figure 1. Three dimensional piping system whose restraint locations

are uncertain (from Nakagiri 1987).

Figure 2. Reliability of the simply supported graphite/epoxy lami-

nated [90/± 45/0]s square plate in supersonic flow with uncertain pa-

rameters (from Liaw and Yang 1993).

Figure 3 Contours of the probability density functions of the second

eigenfunction; ε = 0.2, α = 20.8; (from Manohar and Iyengar 1994).

Figure 4 (a) Beam on random elastic foundation subjected to a ran-

dom dynamic excitation; exponential covariance model; (b) Spectral

density of the displacement at the end of the beam; (c) Spectral den-

sity of displacement at the end of the beam; (from Ghanem and Spanos

1990).

Figure 5 Seismic response of a stochastic shear beam; (a) Earthquake-

like base excitation; (b) Mean value response; (c) Standard deviation

response; (d) variability parameter; (from Iwan and Jensen 1993).

Figure 6 Coefficient of variation of the maximum deflection at the

center (Vd) as a function of the nonlinearity parameter α0, for the case

of simply supported plate (from Deodatis and Shinozuka 1988).

Figure 7 Beam like lattice truss (from Xie and Ariaratnam 1994).

Figure 8 Lyapunov exponents for Timoshenko beam (from Xie and

Ariaratnam 1994).

Figure 9 Scatter in the vibrational acceleration response at one point

on a beer can generated by broad band acoustic excitation (41 cans);

(from Fahy 1993).
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