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Abstract

In this two-parts study the problem of determining stochastic critical earthquake excitations for linear
and nonlinear structural systems is considered. In the first part of the study attention is focussed on linear
structures. The earthquake load is modelled as a partially specified Gaussian random process. The known
information on the excitation involves bounds on total average energy, zero crossing rate and the amount
of expected disorder quantified in terms of average entropy rate. The unknown power spectral density
function of the earthquake acceleration is computed with three alternative objectives: (a) maximization of
probability of exceedance of extreme value of the response over a given duration across a specified
permissible limit, (b) minimization of the Hasofer—Lind reliability index associated with the performance
criterion considered above and (c) maximization of the steady-state response variance. The relative scope of
these methods is discussed. The optimal input power spectral density functions are shown to be nearly
identical in all the three cases. The paper discusses the implications of this result and illustrates the
formulations with reference to a steel frame and a stack-like structure.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Critical excitations are tailor-made to produce highest response in given engineering structures
while, at the same time, they also satisfy a set of constraints that are reflective of known features
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of the excitations. In the context of earthquake engineering, the method of critical excitation
offers an useful alternative in specifying earthquake load models for important engineering
structures. The motivation for the development of these methods has been widely discussed in the
existing literature: see, for example, the paper by Manohar and Sarkar [1] and the more recent
comprehensive state of the art report by Takewaki [2]. Early work in this area of research has been
due to Drenick [3], Shinozuka [4] and Iyengar [5]. These models can be developed within the
frameworks of response spectra, time histories or random process modelling. Within the context
of random critical earthquake excitation modelling, the idea of critical power spectral density
(psd) functions that produce highest response variance for linear systems under constraints on
total average energy has been studied by Iyengar and Manohar [6]. These authors modelled the
ground acceleration as a nonstationary Gaussian random process obtained as a product of a
known deterministic envelope function and an unknown zero mean Gaussian stationary random
process. The unknown psd function was expanded as a linear combination in terms of
orthonormal functions with undetermined coefficients. These coefficients were computed such
that the response variance of a given system is maximized under a constraint on the input total
average energy. In this paper, however, the frequency range of the critical input was not explicitly
incorporated in the formulation. Iyengar [7] included the excitation frequency bandwidth into the
formulation. Srinivasan et al. [§] modelled the earthquake acceleration as a nonstationary filtered
shot noise and optimized the parameters of this model such that response of a given linear system
is maximized. Manohar and Sarkar [1] introduced additional constraints on input zero crossing
rate and also investigated the use of the entropy rate of the input in characterizing the amount of
disorder to be expected in earthquake signals. As might be expected, with increases in entropy
rate, the input signals tend to become rich in frequency content and, thus, these authors
emphasized the effectiveness of entropy rate considerations in arriving at realistic critical
earthquake load models.

Takewaki [9,10] has investigated the critical psd function models by introducing a new
constraint on the peak of the input psd function in addition to that on the total average energy.
This author has modelled the ground excitation as a stationary Gaussian random process and has
optimized the structure response under these constraints [9]. Subsequently, Takewaki [10]
generalized his earlier study to account for nonstationarity in the earthquake excitations.
Khajehpour and Sarkar [11] and Sarkar and Khajehpour [12] model the critical acceleration as a
stationary Gaussian random process with an unknown psd function which is computed such that
the mean of the level crossing rate of response of a given linear structure as well as the input
entropy rate are maximized under a constraint on the input variance. These authors have
employed genetic algorithms based on Pareto optimization theory to solve this constrained
nonlinear multi-objective optimization problem. Recently, the present authors accounted for the
input entropy rate by treating it as an explicit constraint [13]. These authors estimated the
information needed to impose the constraints on critical excitation by using past recorded
earthquake accelerograms. The problem of formulating critical psd matrix models for multi-
support and/or multi-component earthquake models has been studied by Sarkar and Manohar
[14,15] and Abbas and Manohar [16].

In most of the studies reported above, the objective function in defining the critical excitation
has been the variance of the response and the structural behavior has been assumed to be linear.
Thus, these studies employ the well known input—output relations in time/frequency domains for
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randomly driven systems. With a view to expand the capabilities of the method of critical
excitations, it is clearly of interest to characterize system response in terms of reliability measures
and, to take into account structural nonlinearities and multi-support nature of excitations. Also of
interest is to treat structural parameters as being random in arriving at critical excitation-response
pair. The present study, reported in two parts, is motivated by these considerations. Accordingly,
in the first part of these studies, we begin by considering linear systems with the earthquake inputs
modelled as zero mean Gaussian stationary random processes. The information available on the
inputs is taken to include estimates of total average energy, average rate of zero crossings and the
entropy rate. Three alternative objectives for finding critical responses are considered: these are,
namely, (a) maximization of probability of exceedance of extreme value of the response over a
given duration across a specified permissible limit, (b) minimization of the Hasofer—Lind
reliability index associated with the performance criterion considered above and (¢) maximization
of the steady-state response variance. Illustrative examples on simple frame and stack-like
structures demonstrate that all these three objective functions lead to similar critical input psd
functions.

2. Method I: critical excitation that maximizes failure probability
2.1. Objective function

The equation of motion for the relative displacement u(t) of a discretized N-degree-of-freedom
linear structure driven by a horizontal ground acceleration X,(7) at its base is well known to be
given by

Mi(7) + Cu(?) + Ku(r) = —M{1}X,(?). (1

Here M, C,K, are, respectively, the mass, damping and stiffness matrices of the discretized
structure, and {1} represents a column vector of ones. In the present study, the damping is taken
to be proportional, and, also, it is assumed that system starts from rest. The structural matrices
here are taken to be deterministic in nature. As is well known, for these systems, any response
quantity such as a displacement, or a linear transformation of displacement, such as, stress
component or stress resultant, is also a Gaussian random process. We denote this response
quantity by L(¢) and, following standard terminology used in structural reliability, we designate it
by the term ‘load effect’. Associated with the load effect, L(¢), there exists an associated structural
capacity and this is denoted by R. Thus, for example, L(¢) = displacement component at a
specified point on the structure and R = permissible displacement at this point; similarly,
L(#) = maximum bending moment or shear force at the base and R = moment or shear capacity
of the structure at the same point. Let 1 — Py = the probability that the load effect remains less
than the load-carrying capacity over the time interval (0, 7;). That is,

1 — Py = P[R— |L(0)|>0; Vi € (0, Ty)] ?)
Here Py is the probability of structural failure. The determination of Py, as given by the above

equation, constitutes a problem in time-variant reliability analysis. Introducing the random
variable L,, = maxo<,<r,|L(?)|, the failure probability can also be expressed in a time-invariant
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format as

Pr=PR—-L,<0]= Py, ) drdl. 3)
[/

r—=I1<0

Here p,, (r,]) is the joint probability density function of R and L,, and, to proceed further, a
suitable model for this quantity is needed. It is of interest to note that the potential sources of
uncertainties here are in the specification of loads and structural properties (such as stiffness,
mass, damping and strength characteristics). The uncertainties in ground acceleration arise due to
uncertainties in source mechanism, quantum of energy released, location of energy source,
geological medium through which the waves travel, and local soil conditions. On the other hand,
structural uncertainties could arise due to intrinsic material variabilities, and uncertainties in
details of soil structure interactions, manufacture of the construction material and details of
actual construction. Thus, at the outset, it appears reasonable to assume that the earthquake loads
and the random variables that model structural uncertainties (such as stiffness, mass, damping
and load-carrying capacity) could be treated as being stochastically independent. However, it
might be argued that, in any design problem, since the structural capacities are indeed provided to
meet the imposed demands of the load effects, these two quantities (namely, structural capacity
and load effect) are going to be mutually dependent. The main difficulty, in our opinion, here lies
not so much in capabilities of the underlying mathematical model to handle such dependencies,
but more so in being able to quantify the measures of such dependencies. Therefore, in the
development of the present method, we proceed with the assumption that the load effect and the
capacity are taken to be stochastically independent. Also, in evaluating the load effects we assume
here that the structural stiffness, mass and damping properties are deterministic in nature. A more
general method, that avoids some of these assumptions, is being presented in the next section.
Under the assumptions stated above, it can be shown that Eq. (3) can be simplified to get

Py = /0 P, (DI, @

where Pg(r) is the probability distribution function of R, and p, (/) is the probability density
function (pdf) of L,,. Based on the theory of extreme values of stationary Gaussian random
processes [17], the probability distribution of L,,, after L(¢) has reached a steady state, can be
approximated by
2
Py, () =exp {—N(J{Td exp <— 12)] , 0</<oo. (5
204,

Here N{ is the average rate of zero crossing of the response process L(7) given by Nj =

(1/(2m))\/63; /a2, , in which, 63, and o3, are, respectively, the zeroth and the second spectral

moments of the process L(#). These quantities, in turn, are given in terms of the psd function,
S(w), of the input acceleration X,(#) as

- / U HU@)PS@) do, o, = / " D HL(0)2S(@) do. ©)

0 0
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In these expressions, H(w) is the frequency response function associated with the response
quantity £(¢) and (wo, w.) is the frequency bandwidth of the ground acceleration X,(?).

2.2. Constraints

The problem of modelling critical excitations can now be stated as finding S(w) which
maximizes P, as given by Eq. (4), subject to a set of suitable constraints. A measure of total
average energy, given by,

e
Ey= / S(w)dw (7
(2]

is helpful in defining the size of the earthquake. The imposition of this constraint alone would lead
to overly conservative estimates of the highest response [1]. This has been mainly due to the highly
resonant characteristics of the resulting critical excitations. In other words, the frequency content
of the critical excitations, in these cases, turns out to be unrealistic when compared to the
frequency content of recorded earthquake accelerograms. Within the framework of method of
critical excitations, any characteristic of a future earthquake, which one can anticipate with
confidence, needs to be incorporated into the modelling exercise through appropriate constraints.
Therefore, the question arises on the nature of constraints that help us to quantify the frequency
content that the critical excitation should possess. Imposition of such a constraint is an essential
requirement in the development of a useful critical excitation model. In our earlier studies we have
considered this question and have explored imposing the following constraints:

® average rate of zero crossing [1,13] given by

nt = 1/Qu(Es/Ey), Es= / " 2 S(0) do @®)

o

e an upper bound and a lower bound on the Fourier amplitude spectrum of the ground
acceleration [13], and/or
e average rate of entropy of the acceleration process [1,13,15].

The study by Manohar and Sarkar [1] has shown the ineffectiveness of constraint on average
rate of zero crossings in imparting realistic frequency content to the critical excitations. The
second option, namely, the bounds on Fourier amplitude spectra, works successfully within
deterministic framework but places serious demands on our ability to specify these constraints
[13]. Within the framework of random process models for critical excitations, we have found that
a constraint on average entropy rate to be worthy of serious consideration. In this context, it may
be recalled that, for a zero mean, band limited, stationary Gaussian random process &(7) with psd
function S(w), the average entropy rate is given by [1]

@,

_ 1 ¢
H =log,v/2ne + — log, S(w)dw. 9

Z(wc - C00) wo
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Here (wy, .) is the frequency bandwidth. Let us consider two alternative models for &(7): one that
is narrow banded and the other broad banded. Let us assume that these two processes have the
same variances. The time realization of a narrow band process would be fairly ‘ordered’ and its
spectrum highly localized in frequency. Conversely, the time realization of a band-limited white
noise would be relatively more ‘disordered’ and the spectrum would be wide spread or the signal
rich in frequency content. If one computes the entropy rate for these two processes, it turns out
that the entropy rate of the wide band signal would be higher than that of the narrow band
process. The proposition in our studies has been that this relationship between entropy rate,
frequency content and disorder can be used in specifying the frequency content that one can
expect in the critical earthquake excitation. It may also be noted in this context that entropy-based
principles offer powerful modelling tools in the treatment of random phenomena with
incompletely specified probability space. Given the fact that the random critical excitation
models essentially deal with incompletely specified random processes, it is reasonable to expect
that the concept of entropy rate has bearing on the development of these models. In the
computational work it has been found advantageous to express the average entropy rate of &(¢) in
terms of the increase in the average entropy rate when &(¢) is added to a reference band-limited
white noise process of intensity Sg. It can be shown that this increase is given by

S(w)
0

1 @

AH=—— 1 1.0
2(0)6 - (UO) o8 |: *

} dw. (10)
o

This representation can be thought of as being akin to the decibel scales often used in describing
frequency response functions and other spectral quantities in vibration engineering where in
quantities of interest are expressed relative to an arbitrarily established reference value. The main
advantage in adopting this definition, in the context of critical excitation modelling, has been that
computational problems in evaluating H when S(w) becomes small for any value of @ in [wg, »]
can be avoided. Thus, in the present study the critical excitations are taken to satisfy the
constraint

! C loge[l.O +¥] do=AHy. 11
0

Here AH jy is the estimate of AH that one can expect in realistic earthquake records. The problem
of estimating AH j has been addressed in one of our earlier studies [13].

2(wc - 0)0) g

2.3. Solution procedure

The problem of determining the critical excitation model can now be stated as finding S(w)
which maximizes Py (4) under the constraints given by Eqgs. (7,8) and (11). Clearly, this problem
constitutes a constrained nonlinear optimization problem. To solve this problem, we first
represent X,(f) in a random harmonic series as X,(?) = ZQZ {4, cos Q,t + B, sin Q,t}. Here,
{4,, Bn}iv-:/ | 1s a set of 2Ny zero mean Gaussian random variables and Ny is the number of discrete
frequencies included in the series representation for X,(f) within (wo,w.). Furthermore, the
random variables A, and B, are taken to be such that (4,4,,) = 0,215”,”, (B,B,,) = aﬁémn and
(ApBy) =0V¥n,m=1,2,...,Ny. Here (-) represents the mathematical expectation operator and

Omn 1s the Kronecker delta. These conditions ensure that X,(¢) is a wide sense stationary random



A.-M. Abbas, C.S. Manohar | Journal of Sound and Vibration 287 (2005) 865-882 871

process. This representation also automatically discretizes S(w) in terms of the deterministic
quantities, ¢2, and is given by S(w) = Zivf 1028(w — Q) where, 6(-) represents the Dirac delta
function. Consequently, the optimization problem defined above can be restated in a discrete form
as finding {02} 2, which maximize Py, as given by Eq. (4), with

N sz exp PP 4 2N{ Tqa3, exp(—12/(203)))

me( ) = 5
oL 205,
S RH () P02/ [ H (@) 0 al
N(T — \/ 2 , 0'(2)L = Z |HL(QI’I)0;217 (12)
Zn#] |HL(QI’!)| O-n n=1

subject to the constraints

Za =FE, ZazQz_Ez, 0"2120,

62

N.
1 4 _
S (@ = Qo |10+ ——" | SAHy. 13
2(0)6_@0)”2:1:( 1) Og|: +S0(-Qn_Qn71) v ( )

Thus it follows that the objective function, as given by Eq. (12), as well as the constraints
listed above are nonlinear functions of the optimization variables {02} ’,, and, therefore, the
problem of finding critical excitation here constitutes a nonlinear optimization problem. It is
proposed in the present study to solve this problem by using the sequential quadratic
programming method as available in the Matlab optimization toolbox [18]. This leads to an
iterative procedure to determine the optimal solution with the attendant need for specifying an
appropriate starting solution. At every ith step of iteration, the convergence criteria [Py, —
Py, |<€y and |o; — o |<(, are checked and the process terminates if these conditions are met.

3. Method II: critical excitation that minimizes reliability index

The problem of determination of the failure probability by the evaluation of the double integral
appearing in Eq. (3) can be side-stepped if attention is shifted to the determination of an
associated reliability index. The theory of reliability indices is well developed and is discussed
extensively in the literature, see, for example, the text book by Ang and Tang [19]. One of the
commonly used reliability index is the Hasofer—Lind reliability index which is defined as the
shortest distance from the origin to the limit surface in the space of standard normal random
variables [20]. A basic property of reliability indices is that an increase in their value is expected to
imply a reduction in the failure probability. In the context of critical earthquake excitations, one
can now introduce a new definition for the critical excitation as the excitation that minimizes the
reliability index associated with the performance function ¢(R,L,,) = R— L,, under a set of
specified constraints. The basic motivation for introducing this definition is the expectation that
this definition is more generally applicable than the definition proposed in the previous section.
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This point would be elaborated upon during the later part of this paper and in the next part of this
paper [21].

To formulate the problem of deriving critical seismic loads as per the new definition proposed
above, we first note that the structure performance function is given in terms of two random
variables, namely, the structure capacity, R, and the load effect, L,,, as

gX)=R— max |L(#)|=R-L,. (14)
O0<t<Ty

Here X =[R L,]' =[X; X»]'is the vector of the two random variables, R and L,,. In case, the
mass, stiffness and damping characteristics are also modelled as being random, the definition of X
can be extended to include these random variables also. Furthermore, the elements of X, in
general, can be modelled as being jointly non-Gaussian and mutually dependent. For the purpose
of illustration, we restrict our attention here to the case when X consists of only two random
variables, namely, R and L,,. It is to be noted that g(X)>0 defines the safe region, g(X)<0
indicates the failure region and g(X) = 0 defines the failure surface. The above performance
function is linear in two non-Gaussian random variables. The problem of determining the
reliability index for such performance functions is well studied in the literature (see, for example,
Ref. [19]). Here one begins by transforming the vector of random variables X to a vector of
uncorrelated Gaussian random variables denoted by X" = [X? X)1' using the conditions

* N * N
xi - 'u i % 1 xi B 'u i k
@<7N X) = Px,(x}), — ¢<7N X) = py (X)) (15)

X; X;

Here x7 (i =1,2) is the design point, that is, the point on the limit surface with the smallest
Euclidean norm in the standard normal space, Px,(-), py,(-), are respectively, the probability
distribution and density functions of the original random variables X; (i = 1,2), @(-), ¢(-), are the
standard normal probability distribution and density functions, respectively, and ,u])\(’l_, 61}}’_ are the
mean and standard deviation of the equivalent normal variate. Following Ang and Tang [19], it

can be shown that u§ and o are given, respectively, by

O [Py (x*
o =T T = e e L (16)

Accordingly, the structural safety can now be measured in terms of the Hasofer—Lind reliability
index, 5, as the shortest distance from the origin to the failure surface in the equivalent standard
normal space, X" [20]. It follows from Eq. (14) that f8,; is given by

Y, — 1Y,
X P+ @Y
Furthermore, the failure point in the original space is given by
Y 0g/0X ). ’
VXL @g/ax )1

ﬁHL =

(17)

«_ N N« , N _ N N
X; =0y X; + Uy, = alﬁHLUXI + Uy,

i=12  (18)
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Here o; is the vector of the direction cosines associated with the check point. To formulate the
problem of deriving critical earthquake excitations, the ground motion X,(¢) is again expanded in
a Fourier series as has been done in the previous section. Thus, the problem of finding critical
excitation can now be stated as computing the optimal {¢2} 7, that minimize the structural
reliability index

_ = - oy o POl o 0 [P ()]
HL —
VIS [Py, (DD /oy, CDF + [0 [P, (D, ()P

subject to the constraints listed in Eq. (13). It is to be noted that the right-hand side of the above
equation is implicitly dependent upon the optimization variables, {0,21}” | in a nonlinear manner.
Thus the optimization problem here again constitutes a constrained nonlinear optimization
problem. The solution to this problem is obtained using the sequential quadratic programming
method as has been done earlier in the previous section. Here again an iterative procedure is
required for the solution in which, within each step, the Hasofer—Lind reliability index is
estimated. At every step of iteration, the convergence criteria |By;. — By, | <01, [g:(x*)|<d> and

o7 — 0, | <t are checked and the process terminates if these conditions are met.

p (19)

4. Method III: critical excitation that maximizes response variance

Here the critical psd function is determined such that the response variance in the steady state is
given by

,

= [ I S@)do (20)
o

is maximized subject to the constraints listed in Eq. (13). This model of critical excitations has

been recently studied by the present authors [13] and the details are omitted here. The results from

this model are included in the present study to enable a comparison between the alternative

critical input psd function models.

5. Numerical results and discussions on methods I, II and III

Two example structures are considered for illustrating the critical excitation models formulated
in the preceding sections (Fig. 1). The first structure is a one-story portal frame and the second is a
tall reinforced concrete chimney. The two structures are assumed to be located at a firm soil site
and are subjected to a horizontal component of the ground motion. Table 1 summarizes the
objective function, as well as the combination of constraints scenarios considered in the numerical
illustrations. A set of ten horizontal ground motion is used in quantifying the constraints that are
relevant in deriving the critical earthquake excitations. The details of the recorded accelerograms
included in these calculations are summarized in Ref. [13] and these details are not repeated here.
In the numerical calculations it is assumed that Ey = 1.45 m?/s* and n{ = 1.64/s. This leads to
E; = 153.96m?/s®, which implies that the expected peak value of %,(¢) is about 0.44g. The
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Fig. 1. Example structures considered. (a) Frame structure, (b) chimney.

Table 1
Nomenclature of objective function and combinations of constraints
Method Objective Constraints imposed

Case 1 Case 2
1 To maximize Py Eo&ng Eo,nf &AHw
11 To minimize B, Ey&nf Eo,n§ &AHy
III To maximize oﬁk Eo&n§ Eo,nf &AHy

frequency bandwidth, (wy, w.) is taken as (0, 25.00) Hz and the increase of average entropy rate,
AHy, from a reference white noise of intensity parameter Sy = 0.02m?/s?, was computed to be
0.63. The total duration of the critical earthquake signal is taken as T; = 30s. The convergence
parameters for method I are taken as ¢; = 107% and ¢, = 107°, while those for method II are
01 = d, = 0.001.

5.1. Example 1: seismic response of a steel frame

A one-story steel portal frame of width L =9.14m, height 4} = 5.49m and modulus of
elasticity E = 2.10 x 10! N/m? is considered, see Fig. 1(a). The frame carries a total dead load
of 3 x 10° N/m, and the columns are made of W10 x 33 of A36 steel grade [22]. For purpose of
dynamic analysis, it is assumed that the girder is sufficiently rigid to prevent rotation and that the
columns are massless. Under these conditions, a single-degree-of-freedom (sdof) system is used to
model the frame structure. The natural frequency of the frame is computed to be 2.07Hz. A
modal viscous damping of 3% is assumed. The number of frequency terms, Ny, in the series
representation of S(w), is taken to be 41. For the present sdof system, the frequency response
function, H(w), is given by Hy(w) = 1/[w? — »? + 2j{,w,0], where, w, and {, are the natural
frequency and damping ratio of the structure and j = +/—1. Referring to Egs. (1) and (14), and
considering the force in the spring to be the criterion for failure, the performance function can be
written as g(X) = R — kmaxo<,<r,|u(t)| = R — L,,. Here, R, the resistance is a random variable
and is taken as the maximum permissible force (yield force) in the spring. In the present work, two
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different distributions, namely, normal distribution and type I asymptotic distribution are
assumed for R. Furthermore, the mean and standard deviation of R are taken to be pz = 3.75
x10* N, and gz = 3.75 x 10°> N for both the two distributions. It is to be noted that, the assumed
value for u, implies that the allowable average yield stress in the spring is around 360 N/mm?.
The probability distribution function of the resistance when R is taken to be normal, is given by

Pr(r) = %{1 terf (r\/—z:ﬂ } Q1)
R

similarly, when R is type I asymptotic, one gets

Pr(r) = expl=expl-alr = Il a= e 0 =pp= (22)

The stiffness of the spring, k, was computed to be 4.67 x 10° N/m. In the performance function as
defined above, L, is a random variable, representing the maximum value of the response process
ku(t) over the time interval T, after u(f) has reached a stochastic steady state. Under the
assumption that, X,(7) is a stationary Gaussian random process, the displacement response u(?) is
a stationary narrow band Gaussian random process. Therefore, the extreme value distribution of
the response process, u(?), that is P, (u,), can be taken to be given by [17]

2
P ym(um) = exp |:_N6r T4 exp <_ u—rg>:| : (23)
205,

Consequently, the probability density function, p () is now deduced as follows:

NI T qup, w2, + 2N§ Tqa3, exp(—u?,/(263)))
Pum(ttm) = —25—" exp [— L 02L - /@y, ] (24)
0oL 0oL
Using transformation of random variables, the pdf of L,, can be shown to be given by
N§Tql (/) + 2N Ty}, exp(—1*/(2k*63,))
pr,()=—F—5—exp|— 5 . (25)
ko, 207,

Fig. 2 shows the plots of critical input psd functions for the three models and two constraint
scenarios listed in Table 1. Table 2 provides the results on the critical responses obtained using
these models.This table also shows two additional sets of results, namely, (a) results on critical
responses when the frame is re-designed to possess a higher natural frequency of 2.94 Hz, and (b)
structure responses for w, = 2.07 and 2.94 Hz when the system is driven by stationary random
process with Kanai—Tajimi psd function. It is to be noted that the change in natural frequency of
the system from an initial value of 2.07 Hz to a higher value of 2.94 Hz was realized by changing
the mass of the frame keeping stiffness properties unaltered. Also, the Kanai—Tajimi psd function
used herein is selected to be valid for a firm ground with variance equal to that of the critical psd
functions. For the purpose of illustration, the plots of critical failure probability obtained using
method I and the critical reliability index obtained using method II are shown in Fig. 3 for
different values of uy keeping the distribution of R to be the type I extreme value. To investigate
the effect of changing the constraint parameters on the critical inputs, a numerical investigation of
the sensitivity of the critical response with respect to the constraint parameters is carried out. With
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Fig. 2. Example 1: psd of X,(¢). (a) Case 1, (b) case 2, w, = 2.07Hz, {, =0.03, up =3.75 x 10* N, R is normal.

Table 2

Summary of P, and f8; for the steel frame, up = 3.75 x 10*N, R is normal

Input Critical psd Kanai-Tajimi psd
w, =2.07Hz, {, =0.03 w, =2.94Hz, {, =0.03 w, =2.07Hz w, = 2.94Hz
Case 1 Case 2 Case 1 Case 2 {, =0.03 {, =0.03

P 0.9997 0.0936 0.1485 1.12 x10~4 0.0390 6.45%10°

Pur —0.2602 0.2397 0.0976 1.6304 — —

a,(m) 0.0607 0.0268 0.0226 0.0129 0.0197 0.0105

a change of 1% in each constraint parameters E,, n, and AHy, while other constraint
parameters are kept unchanged, the values of Py are computed by re-solving the optimization
problem. The percentage changes in P, due to changes of 1% in these parameters were computed
to be 1.65, 0.56 and 4.32, respectively. This shows that the structure failure probability is more
sensitive to the entropy rate constraint as compared with the energy and the zero crossing rate
constraints. Based on the study of the numerical results, the following observations are made:

(1) It is observed that all the three methods (I, II and III) lead to nearly the same critical psd
function (Fig. 2(a) and (b)) for the two constraints scenarios (see Table 1). Given that the
objective functions in these three cases are nonlinearly dependent on variables of optimization
in significantly different manner, it is not obvious at the outset that these three methods must
lead to the same critical psd function. However, from a physical perspective, of course, the
result does not come as a surprise. The definition of critical inputs as per method III does not
take into account randomness in resistance variables. It is of interest to note that the critical
input psd function here, also, is similar to those obtained in methods I and II. This leads to the
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Fig. 3. Example 1: critical Py obtained using method I and critical ff;; obtained using method II, for alternative values
of ug for case 2; R is type I asymptotic.

conclusion that, for the example structure studied, randomness in resistance R does not
influence the critical input significantly. The critical responses (in methods I and II), however,
are found to bestrongly influenced by models adopted for R.

(2) When the constraints imposed include Ey and n§ (case 1), the critical psd function is highly
resonant in nature with most of the energy located at the system natural frequency and a
minor part located at w = wq (Fig. 2(a)). The occurrence of this secondary peak enables the
satisfaction of the constraint on zero crossing rate. Consequently, it can be expected that the
structure probability of failure tends to become high and, conversely, the reliability index
becomes very low. Indeed, from Table 2, it can be seen that Py and fj; are, respectively,
0.9997 and —0.2602 (see column 2 of the table). The system natural frequency in this case is
2.07Hz and the input zero crossing rate is 1.64/s. If a system with a natural frequency of
2.94 Hz is selected, the difference between the input zero crossing rate and the system natural
frequency further increases and this is seen to lower the critical failure probability and increase
the reliability index (see column 4 of Table 2).

(3) With the introduction of the constraint on entropy rate (case 2), see Fig. 2(b), as might
be expected, the critical input becomes relatively broad banded. More importantly, the
psd function of the critical ground acceleration from all the three methods are seen
to be nearly identical. The failure probability in this case drops significantly which can be seen
from Table 2 (columns 3 and 9).

(4) The orderability relationship that exists between the critical structure probability of failure
obtained using method I and the critical reliability index obtained using method II, can be
evidenced from Fig. 3, where a drop in the failure probability, with changes in pg, is always
associated with an increase in the associated reliability index.

(5) From Table 2 it can be observed that the ratio of Py produced by critical inputs (case 2) to that
from ground motion that has the Kanai—Tajimi psd function, that is valid for a firm soil site,
and, has the same input energy, is around 2.40 and 1.74 forw, = 2.07 and 2.94Hz,
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respectively. Similarly, the ratios on response standard deviation from method III are seen to
be 1.36 and 1.23, respectively. These ratios provide an idea on the level of conservatism
associated with critical excitation models.

5.2. Example 2: seismic response of a chimney

To illustrate the formulations developed in this study for multi-degree-of-freedom systems, a
46 m tall reinforced concrete chimney is considered, see Fig. 1(b). The chimney is taken to have
uniform circular cross-section of 3.80m outer diameter, 3.30 m inner diameter, constant mass
density of 2500kg/m> and modulus of elasticity E = 2.0 x 10! N/m?. A finite element analysis
using 20 two-noded beam elements showed that the first four natural frequencies of the chimney
are 0.94, 590, 16.52 and 32.36 Hz. Since the frequency bandwidth (wg,w.) of the input
acceleration is taken to be (0, 25.00) Hz, the first three natural frequencies of the chimney are only
retained in the dynamic analysis. The number of frequency terms, Ny, in the series representation
is taken to be 31 and a modal viscous damping of 5% is assumed for the three modes. The
resistance, R, is defined as the maximum allowable tip relative displacement that the chimney can
sustain without failure and is taken as a deterministic quantity, R = 4,/75 = 0.6133 m. The load
effect, L,,, is taken as maxo<,<r,|u(?)| with probability distribution function, P, (/) given by
Eq. (5). Critical earthquake excitations are computed using methods I and III. Fig. 4 shows the
critical input psd function obtained using methods I and III for the constraint scenarios of cases 1
and 2 (see Table 1). As has been observed in the previous example, the two critical psd function
models are seen to be identical in this case also. It is also observed that the response is dominated
by the first mode contributions. The structure probability of failure under the action of critical
inputs reduces from a value of 0.9999 to 0.1107 as the constraint on entropy rate is brought in.
This is reflected in Fig. 5, in which, the pdf of L,, is shown for the two cases of constraints
scenarios considered. Similarly, the effect of introducing the entropy rate constraint in method III
was also observed to reduce the critical response standard deviation of the tip relative
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0.12+ ]
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K & 008t
3 3
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Fig. 4. Example 2: psd of X,(7). (a) Case 1, (b) case 2; R = 0.6133m.
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Fig. 5. Example 2: pdf of L,, under critical excitation, method I; R = 0.6133 m.

displacement from 0.52 to 0.29m. The effect of changing the structure resistance R on the
estimated failure probability was also studied.The chimney failure probability was computed as
0.0135, 0.0403, 0.1107, 0.2672 and 0.5327 when R was taken as 0.4906, 0.5520, 0.6133, 0.6746 and
0.7360 m, respectively.

6. Conclusions

In this paper, new formulations for deriving critical earthquake excitations for linear structures
under random ground motion are developed. These formulations take advantage of the well
developed reliability methods, random vibration analysis and nonlinear optimization program-
ming. New definitions for critical inputs in terms of the structure probability of failure and
reliability indices are introduced. Specifically three methods have been discussed in this paper.
These methods (I, II and III) have different scope, are based on different underlying
approximations and, therefore, have different ranges of validity. The application of method I
requires the knowledge of probability distribution of extremes of the load effects over a specified
duration. When load effects could be modelled as Gaussian random processes, as in the case of
response of linear systems to Gaussian excitations, the extreme values can be modelled as Gumbel
random variables. Within the framework of this method, treatment of structural uncertainties,
nonlinearities, and non-Gaussian load effects (such as, for example, von Mises stress in a linear
structure subjected to Gaussian excitations), are difficult to handle. Method II has similar
aspirations as method I: here again the objective is to maximize probability of failure, but this is
achieved approximately and indirectly. This method is based on the orderability character of the
Hasofer—Lind reliability index, that is, any increase in this index signals a reduction in failure
probability. Here the performance function is linearized around the check point in the standard
normal space. The method is more generally applicable: it can handle uncertainties in structural
uncertainties (such as, randomness in mass, stiffness, damping and strength characteristics), their
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non-Gaussian nature, and mutual dependencies between loads and structural parameter
variations. The application of this method provides, as a byproduct of the analysis, information
on sensitivity of critical response to different parameters of the problem. The method essentially
introduces concepts from theory of reliability indices into the development of critical excitation
modelling: this, we believe, to be a novel application of theory of such indices. Method III works
at the level of second-order response moments, and, therefore, has relatively narrower scope: its
extension to handle structural uncertainties and nonlinearity is not straightforward.

Thus, it is clear that, it may not be straight forward to solve a given problem using all the three
methods. However, for a subset of problems, as has been considered in the present study, all the
three methods are indeed applicable. The study of these subset of problems enables one to
compare the relative performance of the three methods. Even for these problems, viewed from a
mathematical perspective, the details of the objective functions are still different for the three
methods and, in this sense, it is hard to anticipate in advance that the three methods should lead to
similar results. Specifically, it must be noted that the basic aspirations of methods I and II are
similar, that is, to produce critical excitations that maximize the probability of failure. However,
as has been already emphasized, method II is relatively more approximate in nature, and more
generally applicable than method 1. Thus, the observation that the alternative methods, for the
performance functions considered in this study, lead to similar critical excitation models points
towards acceptability of working of method II. This agreement also the provides the necessary
confidence to extend the applicability of method II to more general class of problems. In the
treatment of seismically loaded nonlinear and/or parametrically excited systems, information on
extreme value distribution of response over a given duration is often not available. This impedes
the application of method I to this class of problems. On the other hand, with the currently
available tools of structural reliability analysis, it is feasible to compute reliability indices
associated with nonlinear and/or parametrically excited systems, although, the determination of
the probability density function of extreme values for the response of these systems is still difficult.
Thus, using methods based on response surface techniques, one can approximately evaluate
reliability index, even when no analytical estimates for extreme value distributions are available.
Studies on development of critical excitation models for a class of nonlinear systems subject to
random earthquake loads is considered in the sequel to the present study [21].

The following are a few limitations of the present study, which, further research efforts can
eliminate:

® The extreme value theory used in implementing method I is valid asymptotically and is based on
the assumption of stationarity of excitations and Poisson approximation for the number of level
crossings. This result can be improved upon by introducing nonstationary amplitude and
frequency content model for the seismic excitations and by using more refined theories for
modelling extremes.

e The definition of critical excitations in this study is based on a single performance criterion.
This definition can usefully be modified to allow for more than one failure modes into the
characterization of structural failure. The consequent analysis for critical excitations requires
the application of time variant system reliability concepts. Within the framework of method I1I,
critical excitations that simultaneously maximize the response variance associated with a vector
of response variables can be handled by using methods of multi-objective optimization.
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o Method II is essentially approximate in nature since, the method employs first-order reliability
methods that are based upon linearization of performance function about the check point in the
standard normal space. Consequently, given the nonlinear nature of the performance function,
the knowledge of f is not always guaranteed to lead to an acceptable estimate of the probability
of failure. The results could be improved if one employs second-order reliability methods and,
also, if one uses refined computational procedures as developed, for example, by Der
Kiureghian and Dakessian [23], to take into account possible existence of multiple design
points.

® The problems of constrained nonlinear optimization that underlie the study reported in this
paper have been solved using sequential quadratic programming tools. Generally, these
methods are not guaranteed to give the global optimal solutions. In the present study, this issue
has been examined essentially numerically. In fact, it was generally observed that initiating
numerical optimization steps with different starting guesses lead to the same optimal solutions.
Furthermore, these solutions were considered acceptable since they displayed qualitatively the
features that could be explained in a consistent manner. In this context, the use of alternative
powerful optimization tools such as those based on genetic algorithms, should be of interest.

e In the present study we have treated the constraints on critical inputs as being deterministic in
nature. The long-range uncertainties associated with the earthquake phenomenon can be taken
into account by treating these constraints used as being random in nature. In this context, it is
of interest to note that Bayesian methods, that are developed in reliability literature to deal with
distributional parameter uncertainties, could provide useful framework to develop and update
critical excitation models.
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